翻新时间:2023-05-29
浅谈充分“挖掘”习题的教育价值
以《平面解析几何》抛物线习题为例,进行“挖潜”与“变式探讨”,用以说明深挖习题训练功能的巨大教育价值。
习题挖潜变式探讨用好一些典型例习题,研究其内涵与解法,充分“挖潜”与“变式探讨”,并力求“举一反三,推陈出新”,对培养学生发散思维与创新能力,对掌握一类问题知识间的内在联系与灵活应用,具有极好的数学教育价值与训练功能。
现以《平面解析几何》抛物线习题为例,进行“挖潜”与“变式探讨”,用以说明深挖习题训练功能的巨大教育价值。
证明:设过F(p2,0)的直线AB:y=k(x-p2)(k≠0)
代入y2=2px得:
ky2-2py-kp2=0
将上题中结论进行推广得:
进一步,由特殊到一般,将过焦点推广到过对称轴上任一点,使问题得到深化得:
证明:只需将AB设为y=k(x-a)同上可证得结论。
再进一步,利用以上结论可解:
例1:求证:抛物线的通径是经过焦点的所有弦中的最短线段。
证明:设抛物线方程为y2=2px,(p0)
例2:过抛物线焦点的一条直线与它交于两点P、Q。过P点和抛物线顶点的直线交准线于M点。求证MQ平行于抛物线的对称轴。
∴y2=-p2y1
又∵PM的方程为:y=y1x1x
准线方程为: x=-p2
∴MQ 平行于抛物线的对称轴。
例3:设抛物线y2=2px(p0)的焦点为F,过F的直线交抛物线于A、B两点,点C在其准线上,且BC平行于x轴。
求证:AC过原点O。
∴y2=-p2y1
又BC平行x轴,且点C在准线x=-p2上
得C(-P2,y2)
又∵kOA=y1x1
∴AC过原点O。
通过以上的推广,充分展示了典型习题的“挖潜”价值,使典型习题真正成为学生领悟数学思想方法和培养创新能力的“源头活水”,使学习可以收到事半功倍的功效。
下载文档
网友最新关注
- 父母的爱
- 父母的爱
- 我爱汉字2
- 文明只差一步
- 父母的爱
- 文明只差一步
- 我爱汉字
- 我爱汉字
- 一句名言的启示
- 有趣的汉字4
- 有趣的汉字
- 一句名言的启示
- 有趣的汉字综合实践
- 一句名言的启示
- 一句名言的启示
- 建筑技术新手必备知识
- 钢筋施工知识详解
- 中国高程系统大全
- 施工项目重要岗位人员监督管理的思考
- 建筑设计通病归纳
- 建筑施工墙体构造常识问答
- 房屋装修外墙涂料相应问题
- 施工组织设计编制应注意哪些问题?
- 如何编制住宅建筑施工组织设计?
- CAD画施工图常用的快捷键命令
- 现浇钢筋混凝土斜屋面渗漏原因分析及预防措施
- 绿色医院建筑的可持续、人性化设计
- 转换层施工排架布置优化分析
- 灌注桩工程施工方案
- 如何防治外墙渗漏原因和防治措施
- 《美丽的小路》随堂练习 提高篇
- 《美丽的小路》教学设计 二
- 《美丽的小路》范文习作:争当环保小尖兵
- 《美丽的小路》教学设计 一
- 《美丽的小路》训练素材
- 《失物招领》老师语录
- 《美丽的小路》美文欣赏:灾难来临时
- 《美丽的小路》写作指导
- 《美丽的小路》趣闻故事:丝绸之路
- 《美丽的小路》美文欣赏:风在轻轻说
- 《我怀念那条河》
- 《美丽的小路》教学难点
- 《失物招领》重点问题探究
- 《美丽的小路》教学重点
- 《美丽的小路》考点练兵:积累篇