2003-IMS-A New 94 GHz Collision Avoidance Radar Sensor Using Six-Port
上传者:陈奕升|上传时间:2015-04-24|密次下载
2003-IMS-A New 94 GHz Collision Avoidance Radar Sensor Using Six-Port
A New 94 GHz Collision Avoidance Radar Sensor Using Six-Port
Phase Frequency Discriminator
Emilia Moldovan, Serioja Ovidiu Tatu, Tamara Gaman, Ke Wu, Renato G. Bosisio Poly–Grames Research Center, Département de Génie Electrique, École Polytechnique
3333 Queen Mary Road, Suite 222, Montréal, Qc., Canada, H3V 1A2
e-mail : rbosisio@grmes.polymtl.ca Abstract - A new prototype of collision avoidance radar
sensor at 94 GHz is proposed. The receiver front-end module is realized using a six-port phase/frequency discriminator (SPD). The SPD is composed of four 90° hybrid couplers fabricated in metal blocks using Computer Numerically Controlled (CNC) milling machine. System simulations to obtain the relative speed of the target and the distance to the target using a SPD model based on 90° hybrid coupler measurement results, are presented. Statistical evaluations of the proposed radar sensor performances are also discussed.
I. INTRODUCTION
Automotive radar applications and other millimeter wave sensors attract great interest and investments. Several operating autonomous cruise control (ACC) systems have been developed and demonstrated. Most of these applications are based on the FM/CW [1] or pulse techniques [2]. In the last years, various designs and prototypes of collision avoidance radar sensor based on a SPD technology were proposed [1,3,4]. Low cost, compact size and great accuracy of range and relative speed measurements are the most significant requirements for commercial deployment. All proposed designs are focused on solving these problems. However, problems related to integration and packaging processes require more investigations [2].
The intent of this paper is to present the principle of a new continuous wave (CW) radar sensor based on a SPD. The proposed SPD is composed of four 90° hybrid couplers fabricated in metal blocks using a CNC milling machine, at 94 GHz. The theoretical principle of relative speed and distance measurements is available from previous publications [3,4]. However, in the present paper, analog signal processing (ASP) instead of digital signal processing (DSP) is used to obtain low cost SPD collision avoidance radar sensors.
System simulations results to obtain relative speed and distance to the target are presented. The SPD model is based on S parameter measurement results of the 90° hybrid coupler at 94 GHz. The design of this coupler was realized using the High Frequency Structure Simulator (HFSS) software, version 5.6, of Agilent Technologies.
System simulations were performed using the Advanced Design System (ADS) software of the same company. II. THE SIX PORT PHASE/FREQUENCY DISCRIMINATOR
OPERATING PRINCIPLE The six-port is a passive linear component, first developed in the 70’s for accurate automated measurements of the complex reflection coefficient in microwave network analysis [5].
The complex reflection coefficient can be calculated using the output power readings at the four output ports.
b2
2
i
=Pi=Aia6+Bib6, i = 1,…,4 (1)
where a6 and b6 are the incident and emergent waves of the unknown RF signal and Ai , Bi are the six-port network parameters. These parameters can be obtained through an appropriate calibration procedure of the six-port junction. The signal generator is connected at port 5. The complex reflection coefficient Γ can be written as the vector ratio of the incident and emergent waves: Γ=
a6
b (2) 6
A number of six-port phase/frequency discriminators (SPD) were developed in our laboratory, and used in direct conversion receivers [6]. Phase measurements can be performed at microwave and millimeter wave frequencies by making only amplitude measurements using power detectors at four SPD output ports. Fig.1 shows the block diagram of the SPD circuit. The power to each output port can be expressed as: Pi
=S5ia5exp(j?25)+S6ia6exp(j?6), i=1…4 (3)
For the same amplitude of the two RF input signals, the output signal powers become:
2
PKa2
expéi=êëjæçπè4
+?6??5ö÷ù
øúû?qi, i=1…4 (4)
where K is a constant and qi are the q points of the SPD:
ìéππü
()1 qi=expíj+i?ý, i=1…4 (5) ê42ûþîë
The sign of fD, witch indicates the sense of target movement, is given by the sense of the vector rotation (clockwise or counter clockwise) [3].
Distance measurements are achieved by using two different CW properly spaced frequencies f1 and f2. The distance to the target is obtained by calculating the difference between the phases of the two reflected signals: d
=
c??1???2 (7)
4πf1?f2The maximum unambiguous range is obtained for a maximum phase difference ??1???2=π.
IV. THE PROPOSED RADAR SENSOR
The block diagram of the proposed radar sensor is presented in Fig.2. A VCO is used to generate two different CW signals f1 and f2 for distance measurements. A part of the transmitted signal is injected at SPD as a
III. SPD RADAR SENSOR OPERATING PRINCIPLE
reference signal. A power amplifier (PA) is used to
When the two RF input signals have different increase the power of the transmitted signal. Equal power frequencies, the six-port actually becomes a frequency levels to the SPD inputs improve the measurement discriminator. The expression contained in the module of accuracy. Therefore, a low noise amplifier (LNA) and a equation (3) represents a vector rotating in the complex RF amplifier (A) with an automated gain control (AGC) plane. The Doppler frequency fD can be obtained by circuit are used. The four SPD output signals are detected
and amplified using video amplifiers. An ASP and a measurement of the rotating velocity of this vector:
frequency counter are used to obtain the relative speed and ??
fD=?f= (6) the distance to the target. To increase the isolation
2*?tbetween the transmitted and received signals, two separate
where ??=?6??5 is a function of time. antennas are used, instead of a single antenna and a
duplexer.
内容需要下载文档才能查看
Fig.1. The block diagram of the SPD circuit
VCO
Fig.2. The block diagram of the proposed radar sensor
内容需要下载文档才能查看
V. TEST RESULTS
A SPD model based on measurement results of the 90° hybrid coupler at 94 GHz was used to perform the system simulations. The coupler was fabricated in a small metal block of brass and good S parameter measurement results were obtained (return loss and isolation above –20 dB and an equal power split of -3.5 dB at 94.8 GHz).
In order to perform relative speed measurements a frequency counter measure the Doppler frequency fD using an output SPD signal, as shown in Fig. 2.
Fig. 3 shows the waveform of a SPD output signal having a period of 100 µs, corresponding to a measured Doppler frequency of 10 KHz. The relative speed of the target v can be obtained using this measured Doppler frequency as follows:
v=c
2f
fD (8)
where c is the speed of the light and f is the frequency of the transmitted CW signal. For a fD = 10 kHz and f = 94.8 GHz, the value of the relative speed is 15.822 m/s.
内容需要下载文档才能查看][V tu.o_VTime [ µs] Fig.3. The waveform of a SPD output signal for fD=10 KHz To obtain the distance to the target system simulations using two properly spaced CW signals f1 and f2, transmitted one after other, were performed. The corresponding phase difference is measured and the distance is obtained using equation (7). For example a maximum unambiguous range of 50 m gives an ?f = 1.5 MHz frequency difference between the two CW signals. In order to obtain a statistical evaluation of distance measurements a distance resolution equal to about the half of the 94 GHz wavelength was chosen and 400
measurements were performed for each measured distance. The dispersion of the measurement results is a
function of the accuracy of the phase measurements using the proposed SPD. Fig. 4 shows the variation of the SPD output voltages over the distance resolution values.
0.0004
V_1 V_4 ][V 0.0003
tuo0.0002
_V0.0001V_3 V_2 0.0000
0.0020Distance resolution [m]
Fig.4. The output voltages vs. the distance resolution values
The ASP uses the four output SPD signals to obtain a phase to voltage conversion. A linear combination between these SPD output voltages is used to provide a low cost implementation of ASP. The conversion result versus the distance resolution is very close to a linear variation, as shown in Fig. 5. 0.4
0.2
f_2 ] [V0.0
V-0.2
f_?f-0.4
0.0020
Distance resolution [m]
Fig.5. The ASP phase to voltage converted signal vs. the distance resolution values (for two CW signals f 1 and f 2).
The imperfect conversion linearity caused by non-ideal couplers determines the spread of the measured distance. Histograms presented in Fig.6 indicate the dispersion of
the measured distance values for a 25 m and 45 m distance to the target, with an acceptable measurement mean square error of 2.8% and 1% respectively. In these measurements, a maximum unambiguous range of 50 m (?f = 1.5 MHz)
内容需要下载文档才能查看was considered.
s
内容需要下载文档才能查看ntemerusaem of .oNDistance to target [m] (a)
sntemerusaem of .oNDistance to target [m] (b) Fig.6. Histograms of measured distance for: a) 25m; b) 45m. Fig.7 shows the mean square error of the measured distance values versus the distance to the target if the maximum unambiguous range is 50 m.
内容需要下载文档才能查看 内容需要下载文档才能查看
Fig.7. The mean square error of the measured distance
In order to decrease the measurement error for the small distances, the difference between the two CW transmitted frequencies must increase. For example, for a 5 m measured distance, the mean square error of measurement is 8.2% if ?f = f1 - f2 = 1.5 MHz (max. range 50 m) and 2.8% if ?f = 7.5 MHz (max. range 10 m) as seen in Fig. 8. Therefore, a good correlation between the maximum range and the measured distance must be considered using an adequate pair of frequencies as shown in equation (7).
s 50
nt?f = 1.5 MHz em40
Max. range = 50 m er
us30a em20 of
.o10N
012345678910
Distance to target [m]
(a) s 50
nt?f = 7.5 MHz
e40Max. range = 10 m mer
u30
s aem20
of 10.o
N0
012345678910
Distance to target [m]
(b) Fig.8. Histograms of 5m measured distance for: a) ?f = 1.5 MHz, b) ?f = 7.5 MHz using non-ideal couplers
Fig.9 shows the mean of the measured distance versus the distance to the target. A number of 400 measurements were considered in each point. The average substantially improves the distance measurements. However, good results were obtained even if a lower number of measurements (between 10 and 100) are performed.
]m [ ecnastid naeM0
10
20
304050Distance to target [m]
Fig.9. The mean of measured distance vs. the distance to the target
VI. CONCLUSIONS
A new low cost prototype of a collision avoidance radar sensor at 94 GHz using a SPD is proposed. The proposed radar sensor uses analog signal processing to obtain relative speed and distance measurements. The relative speed is proportional to the measured Doppler frequency and the distance to the target is proportional to the phase difference between two reflected signals.
The uses of ASP and a passive, linear circuit (SPD) instead of a classical architecture of the receiver determine a considerable diminution of the radar sensor cost. However, size limitations are imposed by the uses of power detectors, connected by standard WR-10 flanges at the machined waveguide SPD circuit.
The system simulations using a SPD model based on a 90° hybrid coupler measurement results are presented. Excellent relative speed measurement results were obtained. Statistical evaluations of the distance measurement results show an acceptable error for this low cost radar sensor.
REFERENCES
[1] A. Stelzer, C.G. Diskus, H.W. Thim “A Microwave Position Sensor with Sub-Millimeter Accuracy”, IEEE MTT, vol.47, no. 12, pp. 2621-2624, December 1999.
[2] I. Gresham and al. “A 76-77 GHz Pulsed-Doppler Radar Module for Autonomous Cruise Control Applications”, IEEE MTT-S, Conf. Proc., vol.3, pp. 1551-1554, 2000. [3] J. Li, K. Wu, R.G. Bosisio “A Collision Avoidance Radar Using Six-Port Phase/Frequency Discriminator (SPFD)”, IEEE MTT-S, Conf. Proceedings, pp.1553-1556, 1994. [4]
C.G. Miguélez, B. Huyard, E. Bergeault, L.P.Jallet “A New Automobile Radar Based on the Six-Port Phase/Frequency Discriminator”, IEEE Transactions on Vehicular Technology, vol. 49, no.4, pp.1416-1423, 2000. [5] G.F. Engen “The Six-Port Reflectometer. An Alternative Network Analyser”, IEEE MTT, vol.25, no.12, pp.1077-1079, December 1977.
[6]
S.O. Tatu, E. Moldovan, G. Brehm, K. Wu, R.G. Bosisio “Ka Band Direct Digital Receiver”, IEEE MTT, RFIC Sp. Issue, vol.50, no. 11, pp. 2436-2442, November 2002.
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 2016考研政治 中国特色社会主义领导核心理论
- 2016 北京外国语大学汉语国际教育硕士考研复习指南、报录比、参考书目
- 2016考研 新闻传播学院校推荐暨南大学
- 清华考研辅导班—清华艺术考研研究生招生专业目录
- 2016中央民族大学汉语国际教育硕士考研复习指南、报录比、参考书目
- 清华考研辅导班—清华新闻与传播考研研究生招生目录
- 清华大学保研—清华法学院保研推荐免试法学硕士拟录取名单公示
- 清华大学保研—清华五道口金融学院保研金融专业硕士项目推免生招生说明
- 清华考研辅导班—清华法律硕士考研法学院拟录取名单
- 2016考研政治 关于水污染防治行动计划
- 2016考研政治单项选择解题方法与技巧
- 清华考研辅导班—清华827电路原理考研电气工程考研专业目录及考试科目
- 2016考研政治 毛泽东思想和中国特色社会主义理论体系概论
- 清华考研辅导班—清华美术学院考研研究生招生专业目录
- 2015考研真题考情分析(数二)
- 清华大学保研—清华核能与新能源技术研究院保研接收外校推荐免试攻读博士(硕士)学位研究生的有关要求
- 2016考研 新闻传播学院校推荐河北大学
- 清华大学保研—清华微电子与纳电子学系保研接收外校推荐免试工作办法
- 2016 北京大学汉语国际教育硕士考研复习指南、报录比、参考书目
- 关于具有自主知识产权的CPK标识认证和可信连接的新互联网通讯规则简介
- 2016考研政治 分析题解题方法与技巧
- 2016考研 新闻传播学名词解释
- 2016考研政治 苏联卫国战争2
- 考研政治大纲怎么复习 复习资料由浅到深把握重点
- 清华大学保研—清华电机工程与应用电子技术系保研接收外校应届生攻读博士学位研究生的有关要求
- 清华大学保研—清华电机系考研系保研接收推免研究生(硕博)办法
- 2016考研政治 长江经济带发展战略
- 2016考研政治 社会主义法律
- 清华考研辅导班—北大金融硕士考研专业目录及考试科目
- 2016考研 如何辨析新闻学与传播学
网友关注视频
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 七年级下册外研版英语M8U2reading
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 小学英语单词
- 冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
- 苏科版八年级数学下册7.2《统计图的选用》
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 北师大版小学数学四年级下册第15课小数乘小数一
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 冀教版小学数学二年级下册第二单元《租船问题》
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 外研版英语三起6年级下册(14版)Module3 Unit1
- 3月2日小学二年级数学下册(数一数)
- 冀教版小学数学二年级下册1
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理