教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 论文> 其他论文> 地理空间的数学定义及定位型地图符号的制约因素分析

地理空间的数学定义及定位型地图符号的制约因素分析

上传者:网友
|
翻新时间:2013-12-18

地理空间的数学定义及定位型地图符号的制约因素分析

【摘 要】 在地心坐标系中定义地球椭球面的基础上,给出了空间的定义。根据拓扑学中的同胚映射,覆盖空间等理论,推导了制图区域、地图投影、制图物体及其在椭球面和地图平面上的定位等概念,通过对地图符号平面定位的单一性与其对应的制图物体性质多样性的分析,揭示了同一平面位置上可以依制图目的的不同而分别表示多种事物的性质或量值的基本原理,阐释了对同一制图区域进行多专题制图的客观条件和基础。

【关键词】 地心坐标系 地球椭球 地理空间 制图区域 制图物体 地图符号

1 地理空间事物的椭球面定位

1.1 地心坐标系

以地球质心为大地坐标原点的坐标系,即地心坐标系。这种坐标系统是阐明地球上各种地理和物理现象,特别是空间物体运动的本始参考系。但长期以来,由于人类不能精确确定地心的位置,因而较少使用。目前利用空间技术等手段,已可在cm量级上确定它的位置,因此采用地心坐标系在当今既有必要性也有了可能性。现在利用空间技术得到的定位和影像等成果,客观上都是以地心坐标系为参照系[4]。使用地心坐标系,在国际上已成为一种明显的趋势。

地球空间事物的定位,涉及地球的形状和一定的坐标系。全球范围内,可用地心大地坐标系和地心笛卡尔坐标系表示点的空间位置。

1.1.1 地球椭球 地心大地坐标系是使地球质心作椭球中心,以过所求点c的椭球面法线与赤道面的夹角φ为纬度,以过c点的子午面与初始子午面的二面角λ为经度,以c点沿法线到椭球面的距离为大地高h,用c点的三个分量φ、λ、h表示其空间位置。地心大地坐标也即三维地理坐标系,记作DL。对于任何地球空间点c,总存在c=(φ、λ、h)∈DL|φ[0°~±90°], λ∈[0°~±180°],h∈[-H~+H]。已知地球椭球的长半径a和短半径b,可定义椭球面。 S={c|c=(φ、λ、h)∈DL,φ∈[0°~±90°],λ∈[0°~±180°],h=0}

(1)

则称S为以a为长半径,b为短半径的椭球面。若a,b分别为地球参考椭球的长、短半径,则称S为地球椭球面。

1.1.3 地心笛卡尔坐标系DK

以地心O为坐标原点,选择一个以赤道平面上一组相互垂直的直线为X、Y轴,而以地轴为Z轴,这样的坐标系称地心笛卡尔坐标系,记作DK。若以地球参考椭球的长半径a和短半径b作常数,则地球椭球面也可定义。

定义2 地球椭球面 存在地球椭球的长半径a和短半径b,若点集满足: 则称S为以a为长半径,b为短半径的地球椭球面,其中2b即地轴兼旋转轴[7]。

1.2 地理空间 定义3 地球内空间 满足条件

IntK={P|P=(φ,λ,h)∈DL∧-H2≤h<O}

(3)

的点集,称为地球内空间。

地球内空间即指岩石圈顶部至地球椭球面之间部分。由椭球面与真实地球表面之间的差异,因此存在虽在地表之上却因其处于椭球面内侧而属于地球内空间的点集。

定义4 地球外空间 满足条件

ExtK={P|P=(φ,λ,h)∈DL∧O<h≤H1}

(4)

的点集,称为地球外空间。

地球外空间即是地球椭球面到同温层底部的空间。由于椭球面与自然面之间的差异,同样存在虽在地表之下却因处于椭球面外侧而属地球外空间的点集。

定义5 地理空间 地球内空间EntK、地球椭球面S和地球外空间EntK的并集,称为地理空间,即

K=EntK∪S∪ExtK|EntK,S,ExtK∈DL

(5) 2 制图区域和制图物体

2.1 同胚

定义6 同胚 设X和Y是两个随意的拓扑空间,并设f:X→Y。如果f是连续的双一一函数,并且它的反函数f -1也是连续的,那么,f就叫做空间X到空间Y上的同胚或拓扑映射或拓扑变换;此时空间X与空间Y叫做同胚的,记作X≈Y。

如果f是空间X到空间Y上的一个同胚,AX,并且B=f(A),则称点集A与点集B是同胚的,记作A≈B;此时又称点集B是点集A在同胚f之下的同胚象或拓扑象。如果f是空间X到空间Y上的一个同胚,g是空间Y到空间Z上的一个同胚,则复合函数gf是X到Z上的一个同胚。空间的同胚关系≈是一个等价关系[5]。地貌等高线图形,也就是其上覆地貌的同胚象[6]。

2.2 覆盖空间

定义7 覆盖空间 设E和B是连通且局部道路连通的拓扑空间,f∶E→B是连续满射,如果对于每个c∈B,存在c的道路连通开域U,使得f把f -1(U)的每个通路连通分支同胚地映射成U,则称(E,f)是B的覆盖空间,这种U称为容许邻域,B称为底空间,f称为覆盖投影[10,11]。

2.3 制图区域和制图物体

2.3.1 椭球面上点c与过c点的椭球面法线hC的双一一函数关系 2.3.2 制图区域和制图物体的椭球面定位

定义8 制图区域 设A为S的子集,AS,如果A是S中一个连通的开集,那末,A就叫做S中的一个区域。点c∈A,c的邻域U的原象f -1(U) ∈f -1(A)被作为制图对象时,则称f -1(U)为制图物体。f -1(A)在椭球面上的投影A称为制图区域。c的邻域U在球面上的外在特征有三种:

1) 当U=c为单一点时,称c为f -1(U)的点状定位;

2) 当U=lC,lC表现为线状连通集时,称lC为f -1(U)的线状定位;

3) 当U=SC,SC表现为面状连通集时,称SC为f -1(U)的面状定位。

空间中的物体f -1(U)在椭球面上的定位形式关联着它在地图平面上的定位形式并决定着其关联的地图符号的类型。

下载文档

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

网友最新关注

一个有趣的活动
我的爸爸
《狮子王》观后感
花也有生命
考试
好吃的苹果
给震区小姐姐的一封信
给妈妈的留言条
浇花
神奇的笔
玩虫子
我家的花儿长大了
我的梦
三只小兔吃苹果
笑成了一朵花
天津传统民间艺术的保护与产业开发
关于“媒介审判”的思考(1)论文
简述美国法律的基本特点及司法制度刍议(1)论文
浅谈道教与国人审美趣味
试析毛泽东国际战略思想
我国《物权法》中遗失物拾得制度探析(1)论文
基于人民法院 滥用逮捕权之弊端及对策(1)论文
论事实推定的效力(1)论文
关于检察机关执法中的利益驱动现象探究(1)论文
关于苏区司法制度探析(1)论文
由飞行员集体返航事件引发的法律问题思考(1)论文
装置艺术对中国架上绘画的影响
论邓小平加强执政党干部管理和监督的思想
论社会主义是自觉发展的社会
论杂技艺术的创新
《静夜思》学习目标和教材简说
《小小的船》第一课时教学设计2
《小小的船》第一课时教学设计4
《静夜思》教学设计2
《小小的船》第一课时说课设计
《小小的船》第二课时教学设计
《静夜思》教学设计6
《静夜思》教学设计7
《静夜思》第一课时教学设计
《静夜思》教学设计8
《静夜思》教学设计7
《小小的船》第一课时教学设计3
《静夜思》教学设计3
《小小的船》第二课时教学设计2
《静夜思》教学设计5