英文文献翻译
英文文献翻译(反馈控制)
11自动化1班 景文昊 1110200717
The class of control problems to examined here is considerable engineering interest. We should consider systems with several input , some known as controls because they may be manipulated and others called external disturbances, which are quite unpredictable, For example , in an industrial furnace we may consider the fuel flow, the ambient temperature, and the loading of material into the furnace to be inputs . Of there , the fuel flow is accessible and can readily be controlled , While the latter two are usually unpredictable disturbances.
In such situation , one aspect of the control problem is to determine how the controls should be manipulated so as to counteract the effects of the external disturbances on the state of the system . One possible approach to the solution of this problem is to use a continuous measurement of the disturbances, and from this and the known system equations to determine what the control inputs should be as functions of time to give appropriate control of the system state.
A different approach is to construct a feedback system , that is , rather than measure the disturbances directly and then compute their effects on the system from the model or system equations , we compare
direct and continuous measurements of the accessible system states with signals representing their “ desired values” to dorm an error signal , and use this signal to produce inputs to the system which will drive the error as close to zero as possible .
By some abuse of terminology , the former approach has come to be known as open loop control , and the tatter as closed-loop control .At first sight , the two approaches might appear to be essentially equivalent . Indeed, one might surmise that an open-loop
Control scheme is preferable since it is not necessary to wait until the disturbances have produced an undesirable change in the system state
内容需要下载文档才能查看before corrective inputs can be computed and applied.
图27.1(a)
内容需要下载文档才能查看
图27.1(b)
However, this advantage is more than outweighed by the disadvantages of open-loop control and the inherent advantages of feedback systems. First, in many cases the implementation of the open-loop control suggested above would require a very sophisticated (and hence expensive)computing device to determine the inputs require to counteract the predicted disturbance effects. Second, a feedback system turns out to be inherently far less sensitive to the accuracy with which a mathematical model of the system has been determined. Put another way, a properly designed feedback system will still operate satisfactorily even when the internal properties of the system change by significant amounts.
Another major advantage of the feedback approach is that by placing a “feedback loop” around a system which initially has quite unsatisfactory performance characteristics, one can in many case construct a system with satisfactory behavior. Consider, for example, a rocket in vertical flight. This is essentially an inverted pendulum, balancing on the gas jet produced by the engine, and inherently unstable(any deviation of the rocket axis from the vertical will cause the rocket to topple over). It can, however, be kept stable in vertical flight by appropriate changes in the direction of the direction of the exhaust jet, which may be achieving these variations in jet direction is to use a feedback strategy in which continuous planes cause a controller to make appropriate adjustments to the direction of the rocket engine. Stabilization
of an inherently unstable system could not be achieved in practice by an open-loop control strategy.
The mathematical tools required for the analysis and design of feedback system differ according to the structural complexity of the systems to be controlled and according to the objectives the feedback control is meant to achieve.
In the simplest situation, one control a single plant state variable, called the output, by means of adjustments to a single plant input. The problem is to design a feedback loop around the system which will ensure that the output changes in response to certain specified time functions or trajectories with an acceptable degree of accuracy. In either case, the transients which are inevitably excited should not be too “violent” or persist for too long.
In a typical situation,, The problem is to design a feedback system around the plant consisting of (a) a device which produces a continuous measurement Ym of the output; (b) a comparator in which this signal is subtracted from a reference input(or set point, or desired output)Yr , representing the desired value of the output, to produce an error signal e; and(c)a controller which uses the error signal e to produce an appropriate input u to the plant. We shall call this configuration a single-loop feedback system, s term which is meant to convey the essential feature that just one of the plant states (the output y)is to be controlled using only
one input. The objective of the feedback system is to make the output Y(t) follow its desired value Yr(t) as closely as possible even in the presence of nonzero disturbances d(t). The ability of a system to do so under
内容需要下载文档才能查看steady-state condition is known as static accuracy.
图27.2
Frequently Yr is a constant , in which case we call the feedback system a regulator system. An example is the speed control system of a turbine-generator set in a power station, whose main purpose is to maintain the generator speed as nearly constant as possible. Sometimes Yr is a prescribed non-constant function of time, such as a ramp function;
An example of this would be the control system for a radar antenna whose axis is to be kept aligned with the line of sight to an aircraft flying past with constant angular velocity, In this case, we refer to the system as a tracking system..
Single-loop feedback systems with the structure of Fig.27.2 are often called servomechanisms because the controller usually includes a device giving considerable power amplification. For instance, in the control
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 教师资格证面试礼仪:教师的站姿
- 结构化面试题:你是任课老师,上课时有一位学生没带课本,你怎么办?
- 结构化面试题:当好一个班主任需要具备哪些素质?
- 结构化面试题:你认为如何能够遏制幼儿园暴力事件?
- 结构化面试题:关于教师收入,你有什么样的看法?
- 结构化面试题:对于是否组织单元测试一事,你怎么看?
- 结构化面试题:你教的学生很任性、不爱学习,该怎么办?
- 结构化面试题:你心中理想的师幼关系是什么样子?如何建立?
- 结构化面试题:你认为一堂好课的标准是什么?
- 结构化面试题:新人工作努力却得不到领导认可该怎么办?
- 结构化面试题:你如何理解“没有教不好的学生,只有不会教的老师”这句话?
- 结构化面试题:对于中小学教师职称改革,你怎么看?
- 结构化面试题:学生考试成绩不理想哭了,作为教师你会怎么办?
- 结构化面试练习题:学生不听讲还打架,家长态度恶劣袒护孩子该怎么办?
- 结构化面试题:幼儿不遵守游戏规则该怎么办?
- 教师资格证面试礼仪:退场礼仪
- 结构化面试题:高校无人监考你怎么看?
- 结构化面试题:如何看待“教师要衣着得体,不穿奇装异服进课堂”这个规定?
- 结构化面试题:你如何处理班上的所谓“问题学生”?
- 结构化面试题:有个学生家长采取打骂等暴力进行教育,你怎么办?
- 结构化面试练习题:教育公平问题
- 结构化面试题:对付上课不听讲同学有两个绝招,对此做法你怎么看?
- 结构化面试题:请你解释一下“师傅领进门,修行在个人”这句话。
- 结构化面试题:对于屡次发生的校园暴力事件,你怎么看?
- 结构化面试题:对“不要让孩子输在起跑线上”这种说法,你怎么看?
- 结构化面试题:应届毕业生缺乏经验,如何胜任工作?
- 结构化面试题:幼儿集中教学没有游戏教学重要,你怎么看?
- 结构化面试题:你打算如何培养职业院校学生的创新能力?
- 结构化面试练习题:有学生当面问你涉及个人隐私的问题,你会怎么办?
- 结构化面试题:你最尊敬的教育家是谁,为什么?
网友关注视频
- 冀教版英语五年级下册第二课课程解读
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 外研版英语七年级下册module3 unit2第一课时
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 北师大版数学四年级下册第三单元第四节街心广场
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 外研版英语七年级下册module3 unit2第二课时
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 3月2日小学二年级数学下册(数一数)
- 北师大版小学数学四年级下册第15课小数乘小数一
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 二年级下册数学第一课
- 冀教版英语四年级下册第二课
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 七年级英语下册 上海牛津版 Unit5
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理