教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 论文> 其他论文> 浅谈充分“挖掘”习题的教育价值

浅谈充分“挖掘”习题的教育价值

上传者:网友
|
翻新时间:2023-05-29

浅谈充分“挖掘”习题的教育价值

以《平面解析几何》抛物线习题为例,进行“挖潜”与“变式探讨”,用以说明深挖习题训练功能的巨大教育价值。

习题挖潜变式探讨用好一些典型例习题,研究其内涵与解法,充分“挖潜”与“变式探讨”,并力求“举一反三,推陈出新”,对培养学生发散思维与创新能力,对掌握一类问题知识间的内在联系与灵活应用,具有极好的数学教育价值与训练功能。

现以《平面解析几何》抛物线习题为例,进行“挖潜”与“变式探讨”,用以说明深挖习题训练功能的巨大教育价值。

证明:设过F(p2,0)的直线AB:y=k(x-p2)(k≠0)

代入y2=2px得:

ky2-2py-kp2=0

将上题中结论进行推广得:

进一步,由特殊到一般,将过焦点推广到过对称轴上任一点,使问题得到深化得:

证明:只需将AB设为y=k(x-a)同上可证得结论。

再进一步,利用以上结论可解:

例1:求证:抛物线的通径是经过焦点的所有弦中的最短线段。

证明:设抛物线方程为y2=2px,(p0)

例2:过抛物线焦点的一条直线与它交于两点P、Q。过P点和抛物线顶点的直线交准线于M点。求证MQ平行于抛物线的对称轴。

∴y2=-p2y1

又∵PM的方程为:y=y1x1x

准线方程为: x=-p2

∴MQ 平行于抛物线的对称轴。

例3:设抛物线y2=2px(p0)的焦点为F,过F的直线交抛物线于A、B两点,点C在其准线上,且BC平行于x轴。

求证:AC过原点O。

∴y2=-p2y1

又BC平行x轴,且点C在准线x=-p2上

得C(-P2,y2)

又∵kOA=y1x1

∴AC过原点O。

通过以上的推广,充分展示了典型习题的“挖潜”价值,使典型习题真正成为学生领悟数学思想方法和培养创新能力的“源头活水”,使学习可以收到事半功倍的功效。

下载文档

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!