翻新时间:2023-05-14
“尚未成功”的突破
1.个案1—由失败中获取有用的信息
例1 若a、b、c为互不相等的实数,且x/(a-b)=y/(b-c)=z/(c-a),求x+y+z.
解:由等比定理得
但是,②式的分母为零
我们的解题努力失败了.
评析:这是一个失败的解题案例,文[3]谈到了调整解题方向后的一些处理,其实都用到③式.所以,失败的过程恰好显化了题目的一个隐含条件,这是一个积极的收获,当我们将不成功的②式去掉,把目光同时注视①式与③式时,①式使我们看到了两条直线重合:
而③式又使我们看到了直线⑤通过点
作一步推理,直线④也通过点(1,1),于是
与文[3]相比,这是一个不无新意的解法,其诞生有赖于两点:
第1,从失败的解题中获取一条有用的信息,即③式.
第2,对①式、③式都作“着眼点的转移”,从解析几何的角度去看它们.
有了这两步,剩下来的工作充其量在30秒以内就可以完成.
2.个案2—尚未成功不等于失败
设f(n)为关于n的正项递增数列,M为大于f
(1)的正常数,当用数学归纳法来证不等式
时,其第2步会出现这样的情况:假设f(k)<M,则
无法推出f(k+1)<M.
据此,许多人建议,用加强命题的办法来处理,还有人得出这样的命题(见文[4]P.32及文[5]P.12):
命题 设{f(n)}为关于n的正项递增数列,M为正常数,则不等式f(n)<M(n∈N)不能直接用数学归纳法证明.
评析:不等式①没能用递推式②证出来,有两种可能,其一是数学归纳法的功力不足,其二是数学归纳法的使用不当.把“不会用”当作“不能用”,其损失是无法弥补的.
我们分析上述处理的“尚未成功”,关键在于递推式②,这促使我们思考:f(k+1)与f(k)之间难道只有一种递推关系吗? 例2 用数学归纳法证明
讲解:当n=1时,命题显然成立.
现假设f(k)<2,则由于2+(1/2k)恒大于2,所以数学归纳法证题尚未成功.
然而,这仅是“方法使用不当”.换一种递推方式,证明并不困难. 下面一个反例直接取自文[4]的例2. 证明:当n=1时,命题显然成立.
假设n=k时命题成立,则 =1+(1/2)+(1/3)·(1/2!)+…+(1/k)·[1/(k-1)!]+[1/(k+1)]·(1/k!)<1+(1/2){1+(1/2!)+…+[1/(k-1)!]+(1/k!)}<1+(1/2)×2=2.
这表明n=k+1时命题成立.
由数学归纳法知,不等式已获证.
3.个案3—对尚未成功的环节继续反思
文[7]有很好的立意也有很好的标题,叫做“反思通解·引出简解·创造巧解”,它赞成反思“失败”并显示了下面一道二次函数题目的调控过程:
例4 二次函数f(x)=ax2+bx+c的图象经过点(-1,0),是否存在常数a、b、c使不等式
对一切实数x都成立?若存在,求出a、b、c;若不存在,说明理由.
讲解:作者从解两个二次不等式
对一切实数x都成立,猜想
我们不知道命题人的原始意图是否只考虑“存在性”,按惯例,“若存在,求出a、b、c”应该理解为“若存在,求出一切a、b、c”.从这一意义上来看上述巧解,那就存在一个明显的疑点:诚然,③式是满足①的一个解,但是在x与(x2+1)/2之间的二次函数很多,如 f2(x)=(1/3)x+(2/3)(x2+1)/2, ……
这当中有的经过点(-1,0),有的不经过点(-1,0),巧解已经验证了f1(x)经过点(-1,0)从而为所求,我们的疑问是:怎见得其余的无穷个二次函数就都不过点(-1,0)呢?
一般情况下λ应是x的正值函数(文[8]默认λ为常数是不完善的;同样,2000年高考理科第20题
(2),对cn=an+bn设
②式与④式的不同,反映了特殊与一般之间的区别,反映了“验证”与“论证”之间的区别.其实,原[解法1]出来之后,立即就可以得出②式,与是否应用“基本不等式”无关.同样,原[解法1]中作者思考过的“推理是否严密”在“巧解”中依然是个问题.这种种情况说明,我们不仅要对解题活动进行反思,而且要对“反思”进行再反思.下面一个解法请读者思考错在哪里?
解:已知条件等价于存在k<0,使 把x=-1时,f(x)=0代入得 k=-1, 即 f2(x)-[(x+1)2/2]f(x)+(x3+x+2)/2=0.
由此解出的f(x)为无理函数,不是二次函数,所以本题无解. f(x)=a(x1-x)(x2-x)+x
=λx1+(1-λ)x,
据定比分点的性质有x<f(x)<x1.
1 罗增儒.解题分析—解题教学还缺少什么环节?中学数学教学参考,1998,1~2
2 罗增儒.解题分析—再谈自己的解题愚蠢.中学数学教学参考,1998,4
3 罗增儒.解题分析—人人都能做解法的改进.中学数学教学参考,1998.7
4 李宗奇.调控函数及其应用.中学数学杂志(高中),2000,3
5 王俊英.一类数学归纳法能否使用问题的判定.中学数学,1987,9
6 罗增儒.数学解题学引论.西安:陕西师范大学出版社,1997,6
7 曹 军.反思通解·引出简解·创造巧解.中学数学,2000,6
8 陈雪芬.刘新春.定比分点公式在代数中的应用.数学教学通讯,2000,6
9 罗增儒.解题分析——分析解题过程的两个步骤.中学数学教学参考,1998,5
下载文档
网友最新关注
- 文学从我们身边悄悄走过
- 书香
- 重要
- 谁懂“90后”
- 智慧与忧愁
- 人类需要梦想
- 青春是个守望者
- 水之声
- 窝起来看天━明天:花开两指间
- 谁来关注我们的心灵
- 瞬间的永恒
- 无论走过多少荒芜
- 知音难逢
- 微笑
- 让温情像空气一样
- 林志颖横店“调戏”女配
- 向行政执法机关派驻检察室之思考
- 浅谈歌唱艺术中的情感表达
- 别慌,朱莉的俩宝贝至少看上去还在
- 告别路人迎来幸福
- 电力自动化中电量采集与计量系统的运用分析
- 莫忘初衷,坚持最初的音乐梦想
- 悲催的是:露骨和鸡贼 真的成了捷径
- 漫步在五光十色的音乐画廊里
- 孙俪拍广告娘娘级“伺候”
- 《宝贝》除了贫嘴还会干啥
- 有人赚大钱 有人成炮灰
- 黄晓明 继续苦逼二逼地做着牛逼的事
- 试析《金刚经》的生命本位意识
- 杨幂 为全民狂欢而生的偶像
- 别拿语文不当语文
- 让学生站在讲台上
- 情境不是教学内容的漂亮外衣
- 回顾我的语感教学
- 繁华落尽见真淳——语文课,我拿什么给学生?
- 语文,给我一个热爱的理由
- 语言 形象 情感
- 语文教学对话的内质与外化
- 关于“诗歌与散文”选修课目标的问答
- 让语文成为放飞生命的天堂
- 怎样上好语文试卷讲评课 朱宣谕
- “作文三步法”在课堂教学中的运用
- “问题教学”的问题设计
- 教师如何进行课例研究
- 如何做好高中选修课的指导