教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 论文> 其他论文> 水分导致SF6电压互感器爆炸

水分导致SF6电压互感器爆炸

上传者:网友
|
翻新时间:2023-08-07

水分导致SF6电压互感器爆炸

摘要:通过对一台110 kV单相SF6电压互感器突然爆炸事故的调查发现,该站其余电压互感器的气体水分全部严重超标。分析认为,SF6气体水分太高和气温突降是导致爆炸的主要原因。

关键词:电压互感器 绕组 闪络 水分

事故后对一台刚刚退出运行且与爆炸那台完全相同的SF6电压互感器进行检查时,发现SF6气体中水分竟然高达4330 μ/L,超过运行标准3倍多。

1、事故调查

1.1、现场调查事故发生当天,无雷击,无操作。爆炸发生时避雷器无动作,一只电压表指示由于119 kV(相电压69 kV)下跌至93 kV.上级站故障录波显示:无过电压,有单相短路电流约1 kA,历时不足1 s.对现场爆炸残骸调查研究认为,盘式绝缘子绝缘表面、底均压罩表面和绕组内部均无烧伤痕迹,而一次绕组裸露表面被严重烧损,因此故障部位应在一次绕组的裸露表面。因此可以认定,这次事故是在正常运行电压下发生的电压互感器一次绕组裸露表面闪络事故,是由闪络引起燃弧,燃弧引起SF6气压上升,最后在无防爆膜的情况下发生的爆炸事故。

① 绕组裸露表面短路;② 绕组裸露表面绝缘电阻降低。

由于现场调查发现底均压罩表面和绕组内部均无烧伤痕迹,可排除第①种可能。

而能使绕组裸露表面绝缘电阻降低的条件,只可能是绕组表面绝缘老化或者结露。由于设备才投入运行2年,绝缘不可能老化,所以只能是结露。即爆炸是由于漏气受潮引起的。

(1) 电压互感器的水分全部超标,电流互感器的水分部分超标,其他设备的水分均不超标。 

(2) 第一代0.5级电压互感器的水分大约是第二代0.2级电压互感器的2倍、电流互感器的5倍。

(3) 水分大约与绕组体积成正比。

1.4、气象咨询

结露必须具备过量水分和气温下降2个条件。爆炸发生正值夏秋之交,经向当地气象台进行咨询,了解到在爆炸前5天,夏季的持续高温(高温接近40℃,低温在30℃左右)突然中止,第一次最低气温降到23.4℃。爆炸前2天有降雨,爆炸时气温又回升到最高。

1.5、试验检查

所有互感器设备返厂后先做水分模拟试验,然后再解体检查。由于无法模拟立秋前夕的气温变化,所以水分模拟达到4330 μ/L仍然没有引起绕组结露,以至于80%出厂值的感应耐压试验依然能够通过,仅仅局部放电略有增大。解体检查结果,没有发现设计和制造缺陷,一致认为设计合理,制造规范。

1.6、调查结果

这次事故是在无操作、无过电压、运行电压完全正常,然而水分罕见超标和气温突降的背景下发生的电压互感器绕组闪络事故。闪络是过量水分遇到气温下降在绕组表面结露、使绝缘下降而引起的。闪络发展到燃弧、气压急剧上升,最后在无防爆装置的情况下发生爆炸。

2、事故分析

2.1、水分来源SF6气体中水分有5个来源:

(1)充入的干燥净化不彻底的回收SF6气体中所含水分。

(2) 组装或检修时带入的水分。

(3) 绝缘件带入的水分。在长期运行过程中,这部分水分会慢慢地释放出来。

(4) 吸附剂带入的水分。

2.2、SF6气体中水分的危害SF6气体中水分的危害主要表现在二个方面:

2.3、水分推算

既然事后检测未爆互感器含水分为4330 μ/L,那么爆炸那台的水分应该更高,估计在5000 μ/L左右。为了进一步确定爆炸那台的水分,还可以参考文献并结合当时气温进行推算。

2.4、水分结露

当气温突然下降时,首先是设备外壳温度开始变化,外壳内表面首先结露,绝缘件表面几乎不凝结水滴,随后绝缘件的温度下降才逐渐达到与外壳相同的水平。当气温回升时,外壳温度首先升高,其内表面的水滴随之蒸发,此时绝缘件温度还未回升,气体中的饱和水蒸气即在绝缘件表面结露。这对绝缘件非常不利。昼夜的温差变化就会出现上述现象。同理,夏秋之交,持续高温为电压互感器内部固体部分水分向气体中大量蒸发创造了条件,使气体中水分含量达到一年中最高,例如达到5000 μ/L左右。突然降温到23.4℃,恰好达到露点(23℃左右),为在金属壳体内表面结露创造了条件。然后气温逐渐回升,当气温回升到最高点,又为金属壳体内表面露水蒸发、结露转移到绝缘表面创造了条件。一旦一次绕组绝缘表面大量结露,绕组绝缘强度大幅度下降到出厂交流耐压值230 kV的30%以下,则会引起一次绕组绝缘沿面闪络,最终导致爆炸的恶性事故。

2.5、所有未爆电压互感器都没有受到水分危害

该站普查水分最高为4330 μ/L,都没有达到当时气温下结露所必须的5000 μ/L.这说明,除了爆炸那台之外,该站其余所有设备在当时气温下都不会发生结露,不会受到水分危害。解体之后,在模拟到4330 μ/L水分状态时,80%交流耐压试验依然通过。这个事实也证明,即便水分达到4330 μ/L,只要不结露,绝缘状态基本没有下降。只要对它们进行水分处理,加强水分监督,就可以保证设备安全运行。但是,既然普查水分最高为4330 μ/L,已经超过4000 μ/L,那么,按照表1的数据推算,这样高的水分在19 ℃左右不就会发生结露从而在正常运行电压下发生闪络吗?有关资料已经证明,一年之中气体水分含量随气温升高而升高,反之,一年之中气体水分含量也会随气温降低而降低,即冬季气体水分最低,夏季气体水分最高。这就是说,气体中水分是随气温变化而变化的。

就该站电压互感器来说,因为密封良好,内部水分总量应是不变的。内部的水分不仅仅分布在气体中,而且还有大量的水分分布在金属外壳内表面和绕组表面及其内部,以及导体表面、绝缘子表面、吸附剂内部等部位。水分分布是随气温变化而变化的,是动态的。当气温升高的时候,固体吸附的水分就向气体中蒸发,而当气温降低的时候,固体又从气体中吸收回水分。例如水分为4330 μ/L时,对应的露点大约是20 ℃,这4330 μ/L水分是在高于30 ℃时测得的,当气温缓慢降低到20 ℃以下时,气体中水分要随气温降低而降低,不再保持4330 μ/L.而随着气体中水分的降低,相应的露点也要随气温降低而降低,结果气温还是高于露点,还是不能结露。只有当气温突然降低到20 ℃以下,气体中水分仍然保持4330 μ/L时,结露才会发生,在正常运行电压下闪络才会发生。

下载文档

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

网友最新关注

夸家乡
课间一事
我和伙伴找春天
妈妈的爱
我爱美丽的春天
我与部队的第一次亲密接触
我的小制作
春天的脚步
找到春天真快乐
我们一起找春天
深圳
我爱美好的春光
春天
春天是最美的季节
2011年生教组工作计划
2010--2011学年度下学期政治教研组工作计划
2010~2011学年第二学期家长学校工作计划
2011年三年级数学组读书活动计划
文新科技部08级上半学期工作计划
小学2010-2011学年度第二学期教务处工作计划
2010—2011学年度第二学期档案室工作计划
小学2010—2011学年度第二学期校务公开工作计划
2010—2011年度秘书部工作总结
2011年暑假中学军训工作计划
2011年上学年学校工作计划
2011学年度学校教导处工作计划
2011学年第二学期英语教研组工作计划
2010—2011上学年学校工作计划
2010—2011学年第二学期英语教研组工作计划
英汉思维差异对翻译的影响
“逆向审查”在审理行政不作为案件中的运用(1)
构建公共财政应急反应机制
中国特色词汇及英译
汉英翻译实践是再创造的过程
化学教学与德育
经合组织国家保险准备金财税政策及对我国的启示
化学教学中创造性思维的培养
勒夏特列原理中“弹簧现象”的探究教学
化学教学论文《浅谈在化学教学中加强学生自主性学习》
《培养学生自主学习的能力和良好的习惯》的研究
化学教学中全面培养学生能力若干问题的探析
英语姓名的翻译
西方翻译研究的新发展
论对行政权力的法律控制(1)
《我的伯父鲁迅先生》的教学反思
《大瀑布的葬礼》评课
《一面》教案设计第二课时
《我的伯父鲁迅先生》第一教时教学设计
《一面》教学设计
《我的伯父鲁迅先生》教学反思
《只有一个地球》
《有的人》教学设计和反思
《有的人》教学案例1
《我的伯父鲁迅先生》评课稿
《只有一个地球》教学设计1
《老人与海鸥》教学反思
《我的伯父鲁迅先生》教学设计
《我的伯父鲁迅先生》教学反思(原创)
《大瀑布的葬礼》教学设计