教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 高等教育> 生物学> Plant cell wall polymers as precursors for biofuels

Plant cell wall polymers as precursors for biofuels

上传者:单锦辉
|
上传时间:2015-05-11
|
次下载

Plant cell wall polymers as precursors for biofuels

内容需要下载文档才能查看 内容需要下载文档才能查看

Available online at http://wendang.chazidian.com

Plantcellwallpolymersasprecursorsforbiofuels

MarkusPauly1andKennethKeegstra

Theconversionofplantbiomassintoliquidtransportationfuelsisacomplexprocessthatcouldbesimpli?edbyalteringtheratiosofthecellwallpolymersthatconstitutethemainbiomasscomponents.Thecompositionofbiomassvariesnaturallydependinguponplantspeciesandcelltype,includingsomehighlyspecializedwallsthatconsistmainlyofasinglecomponent.Progressisbeingmadeinunderstandingthemolecularbasisofthesenaturalvariationsinwallcomposition.ThisnewknowledgewillbeavaluableresourcethatcanbeusedduringeffortstogeneratedesignerbiofuelcropsusingeitherselectedbreedingmethodsorrecombinantDNAtechniques.

Address

DOEGreatLakesBioenergyResearchCenter,DOEPlantResearchLab,DepartmentofBiochemistryandMolecularBiology,MichiganStateUniversity,EastLansing,MI48824,USA

Correspondingauthor:Keegstra,Kenneth(keegstra@msu.edu)1

Currentaddress:EnergyBiosciencesInstitute,DepartmentofPlantandMicrobialBiology,CalvinLab,UniversityofCalifornia-Berkeley,Berkeley,CA,USA.

CurrentOpinioninPlantBiology2010,13:305–312ThisreviewcomesfromathemedissueonPhysiologyandmetabolism

EditedbyUweSonnewaldandWolfB.FrommerAvailableonline22ndJanuary20101369-5266/$–seefrontmatter

#2010ElsevierLtd.Allrightsreserved.DOI10.1016/j.pbi.2009.12.009

alsoqualitativedifferencesintheircomponents.Sensitiveanalyticaltechniquescanbeusedtoidentifyandcharac-terizespeci?cwallcomponentsatthetissueorcellularlevel.Sensitivemassspectrometricmethodshavebeendevelopedtoanalyzewallfragmentsreleasedbyenzymesfromlaser-dissectedplanttissues[3??].Notsurprisingly,thevasculartissuescontainedverydifferentcomponentsfromthoseinotherleaftissues.Evendifferencesinthesubstitutionpatternsofthehemicellulosexyloglucanbetweentheouterwallofleafepidermalcellsandthewallsderivedfromtheentirelayerwereobserved,indi-catingthattherearelocalstructuraldifferenceswithinxyloglucanfromdifferentpartsofasinglecell.Moresigni?cantly,theuseofmolecularprobes,suchasspeci?cstains[4]andantibodies,revealsanamazingdiversityofpatterns([5];Figure1).Anumberofmonoclonalanti-bodiesthatrecognizedifferentepitopesonxylan[6],arabinan[7??,8],orxyloglucan[9,10??,11]havebeenusedtodemonstrateveryspeci?cpatternsofdistributionamongcelltypesandwithinthewallofsinglecells.Weneedtoconsiderthiscompositionalcomplexityofplantfeedstockswhenevaluatingandassessingtherobustnessoftechnicalprocessesconvertingbiomasstobiofuels.

Wallcompositionandfuelproductionprocesses

Lignocellulosicbiomasscanbeutilizedasafeedstockforbiofuelproductioninanumberofways.Dependingontheprocess,differentattributesinwallcompositionarerequiredordesired.Oneapproach,similartothatusedinthecornethanolindustry,entailsdegradationofthepolysaccharidesinthelignocellulosicfeedstocktomono-saccharides,andtheirsubsequentfermentationtoethanolorotheradvancedbiofuels.Theremainingligninresiduecanbeusedtogenerateheat,forexample,forethanoldistillation.Themajorchallengeinthisprocessisthatplantshaveevolvedwallstructuresthatarerecalcitranttobiologicaldegradation[1,12].Hence,thebiomassmustbesubjectedtosuchenergy-intensiveandcost-intensivetreatmentsassteam,weakacid,ornon-aqueousammonia[13].Inaddition,ahighenzymeloadingisrequiredtoreleasefermentableglucosemonomersfromcellulosebecauseofitstightlinkagewithhemicellulosesandlignininnativewalls.Therefore,onemajorresearchobjectiveofplantscientistsistomakewallsmoreopenandaccessibletoenzymaticdegradation.Onewaytoenhanceenzymeaccessibilitywouldbetoincreasethewatersolubilityofpolysaccharides.Thisshiftintheratiooflesssolubletomoresolublepolysaccharidescouldbeachievedbyanincreaseintheabundanceofamorphousglucanchainsratherthancrystallinemicro?brilsofcellulose;additionofsidechainsubstitutionstothebackboneofhemicelluloses,

CurrentOpinioninPlantBiology2010,13:305–312

Introduction

Plantcellwallpolymershavereceivedsigni?cantatten-tioninrecentyearsbecausetheyarethemajorcom-ponentsintheplantbiomassthatisunderconsiderationasasourceofreducedcarbontopartiallyreplacefossilfuels.Althoughplantbiomassisoftenconsideredashavingauniformcomposition,thereisinfactsubstantialdiversityincompositionthatarisesfromtwoimportantareas.First,differentspeciesofplantshavesigni?cantdifferencesintheproportionsofcellulose,hemicellulose,andligninfoundintheirbiomassand,further,importantdifferencesinthetypesofhemicellulosesand/ortheratiosofmonomersinlignin[1,2].Inadditiontothesespecies-speci?cdifferences,theaveragecompositionofasinglespecies,whichisoftenquiteuniform,hidesagreatdealofdiversity.Everyplantconsistsofmanydifferentcelltypes,eachwithauniquecellwallthatcontainsnotonlydifferentratiosofwallcomponents,butsometimes

http://wendang.chazidian.com

306Physiologyandmetabolism

Figure

内容需要下载文档才能查看

1

Anotherissueisthefermentabilityofthereleasedmono-saccharides.Currently,yeastsusedintheethanolfer-mentationprocessutilizeonlyhexosessuchasglucoseandmannose.However,themostcommonhemicellulosicpolysaccharidesconsistmainlyofxyloseandarabinose,pentosesthatdonotfermentsoreadily.Progresshasbeenmadeindevelopingspecializedyeastandbacterialstrainsthatcanfermentthesepentoses,buttheyarenotyetveryef?cient[16].Therefore,onedesirablechangeinbiomassisanincreasedabundanceofhexose-containingpolymerssuchascelluloseormannansratherthanxylans.Anotherprocessusedtoconvertlignocellulosicbiomasstofuelisacatalyst-basedchemicalprocess[17,18].How-ever,thisprocessishamperedbyinhibitingcomponents,suchasphenoliccompoundsoraliphaticacids,presenttovaryingdegreesinthedegradedbiomass[19].Oneplantbreedinggoalshouldthusbetoreducetheabundanceofsuchcompoundstoaminimum.

Analternativewaytoproducefuelsisbycombustionandgasi?cationoflignocellulosicstosyngas(carbon-monox-ide,carbon-dioxide,andhydrogengas)thatcanbetrans-formedtoethanolviamicrobes[20]orhydrocarbonsbytheFischer–Tropschprocess.Theadvantageofthegasi-?cationprocessisthatnotonlythepolysaccharidesbutalsothecarbonpresentinligninisavailableforfuelproduction.Fortheseprocesses,thecompositionandaggregationstatusofthevariouspolymerswithinthelignocellulosicmaterialdoesnotplayarole,butlowwaterandashcontentaredesirable[21].

Nativestructuraldiversityofplantcellwalls

Thewallcompositionandstructureofdifferentiatedcellsinplantsarediverse.Sectionsofplanttissuesstainedforlignin[69]andviewedwithaninvertedmicroscope(panela)orwithfluorescent-taggedantibodiesdirectedagainstspecificpolysaccharideepitopes[7??,8]andviewedbyfluorescencemicroscopy(panelsb–f)revealsthatthewallstructuraldiversitycanbeobservednotonlyindifferentcelltypes(a,b,f),butalsoindifferentlayersorareasofasinglecell(c,d,e).

a:Sectionofthefirstinternodeofamaizestemstainedwith

phloroglucinol(courtesyofDebraGoffner,CNRSCastanetTolosan).b:Sectionfromthefirstinternodeofamaizestemstainedwith

Mirande’sreagent(courtesyofDebraGoffner,CNRSCastanetTolosan).c/d:ImmunofluorescencedetectionofpecticarabinanepitopespresentintheparenchymacellsofanArabidopsisinflorescencestem.Twoantibodiesrecognisingdifferentarabinanepitopes(c-LM13;d-LM16)labeldistinctdifferentregionsofthosecells(courtesyofPaulKnox,UniversityofLeeds).

e:Intobaccostemsectionsacertainpecticarabinanepitope(LM16)isobservedonlyinxylemfibercellsandphloemcells.

f:Maturefibersofhemp:localizationofanarabinogalactan-proteinepitope(visulaizedbyJIM14)attheinnersideofsecondarywalls(courtesyofPaulKnox,UniversityofLeeds).

Whenthinkingaboutstrategiesforchangingthecompo-sitionofplantcellwalls,whetherintermsofabundanceofcertainpolymersorsubstitutionpatternsofspeci?cpoly-mers,onecangainsigni?cantinsightsbylookingintonature’s‘laboratory’.Certainplantspecieshaveevolvedspecializedtissuesthathaveunusualwallcompositions,thatis,theycontainelevatedlevelsofcellulose,hemi-cellulose,orlignin(foroverviewseeFigure2).

Specializedcellsthatmakecellulose

therebydecreasinghydrogenbondingwithcellulosemicro?brils;thecreationofamoreeasilydegradableligninthroughtheintroductionofspeci?ceasilycleavablemono-lignols[2,14??];and/orareductionoflignin–hemicelluloselinkages[15].

CurrentOpinioninPlantBiology2010,13:305–312

Oneofthebest-studiedexamplesistheseedtrichomeofcotton,inwhichthe?bercellshavesecondarywallscontainingalmostpurecellulose[22].Studiesofthissystemhaverevealedmanyimportantfeaturesofcellu-losebiosynthesis,includingthe?rstidenti?cationofthecellulosesynthasegenesinplants[23].Inrecentyears,progresshasbeenmadeinidentifyingtheregulatoryeventsthatallowthedepositionofalmostpurecelluloseincotton?bers[24].Cotton?berdevelopmentisacom-plexprocessthatinvolvesmanyevents,includingtheactionofvarioushormones[25],butsomeofthekeytranscriptionfactorshavebeenidenti?ed[26,27].Adetailedunderstandingofthemetabolicandregulatoryeventsneededforasinglecelltoconvertalmostallofits

http://wendang.chazidian.com

CellWallsandBiofuelsPaulyandKeegstra307

Figure

内容需要下载文档才能查看

2

Examplesofspecializedtissuesinplantsthatproducepredominantlyasinglecellwallpolymer.

Cellulose—Maturecottonplants(upperleft)producecottonfibers(lowerleft),whosesecondarywallsthatarenearlypurecellulose(courtesyofCandiceHaigler,E.Roberts,andE.Hequet,NCStateUniversity).Poplartrees(upperright)producetensionwood(lowerright)withwallsthatarealsonearlypurecellulose(courtesyofFrankTelewskiandJameelAl-Haddad,MichiganStateUniversity).

Hemicelluloses—Fenugreekplants(upperleft)produceseedscontainingendospermwalls(lowerleft)thatarelargelygalactomannan.Psylliumplants(uppercenter)produceseedssurroundedbyamucilaginouslayer(lowercenter)withwallsrichinarabinoxylan.Nasturtiumplants(upperright)

produceseedswherethecotyledoncells(lowerright)haveawallthatislargelyxyloglucan(courtesyofMarleneCameron,CurtisWilkerson,MichiganStateUniversity).

Lignin—Pinetrees(upperpanel)producecompressionwood(lowerpanel)thatisenrichedinligninwithadifferentcompositionfromnormalwood(courtesyofFrankTelewskiandJameelAl-Haddad,MichiganStateUniversity).

carbonresourcesintoasinglepolysaccharide,cellulose,shouldbeusefulineffortstomanipulateandenhancecellulosedeposition,therebyincreasingC6sugarabun-danceinbiofuelcrops.

Specializedcellsthatmakeasinglehemicellulose

theworkofCocuronetal.[35],whousedstudiesofdevelopingnasturtiumseeds,whichstorexyloglucan,toprovideevidencethatthexyloglucanglucansynthaseisencodedbyaCslCgene.

Thefactthattheseseedsarecapableofmakingasinglehemicellulosicpolysaccharide,whilenotmakingotherpartsofthewall,indicatesthatthesebiosyntheticpath-wayscanberegulatedindependentlyfromotherwallcomponents.Furthermore,theuseofcellwallpolymersasreservecarbohydratesoccursinseveralunrelatedplants[28],indicatingthatthistraithasarisenindepen-dentlymanytimesduringtheevolutionoflandplants.Ifcorrect,thislogicwouldleadtotheconclusionthatonlyafewchangesareneededtoaccomplishthischangeinregulationandthatitcouldbedonebydesigntomodifythewallsofbiofuelcrops.

Changesinwallcompositionduetoenvironmentalresponses

Manyplantspeciescreateaspecialcellwallintheendospermorcotyledoncellsofdevelopingseeds[28].Thesecellwallpolysaccharidesserveasreservecarbo-hydrates,beingsynthesizedduringseeddevelopmentandlatermobilizedduringseedlinggermination.Seedsthatstoregalactomannanorxyloglucanareabundantinnature[28],butthereareseedsorothertissuesthatproduceotherpolymersinspecializedcells,suchaspsylliumseeds,whichmakearabinoxylaninaspeciallayerofepidermalcells[29].

Studiesofdevelopingseedsystemshaveledtotheidenti?cationofgenesandenzymesinvolvedinhemi-cellulosebiosynthesis.Forexample,studiesofdevelop-ingguarseedsledtotheconclusionthatmannansynthaseisencodedbyaCslAgene[30],andmorerecentstudieshavecon?rmedthatthisconclusionisvalidformostplantspecies[31,32],includingcoffee[33].Recently,Goubetetal.[34]usedreversegeneticstoprovideconvincinginvivoevidencetofurthersupporttheearlierconclusions.Anotherexamplecomesfrom

http://wendang.chazidian.com

Plantshavethecapacitytoreacttoenvironmentalstimulibychangingtheirmetabolism.Reprogrammingcellwallpolymerbiosynthesisisnoexception.Forexample,asaresponsetomechanicalstresses,suchaswindorchangesingravitationalstimuli,treescandevelopspecializedtissuesknownasreactionwood[36].Thistypeofwoodenablesthereturnofstemsbacktoaverticalorientation.

CurrentOpinioninPlantBiology2010,13:305–312

308Physiologyandmetabolism

Reactionwoodofgymnosperms,knownascompressionwood,developsonthelowersideofbranches.Regulargymnospermwoodcontainsligninthatlackssyringylunitsandconsistsalmostentirelyofguaiacylunits,whereascompressionwoodcontainshigheramountsofligninthatisparticularlyenrichedinp-hydroxyphenylunits[37].Thehigherabundanceisprobablyduetoelevatedexpressionofenzymesintheligninmetabolicpathway[38].Consequently,silencingoneofthosegenes(4-coumarate-ligase)resultedinanupto50%reductionoflignininthetrachearyelements[39],severelydwar?http://wendang.chazidian.com-pressionwoodalsohasalterationsinpolysaccharideswithreducedlevelsofcelluloseandglucomannanscomparedtoregularwood.

Bycontrast,thereactionwoodofangiosperms,suchaspoplar,developsontheuppersideofbranchesandistermedtensionwood.Tensionwood?bersformadistinctadditionalinnergelatinouslayer,theG-layer,withhighlyelevatedcellulosecontent(95%vs.45%inregularvesselelements;[40]).AdetailedanalysisofthetranscriptomeandmetabolomeoftheG-layerinpoplardemonstratedahighertranscriptlevelofsucrosesynthase,suggestinganincreasedcarbon?uxintocelluloseproduction[41].Con-comitantly,pathwaysfortheproductionofthehemicel-lulosesandligninweredownregulated.Also,speci?ccellulosesynthasegenesareupregulatedintheG-layer,probablybecausetheycontainmechanicalstress-respon-siveelementsintheirpromoters[42].Despiteitsreducedabundance,xyloglucanispresentintheG-layeranditsmetabolismbyxyloglucanendotransglycosylaseshasbeenproposedtoplayamajorroleinconferringthemechanicalpropertiesoftheG-layeranditsconnectiontotheadjacentS2layer[40,43].

Anotherexampleofadistinctwallstructuremadebyaplantcellisthepapillaformedatthesitewhereapathogenicfungusattemptstopenetrateaplantcell.Apapilla,alocalappositionofamulti-layeredwallstructure,containscallose,structuralproteins,andlig-nin[44].Allofthesecomponentsareproducedasaresultoftheplantcell’ssensingmechanismtriggeredbyinvadingpathogensandarenecessarytoforma?rstlineofdefenseagainstthispathogen[45].Geneticevidencehasbeenpresentedthatcomponentsofthesecretorysystemareresponsibleforthedistinctlocationofthepapilla[46].

Thelessonthatonecanlearnfromthesevariouswallsystemsisthatplantcellsareabletoundergorepro-grammingoftheirwallbiosyntheticmachinery,in-cludingbutnotlimitedtodivertingthe?owofassimilatedcarbon,alteredregulationofglycansynthases,glycosyltransferases,monolignolsyntheticenzymes,andthesecretorysystem.Thisreprogram-mingresultsinfundamentallydifferentandunique

CurrentOpinioninPlantBiology2010,13:305–312

wallmaterialsthathaveanalteredratioofcomponentsorevendifferentcomponents.Understandinghowthecellaccomplishesthistaskwillprovidevaluableknowl-edgethatwillenablerationalchangesofcellwallcompositionthatwillallowenhancedbiofuelpro-duction.

Strategiesformanipulatingwallcomposition

Knowledgeregardingtheregulationofwallpolymerbiosynthesisremainslargelyelusive.Themechanismsbywhichplantcellsregulatethe?owofcarbonintowallpolymersandbalancethequantitiesofthevariouswallpolymersarehottopicsforresearch.Photosyntheticassimilatesareusedasthebuildingblocksforwallpoly-saccharidebiosynthesis.Oneofthe?rstenzymesthatutilizesthenewly?xedcarbonissucrosesynthase(SuSy),whichconvertssucroseintoUDP-glucoseandfructose.Recently,ithasbeenshownthatoverexpressingSuSyinpoplarleadstoahigherproportionandabsoluteamount(2–6%)ofcellulosein?bercells[47????],demon-stratingthatthisenzymemightbeakeydeterminantregulatingcellulosebiosynthesis.Interestingly,theincreaseinwallcellulosecontenthadverylittledetri-mentaleffectontheplant,asgrowthandbiomassremainedsimilartonon-transformedplantswhengrowninthegreenhouse.

UDP-glucoseorotherhexose-phosphatesareusedasasubstrateforthenucleotidesugarconversionpathwaythatresultsinthesynthesisofthe14differentnucleotidesugarsnecessaryforthevariouswallpolymers[48].Hence,manipulatingtheseenzymescouldleadtoaltera-tionincellwallcomposition.Althoughmostofthegenesencodingthenucleotidesugarconversionenzymesareknownandtheiractivitieshavebeendemonstratedinvitro[48],veryfewstudieshavedemonstratedthatmanipulationoftheirexpressionleadstosigni?cantcellwallchanges.Overexpressionoftheseenzymeshassofarnotyieldedplantswithalteredwallcompositions,possiblybecauseoftheredundancyofgenesencodingmanyofthesugarnucleotidemetabolizingenzymes.Forexample,aconcomitantreductionofseveralUDP-glu-coseepimerasetranscriptsledtonotonlyadecreaseinwallgalactoselevels[49],butalsoseverechangesinrootgrowth.Hence,suchchangeswouldpresumablyleadtolessbiomassintheplant.

Anotherstrategyformodifyingthecompositionofcellwallsistoupregulateordownregulatethelevelsofglycosyltransferasesandglycansynthasesthatpolymer-izethesugarsfromnucleotidesugarsintopolysacchar-ides.Cavalieretal.[10??]createdanArabidopsisplantlackingtwogenesencodingxyloglucanxylosyltrans-ferasesandshowedthatxyloglucancouldnotbedetectedinmutantplants.Interestingly,themutantplantsgrewanddevelopedrelativelynormally,althoughtheywereslightlysmallerthanwild-typeplantsandhad

http://wendang.chazidian.com

CellWallsandBiofuelsPaulyandKeegstra309

abnormalroothairs.Itremainstobedeterminedwhatpolymersaresubstitutingforxyloglucansintheprimarywallofthesemutantplants,butoneimportantcon-clusionfromthesestudiesisthatitispossibletomakedramaticalterationsinthehemicellulosecompositionofaplantwithoutseriousconsequencesforitsabilitytogrowandreproduce.

Reidetal.[50]werethe?rsttosuccessfullymodifythecompositionofacellwallpolysaccharidebyoverexpres-singageneencodingaglycosyltransferase.Theyusedaconstitutivepromotertoexpressthegalactomannangalactosyltransferasefromfenugreekintobaccoplants.Thehigherlevelsofgalactosyltransferaseactivityledtoanincreaseinthegalactosylsubstitutionofthegalacto-mannanthatisnormallyfoundinthewallsofseedendospermcells.Effortstomodifythemannancontentofseedsbyoverexpressionofamannansynthasegeneledtoamorecomplexresult.Naoumkinaetal.[51]usedaseed-speci?cpromotertooverexpressthemannansynthasegenefromguarinMedicagotruncatulaplants.ThetransgenicMedicagoseedshadalowerratherthanahigherlevelofgalactomannan,butthemolecularweightandviscosityofthepolymersweresigni?cantlyincreased.Inaddition,theauthorsfoundthatoverex-pressionofthemannansynthasegenecausedlargechangesinthelevelsofvarioussugarsandsugaralcoholsaswellassigni?cantchangesintheexpressionofmorethan900genes,withmorethan300genesupregulatedandalmost600genesexpressedatlowerlevels.Themajorconclusionfromthisstudyisthatoverproductionofacellwallpolysaccharidecannotbeaccomplishedsimplybyupregulationofthegeneresponsibleforpolymerbackbonesynthesis.

Onesystemwhereconsiderableprogresshasbeenmadeinunderstandingtheregulationofwallpolymerbiosyn-thesisonamolecularlevelisdifferentiatingvascularelements,especiallythedepositionofsecondarywallsinxylemcells(seethereviewbyDemuraandYe[52]inthisissue).Theseuniquecellwallsarethemostabun-dantcomponentofharvestedbiomasscropsandthusdeservespecialmention.Manyofthegenesinvolvedincelluloseandligninbiosynthesishavebeenidenti?edandprogressisbeingmadeonidentifyingthegenesrequiredforthebiosynthesisofxylan[53–55],thehemi-cellulosefoundinthevasculartissuesofmostpotentialbioenergycrops.Moreimportantly,keyregulatorygenesthatcontroltheformationofvascularelements[56,57]andmanyofthecomponentsinthetranscriptionalnet-workthatcontrolssecondarywallbiosynthesishavebeenidenti?edinrecentyears[58–61],includingtwotranscriptionalactivatorsoftheligninbiosyntheticpath-way[62????].Itisinterestingtoconsiderthepossibilitythatdiscretetranscriptionfactorsindependentlyregulatethecellulose,hemicellulose,andligninpath-ways.Thedepositionofthesethreecomponentsis

http://wendang.chazidian.com

normallycoordinatedduringwallbiosynthesis[63].Ifitispossibletocontrolthedepositionofeachseparately,thenitshouldbepossibletomodifysecondarywallsinwaysthatwillallowtheproductionofdesignerwallsinbiomasscrops.

Itshouldnotbesurprisingthatthe?http://wendang.chazidian.combiningtheinformationofkeyregulat-orygeneswiththepromotersspeci?cforvariouscelltypesofthevascularsystem[56,57]shouldmakeitpossibletomodifythecompositionofthesecondarycellwallsofvariouscelltypesinstemsorothervegetativetissues.

Investigatingthebiologicalconsequences

Anystrategytoimprovethecompositionoflignocellu-losicsasfeedstocksfortheproductionofbiofuelsneedstoassesstheperformanceofthemodi?edplants.Owingtothemultiplefunctionsofthewallduringthelifecycleofaplant,therecouldbenumerousproblems,includingareductioninplantgrowthandaconcomitantreductioninlignocellulosicbiomass.Biomassyieldconcessionssuchasdwar?smhavebeenshowninanumberofmutants[64],whereasinotherstheyieldundergreenhousecon-ditionsdoesnotseemtobeaffected[65].Alteringthewallscanleadtochangesincellmorphology.Onedetri-mentalexampleofchangesinsecondarywallstructureareirregularxylemcells[66]leadingtoalossinwater-transportingcapacityresultinginareductioninbiomass.Anotherfunctionofthewallistowardoffplantpathogenssuchasbacteriaandfungi[45];structuralchangesinthewallmightleadtoincreasedsusceptibility.However,inafewcaseswherepathogeninfectionhasbeentestedonwallmutants,resistancewasnotreduced[67],andinsomecaseswasevenincreased[68].

Concludingremarks

Plantbiomassisbeingconsideredasafeedstockfortheproductionofbiofuelsandotherchemicals.Becausethetraitsthataredesirablefortheseusesvarydependinguponthemethodutilizedforbiomassprocessing,andbecausethedesirabletraitsdifferfromthoseneededformoretraditionalusesofplantsforfoodand?berpro-duction,muchdiscussionhasfocusedonmodifyingthecompositionandcellwallpropertiesinwaysthatwillimprovethebiomassforthesenewapplications.Assuchmodi?cationsareconsidered,itisimportanttobeawarethatnaturehasalreadycreatedplantcellswithdiversewalls,notonlythosesurroundingthedifferentiatedcellsfoundineveryplant,butalsothoseinvariousspecializedcellsthatoccurinmanyplants.Understandinghowthewallsofthesedifferentiatedandspecializedcellsaresynthesizedwillprovidevaluablecluesonhowtomodifythecellwallsofplantsthataregrownasdesignerbiofuelcrops.

CurrentOpinioninPlantBiology2010,13:305–312

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
沪教版八年级下册数学练习册一次函数复习题B组(P11)
8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
外研版英语七年级下册module3 unit2第一课时
北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
沪教版八年级下册数学练习册21.4(1)无理方程P18
沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
北师大版数学四年级下册第三单元第四节街心广场
苏科版数学 八年级下册 第八章第二节 可能性的大小
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
冀教版英语五年级下册第二课课程解读
外研版英语七年级下册module3 unit2第二课时
冀教版小学数学二年级下册第二单元《余数和除数的关系》
第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
人教版历史八年级下册第一课《中华人民共和国成立》
外研版英语七年级下册module1unit3名词性物主代词讲解
冀教版小学英语四年级下册Lesson2授课视频
第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
北师大版小学数学四年级下册第15课小数乘小数一
七年级英语下册 上海牛津版 Unit9
沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
七年级英语下册 上海牛津版 Unit3