教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 论文> 其他论文> 小波转换影像压缩模式之研究详细内容(1)

小波转换影像压缩模式之研究详细内容(1)

上传者:网友
|
翻新时间:2013-12-18

小波转换影像压缩模式之研究详细内容(1)

摘要

由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。

壹、前言

由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有True Color的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480 True Color图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。

贰、 WAVELET的历史起源

WAVELET源起於Joseph Fourier的热力学公式。傅利叶方程式在十九世纪初期由Joseph Fourier (1768-18

30)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。

1986年,Y. Meyer建构出具有一定衰减性的光滑函数Ψj,k(x),其二进制伸缩与平移系 {Ψj,k(x)=√2jΨ(2jx-k);j,k?Z}构成L2(R)的规范正交基。1987年,Mallat巧妙的将多分辨分析的思想引入到小波分析中,建构了小波函数的构造及信号按小波转换的分解及重构。1988年Daubechies建构了具有正交性(Orthonormal)及紧支集(Compactly Supported);及只有在一有限区域中是非零的小波,如此,小波分析的系统理论得到了初步建立。

三、 WAVELET影像压缩简介及基础理论介绍

一、 WAVELET的压缩概念

WAVELET架在三个主要的基础理论之上,分别是阶层式边码(pyramid coding)、滤波器组理论(filter bank theory)、以及次旁带编码(subband coding),可以说wavelet transform统合了此三项技术。小波转换能将各种交织在一起的不同频率组成的信号,分解成不相同频率的信号,因此能有效的应用於编码、解码、检测边缘、压缩数据,及将非线性问题线性化。良好的分析局部的时间区域与频率区域的信号,弥补傅利叶转换中的缺失,也因此小波转换被誉为数学显微镜。

WAVELET并不会保留所有的原始资料,而是选择性的保留了必要的部份,以便经由数学公式推算出其原始资料,可能不是非常完整,但是可以非常接近原始资料。至於影像中什度要保留,什麽要舍弃,端看能量的大小储存(跟波长与频率有关)。以较少的资料代替原来的资料,达到压缩资料的目的,这种经由取舍资料而达到压缩目地的作法,是近代数位影像编码技术的一项突破。即是WAVELET的概念引入编码技术中。

WAVELET转换在数位影像转换技术上算是新秀,然而在太空科技早已行之有年,像探测卫星和哈柏望远镜传输影像回地球,和医学上的光纤影像,早就开始用WAVELET的原理压缩/还原影像资料,而且有压缩率极佳与原影重现的效果。

以往lossless的编码法只着重压缩演算法的表现,将数位化的影像资料一丝不漏的送去压缩,所以还原回来的资料和原始资料分毫无差,但是此种压缩法的压缩率不佳。 将数位化的影像资料转换成利於编码的资料型态,控制解码後影像的品质,选择适当的编码法,而且还在撷取图形资料时,先帮资料「减肥」。如此才是WAVELET编码法主要的观念。

二、 影像压缩过程

原始图形资料 → 色彩模式转换 → DCT转换 → 量化器 → 编码器 → 编码结束

三、 编码的基本要素有三点

(一) 一种压缩/还原的转换可表现在影像上的。

(二) 其转换的系数是可以量化的。

(三) 其量化的系数是可以用函数编码的。

四、 现有WAVELET影像压缩工具主要的部份

(一) Wavelet Transform(WAVELET转换):将图形均衡的分割成任何大小,最少压缩二分之一。

(二) Filters(滤镜):这部份包含Wavelet Transform,和一些着名的压缩方法。

(三) Quantizers(量化器):包含两种格式的量化,一种是平均量化,一种是内插量化,对编码的架构有一定的影响。

(四) Entropy Coding(熵编码器):有两种格式,一种是使其减少,一种为内插。

(五) Arithmetic Coder(数学公式):这是建立在Alistair Moffat's linear time coding histogram的基础上。

(六) Bit Allocation(资料分布):这个过程是用整除法有效率的分配任何一种量化。

肆、 WAVELET影像压缩未来的发展趋势

一、 在其结构上加强完备性。

二、 修改程式,使其可以处理不同模式比率的影像。

三、 支援更多的色彩。可以处理RGB的色彩,像是YIQ、HUV的色彩定义都可以分别的处理。

四、 加强运算的能力,使其可支援更多的影像格式。

五、 使用WAVELET转换藉由消除高频率资料增加速率。

六、 增加多种的WAVELET。如:离散、零元树等。

七、 修改其数学编码器,使资料能在数学公式和电脑的位元之间转换。

八、 增加8X8格的DCT模式,使其能做JPEG的压缩。

九、 增加8X8格的DCT模式,使其能重叠。

十、 增加trellis coding。

一、 增加零元树。

现今已有由中研院委托国内学术单位研究,也有不少的研究所的硕士论文发表。国外更是如火如荼的展开研究。相信实际应用於实务上的日子指日可待。

共2页: 1

论文出处(作者):

伍、 影像压缩研究的方向

1. 输入装置如何捕捉真实的影像而将其数位化。

2. 如何将数位化的影像资料转换成利於编码的资料型态。

3. 如何控制解码影像的品质。

4. 如何选择适当的编码法。

5. 人的视觉系统对影像的反应机制。

小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。

陆、 在印刷输出的应用

WAVELET影像压缩格式尚未成熟的情况下,作为印刷输出还嫌太早。但是後续发展潜力无穷,尤其在网路出版方面,其利用价值更高,WAVELET的出现就犹如当时的JPEG出现,在影像的领域中掀起一股旋风,但是WAVELET却有JPEG没有的优点,JPEG乃是失真压缩,且解码後复原程度有限,能在网路应用,乃是由於电脑的解析度并不需要太高,就可辨识其图形。而印刷所需的解析度却需一定的程度。WAVELET虽然也是失真压缩,但是解码後却可以还原资料到几乎完整还原,如此的压缩才有存在的价值。

有一点必须要提出的就是,并不是只要资料还原就可以用在印刷上,还需要有解读其档案的RIP,才能用於数位印刷上。等到WAVELET的应用成熟,再发展其适用的RIP,又是一段时间以後的事了。

在网路出版上已经有浏览器可以外挂读取WAVELET档案的软体了,不过还是测试版,可是以後会在网路上大量使用,应该是未来的趋势。对於网路出版应该是一阵不小的冲击。

图像压缩的好处是在於资料传输快速,减少网路的使用费用,增加企业的利润,由於传版的时间减少,也使印刷品在当地印刷的可能性增高,减少运费,减少开支,提高时效性,创造新的商机。

柒、 结论

WAVELET的理论并不是相当完备,但是据现有的研究报告显现,到普及应用的阶段,还有一段距离。但小波分析在信号处理、影像处理、量子物理及非线性科学领域上,均有其应用价值。国内已有正式论文研究此一压缩模式。但有许多名词尚未有正式的翻译,各自有各自的翻译,故研究起来倍感辛苦。但相信不久即会有正式的定名出现。这也显示国内的研究速度,远落在外国的後面,国外已成立不少相关的网站,国内仅有少数的相关论文。如此一来国内要使这种压缩模式普及还有的等。正式使用於印刷业更是要相当时间。不过对於网路出版仍是有相当大的契机,国内仍是可以朝这一方面发展的。站在一个使用其成果的角度,印刷业界也许并不需要去了解其高深的数理理论。但是在运用上,为了要使用方便,和预估其发展趋势,影像压缩的基本概念却不能没有。本篇文章单纯的介绍其中的一种影像压缩模式,目的在为了使後进者有一参考的依据,也许在不久的将来此一模式会成为主流,到时才不会手足无措。

参考文献:

1.Geoff Davis,1997,Wavelet Image Compression Construction Kit,。

2.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(上), 峰资讯股份有限公司。

3.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(下), 峰资讯股份有限公司。

4.施威铭研究室,1994,PC影像处理技术

(二)图档压缩续篇,旗标出版有限公司。

5.卢永成,民八十七年,使用小波转换及其在影像与视讯编码之应用,私立中原大学电机工程学系硕士学位论文。

6.江俊明,民八十六年,小波分析简介,私立淡江大学物理学系硕士论文。

7.曾泓瑜、陈曜州,民八十三年,最新数位讯号处理技术(语音、影像处理实务),全欣资讯图书。

共2页: 2

论文出处(作者):

下载文档

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

网友最新关注

下雨了
玩上海
美丽的荷花
可爱的小猫
我最喜欢的小动物
我的妈妈
我的弟弟
孝心献妈妈
看图两条小狗
放风筝
二十年后的我
登黄鹤楼
夸家乡
假如我生活在海底
开家长会
浅谈高校学生就业指导工作探析
发挥课外教育在大学生思想教育中的作用
关于加强体育素质教育提高大学生身体健康水平
试论高校就业指导工作
浅论公共政治理论课审美化教学新探
浅谈新形势下做好高校就业指导工作的思考
浅谈高校毕业生就业信息的搜集、整理、利用及有效性控制
论析高校课堂教育与课外教育的有机结合
浅谈高职院校开展就业指导工作的几点思考
思想政治理论课课外教育教学方法探讨
关于对高校就业指导工作的思考
浅谈构建新形势下高校大学生就业指导工作体系探析
传统文化角度下的大学生生命观教育探析
浅谈高校就业指导工作的五大转变
论析加强就业指导工作中的思想教育问题
在小说教学中努力培养学生听说读写能力
《变色龙》结构分析
《契诃夫的创作与十九世纪末期现实主义问题》摘要
挖掘细节描写的深意
《变色龙》中的“人群”
析契诃夫的《变色龙》
《变色龙》写作特点
《变色龙》学法建议
《变色龙》朗读指导
《变色龙》简析
《变色龙》的“正面人物”探微
《变色龙》课文剧
《变色龙》的取材和构思
《变色龙》的叙述策略与讽刺批判效应
《变色龙》素质教育新学案