翻新时间:2023-08-05
谈常见效用函数下临界保费的计算
论文关键词:效用函数 临界保费 理赔
论文摘要:根据保险人保险定价的效用方程,分别讨论了在3种不同效用函数下的临界保费.
从管理决策的角度看,保险产品的定价问题、准备金提留问题、再保险自留额问题以及资产负债配比问题都是风险和不确定条件下的决策.从风险决策的理论和实践知道,合理的决策不仅取决于对外在环境的不确定的把握,而且取决于决策者对自身的价值结构判断.在保险学中,通过引入效用函数来描述决策者的风险态度、偏好和价值结构,并将它与潜在损失或理赔的概率评估有机结合起来,从更加综合的角度寻求诸多保险决策问题的解.
一般地,决策者的风险态度被分为三种类型:风险偏好、风险厌恶和风险中立,分别对应着他们的效用函数u(x)的曲线为上凸、下凸和直线三种情况.最普遍的情况是厌恶风险,本文重点讨论此种情况.
1 保险定价问题
引理1(Jensen不等式) 设决策者的风险是厌恶风险,即它的效用函数u(x)满足u′(x)>0,u″(x)<0,则对于随机变量X,成立如下不等式E[u(X)]≤u[E(X)].
假定决策者(保险人)拥有财富W.若要承保,则可以在原有财富W的基础上增加一笔保费收入G,但是得替被保险人承担风险,其财富变成了随机变量W+G-X,其中随机变量X表示风险,其概率分布为F(x).若不承保,则保险人确定地拥有财富W.设保险人关于确定量和关于随机变量分布的效用函数分别为u(x)和U[X],则对保险人而言,“合理”的承保保费应满足不等式U[W+G-X]≥u(W).G越小,要承保的效用U[W+G-X]越小,当G小到使等号成立时,承保已无任何吸引力,所以保险人愿意接受的最底保费G*是使得上式等号成立的临界值,称为临界保费.
根据期望效用原理,随机变量X的“效用”U[X]可以转化为随机变量函数u(X)的期望,即
U([X])=E[u(X)]=∫Du(x)dF(x).
其中F(x)是随机变量X的分布函数,D是随机变量X的取值范围.
2 主要结论
对于风险决策者常用的效用函数有以下几种:直线型效用函数、抛物线型效用函数、指数型效用函数、对数型效用函数和分数幂型效用函数等.下面给出前3种情况下的临界保费.命题
1 设保险人的效用函数为直线型,
u(x)=ax+b,理赔X的概率分布为F(x),则临界保费G*=E[X].
证明 考虑保险人定价的效用方程为
U([W+G*-X])=u(W).
∵U([W+G*-X])=E[u(W+G*-X)]
=E[a(W+G*-X)+b]
=aW+aG*-aE[X]+b,
u(W)=aW+b,
联立两式得 G*=E[X].
证明 考虑保险人定价的效用方程为
U([W+G*-X])=u(W).
∵U([(W+G*-X])=E[u(W+G*-X)]
=W+G*-E[X]-α{(W+G*)2-2(W+G*)×E[X]+E[x2]},
u(W)=W-αW2,
联立两式得下列方程
解关于G*的一元二次方程得
特别地,当W=0时,
≈E[X]+ασ2(X), 此时σ2(X) 12α.这正是非寿险保费定价中的“方差原理”,因为在金融分析中常用方差(或标准差)来度量风险的大小,方差越大,不确定的程度越大.保险人把它作为一条加费的理由,因而在纯保费E[X]的基础上又多了一项“安全附加费用”.
命题3 设保险人的效有函数为指数型,u(x)=-e-αx,α>0,假设理赔X的概率分布为F(x),则此时临界保费为G*=1αlnMX(α),其中MX(α)为理赔随机变量X的矩母函数.证明 考虑保险人定价的效用方程为
U([W+G*-X])=u(W).
∵U([W+G*-X])=E(u[W+G*-X])
= +∞0-e-α(W+G-X*)dF(x)
=-e-α(W+G*) +∞0eαxdF(x)
=-e-α(W+G)*MX(α),
u(W)=-eαW,
联立两式得 G*=1αMX(α).
可以看出对于这类特殊的效用函数,临界保费与保险人所拥有的财富大小无关.
3 总结
效用理论一直是研究在风险和不确定条件下进行合理决策的理论基础,保险研究之中除保险定价以外,决定合理的准备金、自留额以及选择合理的财务方案都可以以此作为决策的原理.因此,它具有很强的理论指导作用.
从以上几个例子可以看出,实际保险定价中常用的“均值原理”和“方差原理”等只不过是期望效用的特殊形式,它们对应着一次、二次多项式等简单的效用函数.类似地,还可以讨论对数效用函数u(x)=lnx、分数幂效用函数u(x)=xr(0<r<1)等其他常见效用函数所对应的情况.
参考文献
[2]茆诗松,王静龙,濮晓龙.高等数理统计[M].北京:高等教育出版社,2000.
[3]卢仿先,曾庆五.寿险精算数学[M].天津:南开大学出版社,2001.
[4]胡炳志.保险数学[M].北京:中国金融出版社,1991.
下载文档
网友最新关注
- 老师
- 新班主任
- hi,多米儿----校庆典礼【1】
- 新同学徐一波
- 妈妈的脑细胞会议
- 我的10岁档案
- 体育老师真“老”
- 我学会了游泳
- 不一样的我
- 妹妹来我家之后……
- 淘气的弟弟
- 我的同桌冤家
- 我喜欢当男生
- 刘备咋死滴
- 给奥运健儿刘翔的一封信
- 六中全会学习体会—构建和谐社会与增强社会活力
- 机关效能建设心得
- 学习中纪委七次全会总书记讲话心得体会
- 学习六中全会关于化解社会矛盾,维护社会稳定心得体会
- 干部作风整顿心得体会(教育)
- 2009年干部作风整顿建设活动心得体会
- 2009年两会心得
- 县委办公室主任干部作风整顿心得体会
- 增强忧患意识心得体会
- 讲正气树新风作风建设心得体会
- 书籍《金色梦乡》读书心得个人所感
- 商务局XX年机关干部作风整顿建设心得体会
- 法官作风整顿心得体会
- 青年干部基层锻炼心得体会
- 干部作风整顿建设活动心得体会范文
- 用“三个代表”重要思想加强企业员工思想政治工作
- 当代大学生的心理素质和教育
- 现代物理前沿知识教学浅析
- 浅谈新课标理念下学生创新能力的培养
- 实践“三个代表”必须谨慎谦逊
- 幼儿心理健康问题研究进展与发展趋势
- 工会应努力成为实践“三个代表”的群众组织
- “三个代表”思维方式解读
- 试论人大代表的心理素质
- 论团体动力和中小学班级辅导策略
- 试析高职学院心理弱势学生群体的危机干预策略
- “三个代表”重要思想是党的作风建设的指南
- 浅论学习不良儿童的家庭环境分析
- 关于电磁波的相位不变性和多普勒效应的讨论
- 音像销售管理系统
- 《威尼斯商人》教案设计
- 醉翁亭记
- 九年级语文上册《敬业与乐业》教学设计
- 愚公移山
- 《威尼斯商人》教案设计
- 我的叔叔于勒
- 岳阳楼记
- 16 故乡
- 《白杨礼赞》
- 有的人
- 九年级语文上册《傅雷家书两则》教学设计
- 《我的叔叔于勒》
- 《曹刿论战》
- 《威尼斯商人》教案设计
- 《醉翁亭记》