名校noip讲义-背包问题思路
上传者:石宇强|上传时间:2015-04-15|密次下载
名校noip讲义-背包问题思路
名校noip讲义-背包问题思路
背包问题思路
[问题描述]
在M件物品取出若干件放在空间为W的背包里,每件物品的重量为W1,W·2……Wn,与之相对应的价值为P1,P2……Pn。求出获得最大价值的方案。
注意:在本题中,所有的重量值均为整数。
[算法分析]:
对于背包问题,通常的处理方法是搜索。
用递归来完成搜索,算法设计如下:
function Make( i {处理到第i件物品} , j{剩余的空间为j}:integer) :integer;
初始时i=m , j=背包总容量
begin
if i:=0 then
Make:=0;
if j>=wi then (背包剩余空间可以放下物品 i )
r1:=Make(i-1,j-wi)+v[i]; (第i件物品放入所能得到的价值 )
r2:=Make(i-1,j) (第i件物品不放所能得到的价值 ) Make:=max{r1,r2}
end;
这个算法的时间复杂度是O(2^n),我们可以做一些简单的优化。
由于本题中的所有物品的重量均为整数,经过几次的选择后背包的剩余空间可能会相等,在搜索中会重复计算这些结点,所以,如果我们把搜索过程中计算过的结点的值记录下来,以保证不重复计算的话,速度就会提高很多。这是简单的"以空间换时间"。
我们发现,由于这些计算过程中会出现重叠的结点,符合动态规划中子问题重叠的性质。 同时,可以看出如果通过第N次选择得到的是一个最优解的话,那么第N-1次选择的结果一定也是一个最优解。这符合动态规划中最优子问题的性质。
考虑用动态规划的方法来解决,这里的:
阶段是:在前N件物品中,选取若干件物品放入背包中;
状态是:在前N件物品中,选取若干件物品放入所剩空间为W的背包中的所能获得的最大价值;
决策是:第N件物品放或者不放;
由此可以写出动态转移方程:
我们用f[i,j]表示在前 i 件物品中选择若干件放在所剩空间为 j 的背包里所能获得的最大价值
f[i,j]=max{f[i-1,j-Wi]+Pi (j>=Wi), f[i-1,j]}
这样,我们可以自底向上地得出在前M件物品中取出若干件放进背包能获得的最大价值,也就是f[m,w]
算法设计如下:
名校noip讲义-背包问题思路
procedure Make;
begin
for i:=0 to w do
f[0,i]:=0;
for i:=1 to m do
for j:=0 to w do begin
f[i,j]:=f[i-1,j];
if (j>=w[i]) and (f[i-1,j-w[i]]+v[i]>f[i,j]) then
f[i,j]:=f[i-1,j-w[i]]+v[i];
end;
writeln(f[m,wt]);
end;
由于是用了一个二重循环,这个算法的时间复杂度是O(n*w)。而用搜索的时候,当出现最坏的情况,也就是所有的结点都没有重叠,那么它的时间复杂度是O(2^n)。看上去前者要快很多。但是,可以发现在搜索中计算过的结点在动态规划中也全都要计算,而且这里算得更多(有一些在最后没有派上用场的结点我们也必须计算),在这一点上好像是矛盾的。 事实上,由于我们定下的前提是:所有的结点都没有重叠。也就是说,任意N件物品的重量相加都不能相等,而所有物品的重量又都是整数,那末这个时候W的最小值是:1+2+2^2+2^3+……+2^n-1=2^n -1
此时n*w>2^n,动态规划比搜索还要慢~~|||||||所以,其实背包的总容量W和重叠的结点的个数是有关的。
考虑能不能不计算那些多余的结点……
那么换一种状态的表示方式:
状态是:在前N件物品中,选取若干件物品放入所占空间为W的背包中的所能获得的最大价值;
阶段和决策:同上;
状态转移方程是:
f[i,j]=max{f[i-1,j-Wi]+Pi (j+Wi<=背包总容量), f[i-1,j]}
这样,我们可以得出在前M件物品中取出若干件放进背包在所占空间不同的状态下能获得的最大价值,在其中搜索出最大的一个就是题目要求的解。
算法设计如下:
procedure make;
begin
f[0,wt]:=0;
for i:=1 to n do
for j:=0 to w (背包总容量) do
if f[i-1,j]未被赋过值 then (这些结点与计算无关,忽略)
continue
else
f[i,j]:=max{f[i-1,j+Wi]+Pi , f[i-1,j]};
最大价值:=max{f[n,j]} (求最大值)
名校noip讲义-背包问题思路
j:=1 to w
end;
由于事实上在计算的过程中每一个阶段的状态都只和上一个阶段有关,所以只需要来一个两层的数组循环使用就可以了,这是动态规划中较常使用的降低空间复杂度的方法。
本题能够用动态规划的一个重要条件就是:所有的重量值均为整数 因为
1)这样我们才可以用数组的形式来储存状态;
2)这样出现子问题重叠的概率才比较大。(如果重量是实型的话,几个重量相加起来相等的概率会大大降低)
所以,当重量不是整数的时候本题不适合用动态规划。
[解的输出]:
在计算最大价值的时候我们得到了一张表格(f[i,j]),我们可以利用这张表格输出解。 可以知道,如果f[i-1,j+Wi]+v[i]=f[i,j] (第二个算法),则选择物品i放入背包。 算法设计1:
进行反复的递归搜索,依次输出物品序号;
procedure Out(i,j:integer);(初始时 i=n, j=获得最大价值的物品所占的空间)
begin
if i=0 then exit;
if f[i,j]=f[i-1,j+w[i]]+v[i] then begin
输出解
Out(i-1,j+w[i]);
end
else
Out(i-1,j);
end;
算法设计2:
同样的思路我们可以用循环来完成;
procedure Out2;
var
i,ws:integer;
begin
ws:=获得最大价值的物品所占的空间;
for i:=n downto 1 do begin
if (ws>=w[i]) and (f[i,ws]=f[i-1,ws-w[i]]+v[i]) then begin
输出解;
ws:=ws-w[i];
end;
end;
writeln;
end;
名校noip讲义-背包问题思路
用这两种算法的前提是我们必须存住 f[i,j] 这一整个二维数组,但是如果用循环数组的话怎样输出解呢?
显然,我们只需要存住一个布尔型的二维数组,记录每件物品在不同的状态下放或者不放就可以了。这样一来数组所占的空间就会大大降低。
[解题收获]:
1)在动态程序设计中,状态的表示是相当重要的,选择正确的状态表示方法会直接影响程序的效率。
2)针对题目的不同特点应该选择不同的解题策略,往往能够达到事半功倍的效果。像本题就应该把握住"所有的重量值均为整数"这个特点。
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 《机械传动》机械类核心期刊
- 陕西卫生职称评审认可的中文生物医学期刊目录
- 热门 给力的赛车《极速赛车》游戏攻略[精彩]
- 杂志封面设计
- 报纸期刊出版法律法规讲读
- 《中国癌症杂志》上升为复旦大学A类期刊
- 一路走来,我辜负了三个好女人-扬子晚报
- 《口袋妖怪:黑白2》全野生精灵捕捉地点PokemonBlackWhite2-游戏攻略
- 第一版职场新鲜事
- 手机java游戏破解全攻略[资料]
- 收躲游戏下载游戏游戏攻略
- 交友与婚姻[新版]
- 不愿为我花钱的男人是真爱吗-长江日报
- 职场女性可“向前一步”,尽男人所不能
- ?狠男作家”曾子航:做一位“三不”狠女人
- 爱倦怠了,才会心猿意马-扬子晚报
- 《羞辱》图文流程攻略Dishonored-游戏攻略
- QQ水浒非最全最给力的关于人物游戏升级等等用法攻略心得
- New Gear Software - Gear Technology magazine - journal …:新的齿轮软件-齿轮技术杂志期刊…
- ?创全国知名的品牌文学期刊 《创作》杂志推出网络版
- 毕业小论文规定期刊
- 用汉子思惟跟汉子谈恋爱[宝典]
- 错过只是一种借口-现代快报
- 《视听》杂志征稿 月刊 省级各项文化事业类期刊
- 关于期刊杂志版式设计的研究
- 核心期刊目录
- 多点赞少差评爱情不见得就有正能量-扬子晚报
- 游戏王8攻略
- 学术期刊杂志通常一年四期或六期
- 分手看透一个人的丑陋-现代快报
网友关注视频
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 苏教版二年级下册数学《认识东、南、西、北》
- 六年级英语下册上海牛津版教材讲解 U1单词
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 小学英语单词
- 七年级英语下册 上海牛津版 Unit3
- 冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
- 冀教版英语五年级下册第二课课程解读
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 人教版二年级下册数学
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 二年级下册数学第二课
- 外研版英语三起6年级下册(14版)Module3 Unit1
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 河南省名校课堂七年级下册英语第一课(2020年2月10日)
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 北师大版数学四年级下册3.4包装
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
- 北师大版数学四年级下册第三单元第四节街心广场
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理