教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 论文> 其他论文> “尚未成功”的突破

“尚未成功”的突破

上传者:网友
|
翻新时间:2023-05-14

“尚未成功”的突破

1.个案1—由失败中获取有用的信息

例1 若a、b、c为互不相等的实数,且x/(a-b)=y/(b-c)=z/(c-a),求x+y+z.

解:由等比定理得

但是,②式的分母为零

我们的解题努力失败了.

评析:这是一个失败的解题案例,文[3]谈到了调整解题方向后的一些处理,其实都用到③式.所以,失败的过程恰好显化了题目的一个隐含条件,这是一个积极的收获,当我们将不成功的②式去掉,把目光同时注视①式与③式时,①式使我们看到了两条直线重合:

而③式又使我们看到了直线⑤通过点

 作一步推理,直线④也通过点(1,1),于是

与文[3]相比,这是一个不无新意的解法,其诞生有赖于两点:

第1,从失败的解题中获取一条有用的信息,即③式.

第2,对①式、③式都作“着眼点的转移”,从解析几何的角度去看它们.

有了这两步,剩下来的工作充其量在30秒以内就可以完成.

2.个案2—尚未成功不等于失败

设f(n)为关于n的正项递增数列,M为大于f

(1)的正常数,当用数学归纳法来证不等式

时,其第2步会出现这样的情况:假设f(k)<M,则

无法推出f(k+1)<M.

据此,许多人建议,用加强命题的办法来处理,还有人得出这样的命题(见文[4]P.32及文[5]P.12):

命题 设{f(n)}为关于n的正项递增数列,M为正常数,则不等式f(n)<M(n∈N)不能直接用数学归纳法证明.

评析:不等式①没能用递推式②证出来,有两种可能,其一是数学归纳法的功力不足,其二是数学归纳法的使用不当.把“不会用”当作“不能用”,其损失是无法弥补的.

我们分析上述处理的“尚未成功”,关键在于递推式②,这促使我们思考:f(k+1)与f(k)之间难道只有一种递推关系吗? 例2 用数学归纳法证明

讲解:当n=1时,命题显然成立.

现假设f(k)<2,则由于2+(1/2k)恒大于2,所以数学归纳法证题尚未成功.

然而,这仅是“方法使用不当”.换一种递推方式,证明并不困难. 下面一个反例直接取自文[4]的例2. 证明:当n=1时,命题显然成立.

假设n=k时命题成立,则 =1+(1/2)+(1/3)·(1/2!)+…+(1/k)·[1/(k-1)!]+[1/(k+1)]·(1/k!)<1+(1/2){1+(1/2!)+…+[1/(k-1)!]+(1/k!)}<1+(1/2)×2=2.

这表明n=k+1时命题成立.

由数学归纳法知,不等式已获证.

3.个案3—对尚未成功的环节继续反思

文[7]有很好的立意也有很好的标题,叫做“反思通解·引出简解·创造巧解”,它赞成反思“失败”并显示了下面一道二次函数题目的调控过程:

例4 二次函数f(x)=ax2+bx+c的图象经过点(-1,0),是否存在常数a、b、c使不等式

对一切实数x都成立?若存在,求出a、b、c;若不存在,说明理由.

讲解:作者从解两个二次不等式

对一切实数x都成立,猜想

我们不知道命题人的原始意图是否只考虑“存在性”,按惯例,“若存在,求出a、b、c”应该理解为“若存在,求出一切a、b、c”.从这一意义上来看上述巧解,那就存在一个明显的疑点:诚然,③式是满足①的一个解,但是在x与(x2+1)/2之间的二次函数很多,如 f2(x)=(1/3)x+(2/3)(x2+1)/2, ……

这当中有的经过点(-1,0),有的不经过点(-1,0),巧解已经验证了f1(x)经过点(-1,0)从而为所求,我们的疑问是:怎见得其余的无穷个二次函数就都不过点(-1,0)呢?

一般情况下λ应是x的正值函数(文[8]默认λ为常数是不完善的;同样,2000年高考理科第20题

(2),对cn=an+bn设

②式与④式的不同,反映了特殊与一般之间的区别,反映了“验证”与“论证”之间的区别.其实,原[解法1]出来之后,立即就可以得出②式,与是否应用“基本不等式”无关.同样,原[解法1]中作者思考过的“推理是否严密”在“巧解”中依然是个问题.这种种情况说明,我们不仅要对解题活动进行反思,而且要对“反思”进行再反思.下面一个解法请读者思考错在哪里?

解:已知条件等价于存在k<0,使 把x=-1时,f(x)=0代入得 k=-1, 即 f2(x)-[(x+1)2/2]f(x)+(x3+x+2)/2=0.

由此解出的f(x)为无理函数,不是二次函数,所以本题无解. f(x)=a(x1-x)(x2-x)+x

=λx1+(1-λ)x,

据定比分点的性质有x<f(x)<x1.

1 罗增儒.解题分析—解题教学还缺少什么环节?中学数学教学参考,1998,1~2

2 罗增儒.解题分析—再谈自己的解题愚蠢.中学数学教学参考,1998,4

3 罗增儒.解题分析—人人都能做解法的改进.中学数学教学参考,1998.7

4 李宗奇.调控函数及其应用.中学数学杂志(高中),2000,3

5 王俊英.一类数学归纳法能否使用问题的判定.中学数学,1987,9

6 罗增儒.数学解题学引论.西安:陕西师范大学出版社,1997,6

7 曹 军.反思通解·引出简解·创造巧解.中学数学,2000,6

8 陈雪芬.刘新春.定比分点公式在代数中的应用.数学教学通讯,2000,6

9 罗增儒.解题分析——分析解题过程的两个步骤.中学数学教学参考,1998,5

下载文档

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

网友最新关注

我们家的“老顽童”
谢谢你,对手
我是一个笨女孩吗
天堂的末班车
唐僧的唐僧=老妈!
孤独的我
数学奇才伴我成长
受伤的茉莉
我的爸爸
海豚贝琪
我家的“小祸害“
有趣的“疯羊”
淘气的弟弟
师爱闪光
一个爱遐想的女孩
执行力学习心得体会
十七届三中全会学习心得之农村改革新的起点
2009年公司工作报告学习体会
关于搞好学习的心得体会
你的孝心在哪里
新食品安全法学习体会
2009政府工作报告心得体会:信心蕴含着奋进的力量
浅析期货经纪公司之风险防范
用廉洁文化凝聚人心
在构建和谐社会中发挥组工干部的作用
中层干部在企业中的作用
学习2009年政府工作报告心得体会
银行合规管理心得体会
关于优化发展环境的心得体会
学习政府工作报告心得之金融危机与改善民生
浅议大学生毕业前的心理调适
论加强心理健康教育 促进高校思想政治工作
用PC测量交变磁场
敏锐——贯彻落实“三个代表”重要思想的金钥匙
浅论体育锻炼与心理健康促进
谈判中的时间因素
流体动力学中的动量不守恒现象的补充
浅论中学体育教学中的心理健康教育
实践“三个代表”思想 做好环卫档案工作
宗教体验的神经生理与基础
论青少年“网络成瘾”问题的观察与思考
类金刚石薄膜的电子结构及组分分布研究
Gibbons-Maeda dilaton时空中Klein-Gordon方程的近似解
热力学定律与科学理论的方法
三个代表:新时期思想政治教育创新的旗帜
《威尼斯商人》教案设计
16 故乡
岳阳楼记
九年级语文上册《敬业与乐业》教学设计
有的人
醉翁亭记
《曹刿论战》
《醉翁亭记》
愚公移山
我的叔叔于勒
《威尼斯商人》教案设计
《白杨礼赞》
九年级语文上册《傅雷家书两则》教学设计
《威尼斯商人》教案设计
《我的叔叔于勒》