教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 论文> 其他论文> 轧辊偏心问题的理论分析和冷轧板板带厚度控制模型(一)

轧辊偏心问题的理论分析和冷轧板板带厚度控制模型(一)

轧辊偏心问题的理论分析和冷轧板板带厚度控制模型

轧辊偏心问题的理论分析

广义上说,轧辊和轧辊轴承形状的不规则引起辊缝周期性变化称为轧辊偏心。轧辊偏心会导致轧件厚度周期变化,轧辊的偏心可以归纳为两种基本类型。一种是由辊身和辊径的不同轴度引起的偏差所引起的;另一种是由轧辊本身所具有的椭圆度所产生的。而实际情况可能是两者共同作用的结果。

辊身和辊径不同轴的情况

图2.1 辊身和辊径不同轴的情况

如图2.1所示,为辊径的轴心,为辊身的轴心,为辊身的半径,X为与之间的距离。偏心运动轨迹相当于辊身表面可移动点A绕辊径轴线转动,即偏心波形为的轨迹。设支承辊转动的角速度为,,在三角形中, 由余弦定理可知:

(2.

1)

设t=0时,=0,=,。由正弦定理得:

(2.

2)

从而有:

(2.

3)

因而有轧辊偏心运动轨迹的参数方程为:

(2.

4)

根据以上参数方程,得轧辊偏心波形如图2.2所示。

图2.2 轧辊偏心波形

图2.3 辊身为椭圆时的示意图

轧辊具有椭圆度的情况

如图2.3 所示,o是轧辊的轴心,是理想辊身的半径,a 和b 分别是实际椭圆截面的长轴和短轴。实际情况可能不是椭圆。偏心波形为椭圆周上可移动点A与理想圆周的径向距离的轨迹,r为A到轧辊轴心线的距离。设辊身转动的角速度为,t=0时,,则有:

(2.

5)

又由椭圆方程 得 :

从而

因此有

(2.

6)

因而得到轧辊偏心曲线方程为

(2.

7)

得到的偏心波形类似于图2.2。

如果两个辊的角速度相同,那么合成的偏心信号仍然是同频率的周波。这是因为周期信号可以分解为一系列的正弦波之和。而两个同频率的正弦波之和仍是正弦波。设和为两个角频率为的正弦波,其中

  ; (2.

8)

则合成的波形为

(2.

9)

式中:

(2.

10)

(2.

1

1)

合成波形的振幅发生变化,相位发生偏移,频率保持不变。轧辊偏心波形一般不是纯粹的正弦曲线,而是包括多次谐波的复杂的周期波。它有以下特点:⑴ 周期性 轧辊每转动一周,偏心信号重复出现一次;⑵ 频率和幅值不是固定不变的。当轧制速度变化时,其频率也随之成比例变化。在轧制过程中,由于轧辊的热膨胀和磨损,偏心信号的幅值也会发生缓慢变化;⑶ 偏心信号不仅含有多次谐波,而且还含有各种各样的随机干扰。

偏心信号的采集和处理

轧辊偏心对厚度的影响可以用出口厚度变化的频谱分析来评估,斯太尔克利用快速傅立叶变换(FFT),从出口厚度数字化信号中分离所有周期分量,并依据所有轧辊转速和尺寸,能够辨别出大部分频谱峰值,通过对频谱选择过滤同时结合反变换FFT技术,每个轧辊对出口厚度变化的影响都能测量出来。从上面分析中,我们知道轧辊偏心信号是包括多次谐波的高频周期波,偏心信号的频率与轧制速度成正比。在生产过程中,由于随机噪声、缓慢变化量等的存在,采集的偏心信号会出现突变、漂移等无规则变化,但总的偏心信息不会突变。轧辊更换以后,它的偏心量就基本上确定了。,并在短时间内不会突变。根据这一特点,在每次换辊以后,在正常轧制状态下,对轧制压力信号进行采集,从中提取偏心成分,建立偏心模型。进而对轧辊的偏心进行补偿。

将采集到的轧制力信号进行A/D转换,然后进行去均值(去掉直流分量)和相干时间平均处理,使噪声干扰得以减弱或消除,提高信噪比;对预处理后的信号进行快速傅立叶变换(FFT),建立轧辊偏心参数模型。在轧辊上安装一个光码盘,以产生两列脉冲。一列相对轧辊某一固定点,每转一周发出一个脉冲,此脉冲作为采样和控制的初始定位信号;另一列是轧辊每转一周,光码盘发出128个脉冲数列以进行FFT,建立模型。相干时间平均方法适应于周期信号或重复信号,它将各个周期信号和噪声信号同时叠加后加以平均,如果噪声是随机的,则在叠加过程中会相互抵消,而信号是有规律的,叠加平均后幅值不变。必要条件是噪声应具有一定随机性,而信号则具有重复性,且两者互不相干。

设混有噪声的信号为,信号反映系统的某种基本特征。在相同的条件下,具有重复性。噪声为均值为零,方差为的平稳随机信号,且、互不相关。对第i个样本采样M次,然后做相干平均得:

(2.

1

2)

傅立叶变换是在以时间为自变量的信号与以频率为自变量的频谱函数之间的变换关系。傅立叶变换可以辨别出或区分出组成任意波形的一些不同频率的正弦波。快速付立叶变换是建立在离散时间概念上的,它不单纯是对离散时间付立叶变换的近似,而是从离散付立叶变换出发,有一整套自成体系的、 离散时间域中的严格的基本定理和数学关系。离散付立叶变换能把一个有限长度序列映射成另一个有限长度序列,因而很适合于数字计算机计算。利用离散付立叶变换的一些代数结构,可以实现高速算法,快速付立叶变换能使离散付立叶变换的计算时间成数量级的缩短。快速付立叶变换的出现使付立叶变换已不仅仅是一种理论概念,而且成为一种技术手段。

⑴ 离散付立叶变换[65 ,66]

当用数字计算机对信号进行频谱分析时,要求信号必须以离散值作为输入,而计算机输出所得的频谱值,自然也是离散的。因此,必须针对各种不同形式信号的具体情况,或者在时域和频域上同时取样,或者在时域上取样,或者在频域上取样。信号在时域上取样导致频域的周期函数,而在频域上取样导致时域的周期函数,最后将使原时间函数和频率函数都成为周期离散的函数。

从严格的数学意义上讲,离散周期序列的付立叶变换是不存在的。但是,如果利用周期函数可能展开为付立叶级数的指数形式并使用冲激序列,则可以把付立叶级数逐项作积分变换,从而在形式上得到付立叶变换对。

设为一周期连续信号,如果以抽样间隔为的抽样率进行抽样,抽样结果为,则可表示为:

(2.

1

3)

设一个周期内的抽样点数为,即到,则

可写成:

于是有:

  ; (2.

1

4)

对进行抽样等于先将它的一个周期抽样成,然后把这一个周期进行延拓。所以有:

(2.

1

5)

式中上的符号表示周期重复,它是离散时间周期冲激序列,是的一个周期内抽样所得的数值;为抽样序号,;为抽样间隔;为的周期;为任意整数。

令,并将展开成付立叶级数

(2.

1

6)

式中:,的单位为,系数可表示为:

(2.

1

7) (2.

1

8)

对式(2.18)进行付立叶变换得:

(2.

1

9)

定义

(2.

20)

由于

所以。这里是的个周期,。也就是说的周期为,在每个周期内,。于是,式(2.

20)可写成:

(2.

2

1)

上式说明,周期离散时间序列经付立叶变换后在频域中是离散频率的周期序列,这种形式的变换也称为离散付立叶级数变换。在数学上,离散周期序列的付立叶级数变换可简明表示为:

(2.

2

2)

(2.

2

3)

为了方便,令,则式(2.

2

2)和式(2.

2

3)可表示为:

(2.

2

4)

(2.

2

5)

离散付立叶级数变换是周期序列,仍不便于计算机计算,但离散付立叶级数每个周期序列却只有(一个周期内取点个数)个独立的复值,只要知道它的一个周期的内容,其它的内容也就知道了。同时限制式(2.

2

4)中的和式(2.

2

5)中的都只在区间内取值,就得到了一个周期的和一个周期的之间的对应的关系:

(2.

2

6)

(2.

2

7)

这就是有限长序的离散付立叶变换对。

上两式所示的离散付立叶变换对可以看成是连续函数在时域、频域取样所构成的变换,可以看作是连续付立叶变换的近似,是一种很有用的变换方法。然而,当数据有较长的长度时,这种变换的计算量是很大的。分析式(2.

2

6) 和式(2.

2

7)可知,当用直接方法计算DFT时,总运算量及总运算时间近似地比例于,这在很大时,所需的运算量及总算时间近似地比例于,这在很大时,所需的运算量非常可观,要想用DFT方法对信号作实量处理一般是有困难的。

⑵ 快速付立叶变换(FFT)

快速付立叶变换是为减少DFT计算次数的一种快速有效的算法。它使DFT的运算大为简化,运算时间一般可缩短一至二个数量级,其突出的优点在于能够快速高效地和比较精确地完成DFT的计算。

FFT改善DFT运算效率的基本途径是利用DFT中的权函数所固有的两个特性,一个是的对称性,即,另一个是的周期性,即。利用的对称性,可根据正弦和余弦函数的对称性来归并DFT中的某些项,结果可使乘法次数约减少一半。假定是一个高复合数,可利用权系数的周期性,把点DFT进行一系列分解和组合,使整个DFT的计算过程变成一个系列迭代运算过程。因为迭代运算的计算量要比直接计算的计算量少很多,尤其是当很大时,可能成百位甚至成千倍地减少。快速付立叶变换算法正是基于这一基本思想而发展起来的。权系数的周期性是导出FFT算法的一个关键因素,高复合性则是实现FFT算法的一个重要条件。根据不同的分解方法,可以导出多种FFT算法,如按时间抽取的FFT算法,按频率抽取的FFT算法,的高复合性则是实现FFT算法的一个重要条件。根据不同的分解方法,可以导出多种FFT算法,如按时间抽取的FFT算法,按频率抽取的FFT算法,为复合数的FFT算法等。时域抽点算法的迭代过程是基本在每级把输入时间序列分解为两个更短的子序列,频域抽点算法的迭代过程则基于在每级把输出频率序列分解成两个更短的子序列。

以2为基时域抽点FFT算法是最基本最常用的算法,基2算法要求采样点数为2的整数次幂。设有一个点序列,而,首先将按序号之奇偶分解为两个点的子序列,因而得:

(2.

2

8)

如采用下列变量替换:(当为偶数时),(当为奇数时),则上式可变为:

(2.

2

9)

又因

所以上式又可改写为:

(2.

30)

由于对于均有定义,而及只对有定义,因此,有必要就情况下对2.30作出说明。根据DFT的周期性可得:

(2.

3

1)

考虑到:

则上式可改写为:

(2.

3

2)

经整理后得:

(2.

3

3)

式中:和可分别写成序列和的点DFT。

式(2.

3

3)表明,一个点DFT可分解成两个点DFT,而这两个点DFT又可组合成为一个点DFT,效果是相同的,但是运算量却大不相同。很明显,如果以一次复乘和一次复加称为一次运算,那么,计算两个点DFT约共需运算,此外再加上按式(2.

3

3)组合需要次运算,所以按先分解后组合的方式计算一个点DFT总共约需次运算。当较大(即)时,它的运算量比直接运算点的DFT约可减少一半。

因为是2的幂,所以可进一步将每个点子序列按奇偶号分解为两个点子序列,再令每两个点子序列组合成一个点DFT……。上述分解过程还可继续进行,直到第次分解,每个子序列都只有两点。这样,就把点DFT的运算转化为级组合运算,M级组合就是M级迭代过程。每次迭代要求N/2次复乘和N次复加,M级迭代约需次复乘和次复加。每次迭代要求次复乘和点DFT的迭代运算过程是基于在每级把输入时间序列分解成两个更短的子序列,因此称为时域抽点算法。图2.4 说明了此迭代运算过程。

图 2.4 N点基2 FFT的M级迭代过程

经过FFT变换结果,就可以计算出各次谐波的振幅和相角,从而建立轧辊的偏心模型,其振幅A=,相角,频率随轧辊速度变化而变化。

偏心模型还必须转换为与采集脉冲对应的离散点的模型,即将带有三个参数的正弦波偏心模型转换成128个脉冲对应的离散点模型。轧辊偏心控制对检测和控制系统的准确性和快速性要求很高,定位定点采样保证了通过数据处理获得的偏心模型的唯一性和准确性。把正弦波的一个周期分成N段,列成表格,用步长DELTA扫过这个表,用序号作为角度参数,查表求出序列的值。假设每两个采样点之间的时间间隔维t,则正弦频率为。当步长不是 整数时,采用点可能落在两表值之间,可以采用线性内插法加以修正。

⑶ 基2时域FFT算法的改进(MMFFT)

针对轧辊偏心信号本身及其控制问题的特点,对传统的基2时域FFT算法进行改进(MMFFT)。改进分两部,第一步改进的是取消传统FFT方法对采样持续时间的限制,使快速付立叶变换算法适用于处理轧辊偏心波动这类周期未知或变动的周期信号,同时又能抑制FFT固有的泄漏效应。第二步改进是就偏心控制问题而言,将周期信号中各次正弦波的绝对频率转换为相对频率,从而提高算法在偏心控制中应用的可靠性和实用性。

① 第一步改进(Modlified FFT)

人们对DFT感兴趣主要是因为它是连续付立叶变换的一个近似。近似的准确程度严格说来是被分析波形的一个函数,两个变换之间的差异是因DFT需要对连续时间信号取样和截断而产生的。因而在应用DFT解决实际问题时,常常遇到混叠效应、栅栏效应和泄漏效应等问题。

对一个连续信号x(t)进行数字处理时,要在计算机上进行计算,而计算机的输入只允许是数字信号,所以必须对连续信号x(t)进行抽样,即

(2.

3

4)

式中:为对x(t)抽样所形成的序列。T为抽样间隔,为抽样率,。如果抽样率选得过高,即抽样间隔过小,则一定的时间里抽样点数过多,造成对计算机存贮量的需要过大和计算时间太长。但如果抽样率过低,则在DFT运算中将在频域出现混叠现象,形成频谱失真,使之不能反映原理的信号。这样将使进一步的数字处理失去依据,而且也不能从这个失真的频谱中恢复出信号来。因此,对连续信号的抽样率需大于奈奎斯特频率,即抽样率至少应等于或大于信号所含有的最高频率的两倍,即。

如果x(t)是一个周期信号,它只具有离散频谱,那么,x(t)抽样后进行FFT运算得出的频谱就是它的离散频谱。但是如果x(t)是个非周期函数,它的频谱是连续的,把x(t)的抽样进行DFT运算得到的结果就只能是连续频谱上的若干点。因为这就好象是从栅栏的一边通过缝隙观看另一边的景象一样,所以称这种效应为栅栏效应。如果不附加任何特殊处理,则在两个离散的变换线之间若有一特别大的频谱分量,将无法检测出来。减少栅栏效应的一个方法就是在原记录末端填加一些零值变动时间周期内的点数,并保持记录不变。这实质上是人为地改变了周期,从而在保持原有线连续形式不变的情况下,变更了谱线的位置。这样,原来看不到的频谱分量就能够移动到可见的位置上。

泄漏效应是由于在时域中对信号进行截断而引起的。实际问题中,所遇到的离散时间序列x(nT)可能是非时限的,而处理这个序时时,需要将其限制为有限的N点,即将它截断。这就相当于将序列乘以一个矩形窗口,如果对有限带宽的周期函数抽样后的截断长度并不正好是其周期的整数倍,就会导致离散付立叶变换和连续付立叶变换之间出现显著的差异。这是因为,根据频域卷积定理,时域中的,则频域中与进行卷积。这里,和分别是的付立叶变换,这样将使截断后的频谱不同于它加窗以前的频谱。泄漏效应的产生是由于矩形窗函数的付立叶变换中具有旁瓣亦有一定带宽而引起的。如图2.5所示。为了减少泄漏,应尽量寻找频谱中窗函数,即旁瓣小、主瓣窄的窗函数。或者通过限制采样的持续时间来抑制泄漏效应。

图2.5 矩形窗口的时域与频域图形

对于待分析信号,由于时域中的截断是必须的,所以泄漏效应是离散付立叶变换所固有的。在实际问题中,由于待分析信号的周期往往是未知的或变化的,因而通过对采样持续时间的限制而求得正确结果,往往是十分困难的。轧制过程中的轧辊偏心信号就是如此。这了解决这一问题,采用内插计算法修正FFT的计算结果,使之更适合于一般的场合。

考虑一周期复函数,在每一为采样持续时间,N为采样个数)时采样,得到抽样函数。

(2.

3

5)

式中:….,N~

1)

通过传统FFT的计算,可以得到对应于以为间隔频率的离散付立叶变换的结果,即

() (2.

3

6)

一般说来,这些的值并不能准确地代表中各周期分量的幅值和频率的复数值。

将(2.

3

5)代入式(2.

3

6)并整理可得:

(2.

3

7)

从式(2.

3

7)中并不能看出之间的直接关系。但是,当采样的持续时间为信号周期的整数倍时,即时,则有

(2.

3

8)

这里,假设是一个很小的数。

如果忽略式(2.

3

8)中带有的项,则有。只有在上述情况下,近似地得到之间的关系。通常情况下,采样的持续时间不是信号周期的整数倍,为此引入一个参数,使得信号的频率可以用下式表示:

(2.

3

9)

此时对应于频谱中的,当,可由式(2.

3

8)得出

(2.

40)

当忽略了式(2.

40)中带有的项时,有

(2.

4

1)

同理,对于相邻两点有:

(2.

4

2)

(2.

4

3)

设 (2.

4

4) (2.

4

5)

式中Zk定义为:

(2.

4

6)

从式(2.

4

6)中Zk的实部和虚部的值,可以确定的值,从而可以确定复频率:

(2.

4

7)

又由式(2.

4

6)可得:

(2.

4

8) (2.

4

9)

② 第二步改进(Modified MFFT)

如前所述,经过第一步改进后的快速付立叶变换算法用

(2.

50)

确定第k次谐波的角频率,0<<1,T为采样持续时间,是周期分量的绝对频率。然而,就偏心控制问题而言,轧辊偏心信号的绝对频率是随着轧制速度的改变而变化的。在速度变化较大或速度变化频繁时,再以绝对频率做为偏心模型参数,不仅不方便,而且会影响信号处理结果和控制结果的准确性和可靠性。考虑借助于某种仪表,把支持辊每转一周的采样点数固定,将绝对频率的计算转换为信号相对于支持辊转速的相对频率的计算。

假设信号采样周期为,总的采样点数为,那么总的采样持续时间可表示为:

(2.

5

1)

又假设支持辊每转一周,固定的采样点数为,那么轧辊转动的角频率可以表示为:

(2.

5

2)

由上两式就可以得出偏心信号与支持辊之间的相对频率

(2.

5

3)

利用式(2.

5

3)计算的频率值作为轧辊偏心模型参数之一,不仅使信号检测过程更方便,信号处理结果更可靠。而且更有利于控制方案的制订和实施。

MMFFT算法流程图如图2.6所示。

应用MMFFT方法的偏心控制方案

如前上述,在轧机运转过程中,支持辊偏心反映在辊缝、轧制压力和带钢厚度上,是一复杂的高频周期波,其变化幅度取决于轧辊偏心量的大小,其变化频率与轧机的主机速度成正比,即此偏心信号的变化周期是随轧速度的变化而变化的。为此,采用改进的快速付立叶变换算法(MMFFT)来检测此偏心信号,获得信号中所含各次正弦波的幅值、频率和相角,建立偏心模型,进而实施控制。

基于以上分析,采用预先模型识别与在线参数自动修正相结合的方法,实现偏心模型的检测与偏心影响的在线补偿。

⑴ 第一种方案

首先,在轧辊预压靠时,对压力仪测出的轧制压力信号进行采样。然后,运用MMFFT对该采样信号进行运算处理,根据产品精度要求,取出一定次数的基波和谐波分量,作为支持辊偏心在轧制压力信号上的反映,通过轧制压力与辊缝的关系,得出轧辊偏心信号的原始模型,该模型即为以后控制的基础。在预压靠时取原始模型具有一些优点,如可以减少带钢的浪费,保证在正常轧制开始的同时,偏心控制器也投入也运行。此外,由于预压靠时不存在来料厚度、硬度波动和张力变化等一系列干扰因素的影响,有利于提高模型检测的精度。当然,这样做也有其自身的问题,这是因为压靠时的轧机状态、轧辊受力情况等均与正常轧制时有差 程度,即压到一定的压力,然后将此时的辊缝指示定为零位,这就是所谓的“零位调整”。以后即以此为基础进行压下调整。这样轧件的出口厚度就变成:

(2.

6

8)

式中:S是考虑预压变形的等效空载辊缝,单位为毫米。

在对轧机进行理论分析时,常将上式所表达的出口厚度随轧制压力P的变化规律用曲线形式反映出来,同时将轧件的塑性变形规律,即式(2.

6

8)所表示的轧制压力与出口厚度关系,也在同一张图中绘出(如图2.9所示)。该图就称为轧机的弹塑性曲线,或简称为P~H图。P~H图非常直观的表达了轧制过程的各种关系,是分析带钢厚度变化和厚度控制问题一个重要工具。

⑶ 前滑和速度方程

轧件在轧辊间发生塑性变形时,要相对于轧辊发生向前和向后的滑动,实际轧件的入、出口速度不等于轧辊的线速度, 因而产生所谓的前后滑现象。

轧件的出口速度与轧辊的圆周速度(即通常所说的轧辊速度)以及前滑系数之间的关系为:

(2.

6

9)

前滑系数f可以用Dresden公式描述。

下载文档

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

网友最新关注

写给天堂里最美的母亲——献给在汶川地震中失去生命的母亲
致妈妈的一封信
给体育健将刘翔的一封信
写给天堂爷爷的一封信
给老师的一封信
妈妈,您辛苦了
给老师的一封信
给姚明先生的一封信
写给月亮姐姐的信
给杨红樱阿姨的一封信
给冰灾地区小朋友的一封信
给环保局的一封信
观《我的小学》有感
给体操王子杨威先生的一封信
给灾区小朋友的信
浅议提高高职马克思主义理论教学针对性与实效性的思考
试论学习马克思主义理论与思想政治教育的意义
马克思主义理论课课堂教学的几点启示
关于网络时代高校马克思主义理论教育面临的新课题
试论马克思主义理论课教学应突出方法论意义
浅析马克思主义理论课的教学改革探析
试析网络平台中的高校马克思主义理论教育建设策略
浅议高校马克思主义理论教育的创新
浅议高校马克思主义理论教育中的缺陷及解决措施
试论高校“马克思主义理论课”实践教学形式多样化探索
简析生命关怀视阈下的马克思主义理论教育
试论马克思主义理论教育的生命立场
浅论素质教育目标下高校马克思主义理论课教育
浅析新时期中国青年的马克思主义理论学习
关于马克思主义基本原理概论教学与现实生活世界
《两只小狮子》第一课时教学设计之一
《小白兔和小灰兔》教学设计之四
《两只小狮子》教学设计之八
《快乐的节日》教学设计之五
《两只小狮子》教学设计之九
《两只小狮子》教学设计之六
《快乐的节日》教学设计之四
《两只小狮子》教学设计之七
《小白兔和小灰兔》教学设计之五
《小白兔和小灰兔》教学设计之三
《快乐的节日》教学设计之二
关于《两只小狮子》的教学设计
《两只小狮子》教学设计之一
《快乐的节日》教学设计之三
《快乐的节日》教学设计之一