翻新时间:2015-09-15
数项级数的收敛性教学探讨
摘 要:级数的收敛性是级数理论的首要概念。对级数收敛性概念的教学进行探讨,通过问题驱动,给学生展现级数概念的形成过程。
关键词:数项级数;数学史;极限
级数是研究函数性质和进行数值计算的有力工具,在多种实际问题上的应用非常广泛。对级数的研究可追溯至对芝诺悖论的探讨,其重要性始现于微积分学的创立与发展。例如,在求解面积问题时,牛顿最初就是利用将函数表示成无穷级数的方法,进而逐项求积。另外,牛顿也使用了相同的方法来处理微分方程的问题。级数是构造非初等函数的重要方法,例如我们所熟知的积分,无法通过黎曼积分方法求出,而是通过级数的方法求解的。一旦给出了函数的级数表示,对该函数的分析性质进行探讨就很便利了。级数理论是以简驭繁的数学思想的重要体现,以物理学的观点看,这就相当于把一个复杂的运动分解为一系列简谐运动的叠加。
级数理论中的首要概念是收敛性,利用无穷级数来表示函数,即逼近问题,最终将归结为级数的收敛问题,因此,级数收敛性概念的教学是非常重要的,本文结合课堂教学实践,探讨级数收敛性概念的教学。
一、重视级数概念的形成过程,注重数学史的渗透
级数概念建立在极限基础之上,从有限和到无限和之间有了极限运算的参与,超乎学生的直观经验,抽象度高。作为级数教学的首课时,应该让学生对整章内容的框架有个大概了解,因此,扼要介绍级数的发展史是很有必要的,让学生了解数学知识是实践的产物,源于生活并服务于生活。为此,我们利用问题驱动,从芝诺悖论开始,引入级数概念。
第一环节:问题提出
Aristotle悖论(PPT演示)
问题1:无限个数相加的结果是什么?
问题2:有限个数相加的结合律、交换律对于无限和还有效吗?
第二环节:引出定义
定义1:给定一个数列un,对其各项依次用“+”号连接起来的表达式:
称为常数项级数或数项级数(简称级数),其中称为数项级数(*)的通项或一般项。
回到我们的问题:如何判断级数(*)的结果?
先看一个例子:(让学生自由交流,与同学分享自己的结论,教师总结讨论的结果)
令S=1-1+1-1+1-1+…
结果1:S=(1-1)+(1-1)+(1-1)+…=0+0+0+…=0
结果2:S=1+(-1+1)+(-1+1)+…=1+0+0+…=1
结果3:S=1-(1-1+1-1+…)=1-S,从而S=
从上例可以看到,有限个数相加与无限个数相加是不同的,有限到无限之间经历了质的变化,有限和的交换律与结合律不能“平行移植”到无限和。在此,数学再一次发挥了其以简御繁的精神与方法,“简”即有限,“繁”即无穷,“御”即逼近:以有限项之和去逼近无穷项之和。我们可以看到,所选项数越多,近似程度越高,由此,引入“部分和”的概念:
第三环节:定义运用
例1:(解决Aristotle悖论)
解:由于Si=S+S+…+S+…,而Si=S+S+…+S==S,因此,Si=S。
这说明总路程是一段有限的距离,不可能永远也走不到终点,同时指出悖论的谬误之处。
例2:讨论S=1-1+1-1+1-1+…的敛散性。
解:S1=a1=1,
因此,Sn不存在,级数发散。
解:因为Sn=ark-1=a・,当r≥1时,显然级数发散。
当r1时,我们有Sn=a・=。此时,级数收敛。
等比级数是非常重要的一类无穷级数,在后续学习级数敛散性判别中有重要作用。例2能让学生体会无限和与有限和的区别。
三、教学反思
极负盛名的荷兰数学教育学家Freudenthal曾说:没有一种数学思想,以它最初被发现时的那个样子发表出来。一个问题被解决以后,相应的发展成一种形式化的技巧,结果使得火热的思考变成了冰冷的美丽。本着这样的理念,教师的任务是将这些闪亮的思想过程还原给学生,引导其思考、探索,从而培养其发现问题、解决问题的能力。大学课堂是引导学生进入科学研究领域的前沿阵地之一,能把学生吸引住的,不是冰冷的定理定义,而是隐藏其后的那些火热的思考与碰撞。
参考文献:
[2]张奠宙,张荫南.新概念:用问题驱动的数学教学[J],高等数学研究:2004,7
(3):8-10.
[3]Walter Rudin.Principles of mathematical analysis[M]. McGraw-Hill Companies,Inc. 1976.
下载文档
网友最新关注
- 仙人掌
- 可爱的小白兔
- 儿童公园游记
- 我喜欢的小动物
- 让小鸟帮大树捉害虫
- 迟到的礼物
- 父爱和母爱
- 军旗大战
- 虚惊一场
- 黑板、粉笔和黑板擦
- 妈妈的爱
- 机灵的我
- 丢手绢
- 与众不同的礼物
- 雨
- 语文教学重视语言积累的实践与思考
- 新课改背景下的数学教学有效策略探索
- 融合国际理解教育培养幼儿礼仪的研究
- 语文朗读教学的实践与思考
- 增强职校班级凝聚力的实践与思考
- 试论如何借助古诗词教学提升学生的人文素养
- 逆境中奋起的布朗
- 试论语文教学中运用多媒体课件的妙处
- 浅谈思品教学中如何建立和谐师生关系
- 作文评讲中注重实施合作学习的策略研究
- 幼儿良好习惯养成的策略研究
- 钨丝同步抽丝机的设计
- 用精致提问发散学生思维的实践与思考
- 幼儿教育的适时与适度研究
- 语文教学重在阅读的探讨
- 桃花心木预习指南练习
- 桃花心木教案02练习
- 桃花心木教案08(第二课时)练习
- 桃花心木教案05练习
- 桃花心木之教材分析练习
- 桃花心木教案09练习
- 桃花心木教案07(第二课时)练习
- 桃花心木教案练习
- 桃花心木教案03练习
- 匆匆
- 桃花心木教案B案练习
- 桃花心木预习指南2练习
- 桃花心木教案04练习
- 桃花心木教案A案练习
- 桃花心木教案06(第二课时,附反思)练习