翻新时间:2023-01-17
基于非局部平均滤波的MRI去噪算法研究
摘要:高效的MRI去噪算法是一个极具价值的挑战性课题。介绍了非局部平均(NLM)滤波算法在MRI图像的应用及改进方法,探讨了发展趋势及应注意的问题。
关键词:磁共振成像;非局部平均;图像去噪
DOIDOI:10.11907/rjdk.151147
中图分类号:TP312
作者简介作者简介:陈创泉(1987-),男,广东潮州人,硕士,吉林大学珠海学院公共基础课教学与研究中心助教,研究方向为图像处理、数据挖掘。
0 引言
磁共振成像(Magnetic Resonance Image, MRI)是一种无创伤观察身体各组织解剖结构及能量代谢情况的成像方法。由于图像在获取过程中时间和技术上的限制, MRI图像通常呈现出噪声,这些噪声影响了图像的质量和医生诊断。因此,对被噪声污染的图像进行降噪处理具有重要的实用价值和临床意义。
图像去噪就是从一幅模糊图像得到一幅清晰图像。理想的去噪算法要具有以下特点:噪声必须完全去除;有效的信息(边缘、角形、纹理、对比度等)必须被保留,并不会产生人为添加部分[1]。
高斯滤波[2]是一种早期广泛应用于MRI图像预处理的方法,这种方法虽然能够消除部分噪声,但是同时消除了信号的高频部分,导致边缘模糊。为了克服上述问题,提出了边缘保护滤波方法――各向异性滤波[3],并应用于MRI图像[45]。这类方法通过对局部梯度正交方向的像素平均从而保护边缘,但是通常只消除了图像中一些细小的纹理,增强了边缘,结果产生了不自然的图像。小波方法同样成功用于MRI图像去噪[67],这种去噪方法的本质就是在变换域中对图像进行处理,但这类方法产生了人为添加部分。
近年来,基于自然图像的冗余性和周期性特点,提出了非局部平均(NLM)滤波方法[8]。这种方法用于MRI图像有较好的去噪效果,但尚有很大的改进空间[915]。本文主要介绍非局部平均(NLM)滤波方法在MRI图像中的应用及改进方向。
1 图像去噪方法
2 非局部平均(NLM)滤波
2.1 基本思想
传统的去噪算法,其基本思想都是局部平均滤波,它们都在每个像素的一定邻域内进行像素的加权平均。常见的局部平均滤波方法有:Gaussian滤波器、各向异性扩散滤波、Wiener滤波器等。局部平均滤波无法很好地保留图像一些细节、纹理以及精细的结构。非局部平均(NLM)滤波[8]不仅考虑局部邻域内两点间像素的空间距离,而且考虑整幅图像中具有相似分布的像素值。这种方法通过计算像素i和像素j为中心的两邻域间灰度值的相似性作为权重,进行加权平均滤波。
其中, 为去噪后的图像,σ表示噪声图像u的标准方差,σVST表示稳定变化后的标准方差, VST-1表示方差稳定逆变换。因此,含莱斯噪声的图像u的噪声首先被VST方法稳定了,进而使用NLM方法进行滤波,最后对滤波后的图像数据进行VST-1 变换。Manjon [9]等详细阐述了非局部平均滤波用于磁共振图像时,如何调整参数达到最佳去噪效果。进一步地,他们将非局部平均滤波应用于噪声随空间变化的MRI[10]、多谱MRI[11]。Wiest-Daessl[19]等将非局部平均滤波应用于DT-MRI。NLM算法用于MRI去噪在主客观性能上都优于常见的图像去噪算法,但算法存在两个不足之处:①算法计算复杂度较高;②关键滤波参数h设定不明确。
2.2 算法复杂度
2.3 确定滤波参数h
3 非局部平均(NLM)滤波方法改进
3.1 与旋转不变性(Rotationally invariant)相结合 MRI图像中存在一些仅仅旋转了不同角度的相似图像。传统的非局部平均方法仅仅采用平移操作进行图像相似性对比,这个操作会使仅仅旋转了不同角度的相似像素被赋予较小的权重。因此,考虑相似测度的旋转不变性是优化算法的有效途径。
Thaipanic [22]等提出了一种基于旋转匹配的NLM方法, 通过旋转适当的角度,使得原本NLM算法认为不相似的块在新模型中被认为是相似的。但因旋转角度有限,这种解决方法使得本来复杂度很高的NLM算法更加耗时。为了避免修正块状的方向性,块状旋转不变测度被应用于NLM算法,Grewenig[23] 等采用图像片的旋转不变矩来度量像素之间的相似性,但是这些描述量对噪声敏感,当噪声的强度增大时,它们能够代表的块状信息大大降低。
考虑MRI图像的几何结构相似性,将结构张量应用到非局部平均滤波算法中, 是进一步优化算法的有效途径。
4 结语
综上所述,用非局部平均滤波进行MRI图像去噪的关键在于:如何正确根据MRI图像的特点,如旋转不变性、几何结构特征等,建立与之匹配的非局部平均模型;同时,还要考虑算法的复杂度,从而使算法经济简洁,便于实现;最后,还要分析MRI图像的噪声方差与滤波参数h的关系,定量估计算法中滤波参数h的最优值,使MRI图像的去噪达到最佳效果。
参考文献:
[4] SAMSONOV A A, JOHNSON C R. Noiseadaptive nonlinear diffusion filtering of MR images with spatially varying noise levels[J]. Magnetic Resonance in Medicine, 2004,52
(4):798806.
[6] PIZURICA A, PHILIPS W, LEMAHIEU I, et al. A versatile wavelet domain noise filtration technique for medical imaging[J]. IEEE Transactions on Medical Imaging, 2003,22
(3):323331.
[8] BUADES A, COLL B, MOREL J M. A nonlocal algorithm for image denoising [C].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Washington:IEEE Computer Society Press, 2005:6065.
[18] NOWAK R D. Waveletbased Rician noise removal for magnetic resonance imaging[J]. IEEE Trans Image Processing, 1999,8
(10):14081419.
[20] FOI A. Noise estimation and removal in MR imaging:the variancestabilization approach[C].Chicago: IEEE , 2011: 18091814.
[25] MENDRIK A M, VONKEN E J, RUTTEN A, et al. Noise reduction in computed tomography scans using 3d anisotropic hybrid diffusion with continuous switch[J]. IEEE Transactions Medical Imaging, 2009,28
(10):15851594.
[26] 陈创泉,房少梅. 基于结构张量和非局部平均滤波的MRI图像去噪[J]. 佛山科学技术学院学报:自然科学版,2013, 31
(3):3943.
下载文档
网友最新关注
- 星星归去
- 自我介绍
- 吃蛋卡
- 凡妮自传
- 又下雪了
- 神奇的胖大海
- 放风筝
- 孔明灯
- 让我们一起保卫他们
- 第一次包饺子
- 今天过生日
- 都是电视惹的祸
- 眼泪
- 我长大了
- 一件觉得烦恼的事
- 因“材”施课,实现新课程理念
- 浅谈建构主义理论下的思想品德课堂新模式
- 研究性学习在数学课堂教学设计中的渗透
- 初中班主任德育工作案例
- 变式教学在化学教学中的初体验
- 多彩的课堂 愉快的学习
- 初中语文复述教学的方式与方法分析
- 浅谈微课程在初中信息技术教学中的作用
- 初中英语探究式教学案例研究
- 教是为了不教,学是为了会学
- 教学情境巧设计,师生合作现温馨
- 初中化学互动式教学策略浅谈
- 尝试让翻转课堂的教学模式走进英语教学
- 拓展训练融入初中体育教学的可行性分析
- 自主学习策略在高中语文写作教学中的应用探析
- 富饶的西沙群岛(第一课时)
- 口语交际课《秋天里》教学设想
- 我要的是葫芦
- 三年级 >> 坐井观天(实录片断)
- 六个孩子七个坑
- 《清清的溪水》教学实录与评析(转)
- 《妈妈的爱》教学实录与评析
- 《刻舟求剑》教学片断实录与评析
- 《黄山奇石》教学实录与评析
- 《坐井观天》教学片断实录与评析
- 初冬
- 二年级 >> 《会摇尾巴的狼》课堂实录(转)
- 《北京》课堂实录片断点评
- 畅游诗乐园
- 《春雨》教学片断实录与评析