翻新时间:2023-05-25
矿区投资动态规划分析
摘要
动态规划奠基于20世纪510年代初期,其主要奠基人之1 R.bellman以最优性原理为出发点,建立了动态规划理论。在近几10年来,动态规划获得了迅速的发展。在理论和应用上都出现了大量的文献。它正逐步成为国际学术界的重要学科。
本文详细的阐述了动态规划。动态规划是基于“最优性原理”它将1个复杂的多维问题分解成若干个相互依赖、联系的易于求解的低维问题。动态规划中的1些基本概念有:阶段、状态、决策、策略、状态转移方程、值函数等。基本算法方程有逆推算法基本方程、顺推算法基本方程等。为了求解实际问题首先必须对实际问题建立动态规划模型。文中就如何建立模型及应注意的1些问题作了说明。
它在经济中的应用10分广泛,涉及工业、农业、交通运输、投资、通信等各个领域各个部门。在本文中,应用动态规划理论,针对矿区建设的特点,以投资呆滞损失和欠产损失为主要优化目标,以初期投资少为次优化目标,建立了矿区建设投资最优模型,并对其求解,最后得到了结论。
关键词:动态规划;投资分析;最短路径
Abstract
The dynamic programming lays a foundation in the 1950th. R.bellman is one of its main founders that he has taken optimality principle as a starting point, established the dynamic programming theory. In the recent several dozens years, the dynamic programming has get rapid development, some literatures in the theory and the application have appeared. It is gradually becoming the important discipline of international academic circles.
Dynamic programming has been elaborated in this article. The dynamic programming is based on “the optimality principle”, which makes a complex multi-dimensional question into an easy lower question with relation to it. In dynamic programming, some basic concepts include: Stage, state, policy, strategy, equation of state shift, value function and so on. The basic algorithm equation has tow: counter projection method and along projection method. In order to solve the actual problem, we establish dynamic programming model first. In this paper, it gives some explanations to establish some dynamic programming model.
It is extremely widespread in the economical application, involves the industry, the agriculture, the transportation, the investment, and so on. In this paper, in apply of dynamic programming theory, in view of the mining area construction characteristic, take of delay loss and the shortfall in output loses as the main optimized goal, take the initial investment few as the sub optimization goal, established construction investment most superior model in the mining area, and get model solution. We get the conclusion at last.
Keywords: Dynamic programming;Investment analysis; Most short-path
前言
在决策过程中,人类在不断的探索最优决策方法。1方面从横向入手,即忽略时间对决策过程的影响,从所有可行方案中寻找最优方案,实现最优决策。这类问题由于不考虑时间因素故称为静态规划,如:线性规划、整数规划等。另1方面从纵向入手,由于问题的复杂、环节多、时间长,往往要分阶段作多次决策,每次决策都要受其紧前决策的影响,同时又影响其紧后决策,这类问题是在时间流动过程中,依次作出决策,以实现整个动态过程的最优决策,故称为动态规划。1951年,美国数学家贝尔曼(R.Bellman)等人在研究1类多阶段决策问题时,针对这类问题的特性,提出了解决动态规划问题的核心——最优化原理,从而建立了数学规划的另1新的分支——动态规划。通过建设模型并求解,为公司得到了矿山投资最优方案,节约成本,加大利润,为公司提供了正确的决策方法。
下载文档
网友最新关注
- 我的铁杆“猴子”
- 我最喜欢的动物——螃蟹
- 班级风云榜
- 宇宙的爱之宇宙的诞生
- 虹光普照(二十)
- 老妈变了
- 幻想曲之黑暗公主
- 感恩母亲
- 引我向前的风
- 橘水泪
- 宇宙的爱之千缘断裂
- 为什么?
- 家乡的名人
- 怪老师”
- 百变老妈
- 城管队员创市级文明单位心得体会
- 优秀员工工作体会
- 学习“爱德工程教育”心得体会
- 如何做一名优秀员工的心得体会
- 最新学生团委工作心得体会
- 学习思想解放心得体会
- 关于居巢区经济发展的若干思考
- 医生最新学习华益慰心得体会
- 广播电视系统软环境建设心得体会
- 干部讲党性重品行作表率心得体会
- 以硬措施改善软环境心得体会:勤廉高效看周边
- 党风廉正建设心得体会
- XX年学习两会心得体会论文
- 差等生励志转变心得体会
- 政府机关效能建设心得体会
- 磁控溅射法生长Fe膜及其性质分析
- 关于超个人心理学几个主要理论问题的辨析
- 黑洞热辐射与非热辐
- 青少年逆反心理再认识
- 低纹波、低噪声半导体激光器电源的设计与实现
- 磁场中电子双缝干涉的量子计算
- 面向21世纪,优化高师公共心理学课程体系
- 浅析当代大学毕业生的择业心理及其调适办法
- 如何帮助学生克服几种心理障碍
- 马尔可夫链在教学质量评价中的应用
- 中小教师心理健康的调查研究
- 中学生心理健康教育之我见
- 浅谈广义次正定矩阵
- 外部光注入DFB-LD的非线性动力学系统
- 分析仪器的发展与应用
- 师大版二年级上册第四课 《流动的画》设计
- 《燕子》教学设计
- 济南的冬天 教学设计(1)
- 《珍珠泉》教学设计
- 《美丽的小兴安岭》教学设计
- 名师指导:在山的那边
- 高中一年级〈在马克思墓前的讲话 〉教案
- 《桃花心木》教学设计
- 济南的冬天 教学设计(1)
- 《大自然的语言》教学设计
- 手捧空花盆的孩子
- 山中访友 教案示例
- 《燕子》教学设计
- 小学中年级续写《小摄影师》教学设计
- 《我的伯父鲁迅先生》教学设计