教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 论文> 其他论文> 法用于供水管网水力计算的研究

法用于供水管网水力计算的研究

上传者:网友
|
翻新时间:2023-03-18

法用于供水管网水力计算的研究

法用于供水管网水力计算的研究 法用于供水管网水力计算的研究 法用于供水管网水力计算的研究

摘要:图论理论是网络分析的主要工具,现用于管网的水力平衡计算 ,既充分发挥了图论理论的优势,使计算变得简便、迅捷,又可将管网附件加入计算,使结果更准确、更符合实际。文中采用峰阵输入管网结构,使输入数据的工作量大大减少,易于编制程序,计算大型的复杂管网。

关键词:供水管网 水力计算 图论法

前 言

供水管网的水力平衡计算是供水系统规划设计、经济评价和运行管理的基础。水力平衡计算的目的就是在确定管径的情况下求出满足连续方程和能量方程的各节点压力水头和各管段流量。目前常用的水力平衡计算方法有哈代-克罗斯法(Hardy-Cross),牛顿-莱福逊法(New ton-Raphson),线性理论法(Linear-Theory),有限元法(Finite Element)等等。所有这些方法各有所长,适用范围各不相同,有的还需人工假设管段流量,使输入数据工作量增大,且未考虑管网附件的影响。本文介绍的图论法将复杂的管网处理为相应的“网络图”,并建立相应的数学模型,用峰阵输入原始数据来描述管网结构,输入的数据量最少,不易出错,易于计算大型的复杂管网。其计算过程可同时考虑管网附件,如控制阀、加压泵、逆止阀、减压阀等,使计算结果更符合实际。

1 图论原理

将供水管网中的管段概化成一条线段(即图中的边),将有附件的管段看成图中的特殊管段,边与边由节点相连。这样,一个供水系统的管网图就转化为图论中的网络图。而且管道中的水流是有方向的,所以管网图是有向图。 图1

图2 网络图中节点与边的关联函数可以用完全关联矩阵I4×5表示如式

(1)所示。

顶点 边的编号

(1)

式中:Iij= { 1,表示j管段与i节点相连,且管内水流流离该节点;

0,表示此管段不与该节点关联;

-1,表示j管段与i节点相连,且管内水流流入该节点。 网络图的生成树(全涉及树)可以有很多种,在计算时可以任选一种。在本例中,选

1、

2、4这3条边为图的生成树,则补树(余树)的各边(弦)为

3、5.各弦将与枝构成基本回路,一个基本回路中有且仅有1条弦。用基本回路矩阵Bf表示则如式

(2)所示。

枝1

2

4

弦3

5

Bf=

[

-1

1

0

1

0

]

(2)

1

-1

-1

0

1

式中每一行表示一个基本回路(环)。环的方向以该环对应弦的方向为准。“-1”表示管段中的流向与环中弦的方向相反,“1”表示相同,“0”表示该管段不在此环内。Bf可用矩阵B和单位阵U表示为式

(3)。

Bf=[B|U],其中B=

[

-1

1

0

]

(3)

1

-1

-1

环阵与管段摩损列向量hf构成环方程如式

(4)所示。摩损向量的元素顺序与Bf中每行元素所对应的管段顺序相同。

(4)

图论理论中,连续方程用割方程代替。每个割方程只含一根枝,并和相关的弦构成割集,将图2分割成互不连通的脱离体。这样,图中就有3个割集。割集和割集阵Af如式

(5)所示: K1=(e1,e3,e

5) 1 0 0 1 -1

K2=(e2,e3,e

5) 0 1 0 -1 1

K3=(e4,e

5) 0 0 1 0 1

割阵Af中,每一行表示一个割集。图中有3根枝,所以就有3个割集。割阵中,“+1”表示该管段在此割集内,且管段流向与此割集内的枝中的流向相同,“-1”表示流向相反,“0”表示该管段不在此割集内。式

(5)的割阵Af和割集K一一对应。割阵Af可用一个矩阵A和一个单位阵U表示为:

Af=[U|A],其中A=

[

1

-1

]

-1

1

0

1

割阵与流量列向量可构成割方程。

根据图论理论,割阵的行向量与环阵的行向量正交,这种关系可用式

(6)表示。

[B|U]·[U|A]T=0或者[U|A]·[B|U]T=0

(6)

所以有B=-AT或者A=-BT。这样,环阵可以由割阵求出,反之亦然。

关联矩阵通过选主元初等行变换即可得到割阵:先选关联阵第一行中一非零枝元素为主元,并使其为+1,消去其它各行中此主元;再选第二行、第三行、…的主元,最后即得割阵Af。因此,可以由关联矩阵导出割阵和环阵。

2 图论法模型

任何管道的水力计算都可以用管段流量q,水头损失h,管径D,管长L和管壁条件C等5个因素来描述。一般D、L和C为已知条件,只有q和h未知。因此,求解一个管网的水力平衡问题,可从两方面考虑:一是利用q和h的关系,消去h,以q为未知量计算,求出q后,反求h;二是首先消去q,以h为未知量计算;解出h之后,再反求。图论法也可从这两方面入手,即求弦流量式和求枝摩损式。前者只适用于环状网,而后者则适用于所有类型的管网,所以本文着重介绍后者。

设一管网有J个节点,P条管段,L个环,则三者满足L=P-J+1的关系。管网的每一管段都有q和h两个未知量,因而未知量的个数为2P。但管网环方程有L个

下载文档

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

网友最新关注

小猫吃鱼
第一次乘大轮船
钟表
我的爸爸
无锡的奥运缘
丁丁是傻瓜
我为妈妈做好事
神奇的“日全食”
磨刀老人
我学自行车了
献给我亲爱的老师
“福娃”手电筒
读《吹牛大王历险记》有感
我的小乌龟
“0”像什么,象征着什么
地税工作谋划
司法局工作要点
乡镇工作安排
治安工作谋划
争创星级党员计划
及早谋划工作
争创优秀党员计划
公司党委工作安排
检察工作总体思路
社区工会工作目标
劳动局工作思路
党员争创规划
2012安全生产工作思路
镇政府办公室工作思路
县人防办工作总结及工作设想
浅论法律规范性的概念与来源(1)论文
简论电子商务的商业方法专利(1)论文
选秀节目与电视台发展之间的策略分析
陈乔恩偶像剧女王的不败神功
浅探婚外性行为类型及其法律后果(1)论文
浅谈电子商务合同的若干法律问题(1)论文
媒介融合背景下新闻采编的方式创新
论环境侵权民事救济途径指导(1)论文
浅论侵权法中的防御请求权(1)论文
电视剧产业运作模式发展趋向
浅析无过错责任原则在环境侵权中的适用(1)论文
谈雇主不当解雇雇员的赔偿责任(1)论文
浅论环境污染责任的适用范围(1)论文
透过符号学解析韩剧风靡的原因
对韩国喜剧影视特点
《小小的船》教学设计
《“红领巾”真好》教案
《画》教学设计
《阳光》教案(新课标)
《影子》教学设计
《四季》教学设计(第一课时)
《乌鸦喝水》教案
《四季》教案(新课标)
《四个太阳》教学设计
《秋天的图画》教学设计
《松鼠和松果》课堂教学反思
《棉花姑娘》教学设计
《爷爷和小树》教学设计
《比尾巴》教学设计
《要下雨了》教案