立方块和棒状
内容需要下载文档才能查看 内容需要下载文档才能查看
MaterialsResearchBulletin45(2010)159–164
ContentslistsavailableatScienceDirect
MaterialsResearchBulletin
journalhomepage:http://wendang.chazidian.com/locate/matresbu
Microwave-assistedsynthesisofpalladiumnanocubesandnanobars
YanchunYua,YanxiZhaoa,TaoHuanga,*,HanfanLiua,b,**
KeyLaboratoryofCatalysisandMaterialScienceoftheStateEthnicAffairsCommission&MinistryofEducation,HubeiProvince,CollegeofChemistryandMaterialScience,South-CentralUniversityforNationalities,Wuhan430074,Chinab
InstituteofChemistry,ChineseAcademyofScience,Beijing100080,China
a
ARTICLEINFOABSTRACT
Articlehistory:
Received5June2009
Receivedinrevisedform4September2009Accepted24September2009Availableonline2October2009Keywords:A.Metals
A.NanostructuresB.ChemicalsynthesisC.Electrondiffraction
Microwavewasemployedintheshape-controlledsynthesisofpalladiumnanoparticles.Palladiumnanocubesandnanobarswithameansizeofabout23.8nmwerereadilysynthesizedwithH2PdCl4asaprecursor,tetraethyleneglycol(TEG)asbothasolventandareducingagentinthepresenceofPVPandCTABin80sundermicrowaveirradiation.Thestructuresoftheas-preparedpalladiumnanoparticleswerecharacterizedbytransmissionelectronmicroscopy(TEM),X-raypowderdiffraction(XRD)andultraviolet–visible(UV–vis)absorptionspectroscopy.TheformationofPdBr42ÀduetothecoordinationreplacementoftheligandClÀionsinPdCl42ÀionsbyBrÀionsinthepresenceofbromidewasresponsibleforthesynthesisofPdnanocubesandnanobars.Inaddition,amilderreducingpower,ahigherviscosityandastrongeraf?nityofTEGwerebene?cialtothelargersizesofPdnanocubesandnanobars.
ß2009ElsevierLtd.Allrightsreserved.
1.Introduction
Shape-controlledsynthesisofmetalnanostructureshasbeenpaidmuchattentionfordecadesowingtotheirsize-andshape-dependentproperties[1–5].So,specialnanostructurewithuniformsizeandwell-de?nedshapeisrequiredtoregulatetheirpropertiesforvariousapplications.Asoneofthemoststudiedmetallicnanomaterials,Pdhasattractedmuchinterestforitsapplicationsinmany?elds.Forinstance,ithasbeenwidelyusedasthecatalystsforsomeorganicreactions[6–9],hydrogenation[10,11]andthelow-temperaturereductionofpollutantsexhaustedfromautomobiles[12,13].Pdnanoparticleswerealsousedaselectrocatalystsfordirectalcoholoxidationinalkalinemedia[14–17].Itwasalsousedasacentralcomponentinhydrogensensingduetoitsexceptionalsensitivitytowardhydrogen[18,19].Sincethecatalyticef?ciencyofPdnanoparticleshighlydependsonbothitssizeanditsshape,alotofeffortshavebeendevotedinthepastdecadetosizeandshape-controlledsynthesisofPdnanostructures.
Pdnanoparticleswithvariousmorphologieshavebeenpreparedinthepresenceofsomematerials,suchassurfactants,polymers,coordinatingligand,DNAorRNA,andsometemplates[20–23].Forinstance,polyvinylpyrrolidone(PVP)orsome
*Correspondingauthor.Tel.:+862767842752;fax:+862767842752.
**Correspondingauthorat:CollegeofChemistryandMaterialScience,South-CentralUniversityforNationalities,Wuhan430074,China.Tel.:+862767842752;fax:+862767842752.
E-mailaddresses:huangt6628@http://wendang.chazidian.com(T.Huang),h?iu@http://wendang.chazidian.com(H.Liu).
0025-5408/$–seefrontmatterß2009ElsevierLtd.Allrightsreserved.doi:10.1016/j.materresbull.2009.09.028
alkylammoniumionsarethemostwidelyusedmediatingmaterialstoserveassurface-regulatingagentsorstabilizersinmetallicshaped-nanoparticlesynthesis[24,25].Somehydroxylcompoundssuchaspolyols,citricacid,vitaminC,vitaminBaswellassomealkylaminesoralkanolaminecanbeusedasreducingagentsinreactions.Amongthem,ethyleneglycol(EG)isoneofthemostoftenusedreducingagents.Generally,however,mixstructureswithvariousmorphologiesofPdnanoparticleswereproduced.Forinstance,Pdcolloidalnanoparticlescoexistingwithvariousgeometricshapessuchastriangular,pentagonal,hexago-nal,square,andrhombohedralPdaswellastruncatedcubesoroctahedral,decahedra,andicosahedrawereobtainedbyfastreductionofPdsaltwithmethanol[26]andethanol[27].Pdnanobarsandnanorodscouldbepreparedwithhighyieldsandgooduniformitybyusingamodi?edpolyolprocessinwhich[PdCl4]2ÀwerereducedbyEG[28].Recently,Pdnanoparticleswithnanobelt,nanoplate,andnanotreemorphologieswerereadilypreparedwithPdCl2asstartingmaterials,vitaminB1asareducingagentandwaterasasolvent[29].Thepalladiumsphericalnanoparticles,multitwinnedparticles,andsphericalspongelikeparticlesweresuccessfullypreparedbyasonoelectrochemicalmethodinthepresenceofdifferentsurfactantsorpolymers[30].Pdnanostructuresformedbynanowires,nanoplatesor?ower-likeshapesweresynthesizedbyradiolysisorphotoreduction[31].Fivefoldtwinnednanorodsandrightbipyramidsofpalladiumweresynthesizedinanaqueousmediumwithascorbicacidasthereducingagentandinthepresenceofbromide[21]andsingle-crystalnanocubesandnanobarswerealsoobtained[28].Pdicosahedrawithahighyieldof80%wereselectivelyobtainedinanaqueoussolutionwithcitricacidasareducingagent[32].Sofar,
160Y.Yuetal./MaterialsResearchBulletin45(2010)159–164
however,therehavebeenfewreportsonthesynthesisofpolygonalnanocrystalbymicrowavemethod.
Microwavedielectricheatinghasmanyadvantagescomparedwithconventionalheating,suchaspromptstartup,uniformheating,veryshortheatingtime,easyheatcontrol(onandoff),lowcost,etc.Ithasbeenextensivelyappliedtothesynthesisofmetallicnanostructures[33,34].Inthispaper,microwaveirradiationwasemployedtosynthesizePdnanocubesandnanobarswithtetraethyleneglycol(TEG)asbothareducingagentandasolvent,H2PdCl4asaprecursorandPVP/cetyltrimethylammoniumbro-mide(CTAB)asaco-stabilizer.TheeffectofCTABontheshapeofpalladiumnanoparticleswasalsoinvestigated.2.Experimental2.1.Materials
PVP(averagemolecularweight,Mw=360,000,FlukaChemicals),CTAB,CTAC,palladiumchloride(PdCl2,59.0%)(ShanghaiChemicalsCo.,China),TEG(AcrosChemicals)andotherchemicalswerealloftheanalyticalgradeandusedwithoutfurtherpuri?cation.H2PdCl4ÁnH2OwaspreparedbytreatingPdCl2withconcentratedhydrochloricacidat358C,inwhichthemolarratioofHCl/PdCl2was2/1.H2PdCl4ÁnH2OwasdissolvedinTEGbeforeuseandabrownishredhomogeneousH2PdCl4solutionwasobtained,inwhichtheconcentrationofPd(II)waskeptat0.03molLÀ1.PVP,CTAB,CTAC,KBrandKClwerealsodissolvedinTEGtomakeupacertainconcentrationofthecorrespondingsolutioninTEG,respectively.2.2.PreparationofPdnanocubesandnanobars
Inatypicalsynthesis,1mLof0.03molLÀ1H2PdCl4solution,1mLof0.12molLÀ1PVP(inmonomericunit)solutionand1.0mLof0.12molLÀ1CTABsolutionwereaddedintoa50mLroundbottom?ask.Then,7mLofTEGwasaddedtokeepthe?nalvolumeofthemixtureat10mL.Inthereactionsystem,themolarratioofH2PdCl4/CTAB/PVPwas1/4/4.Afterthoroughmixing,thesolutionwasthenputintoamodi?eddomesticmicrowaveoven(Galanz,900W)andheatedfor80swith100%outputofthepower.Thecolorofthesolutionturnedfrompaleyellowtobrownishblack,andpalladiumcolloidwasobtained.Themicrowaveovenwasmodi?edwithoutchangingthepowerasdescribedasinRef.[34]:awater-cooledcondenseroutsidetheoven’scavitywasconnectedbyaglassjointofaglassround-bottomed?asksetinside.ATe?onstirrerwassetinthe?askandwasdrivenbyamotor.Thepoweroutputwasadjustedbythemicrowavemachinewitharoutineon–offmannerandthetemperaturedidn’thavetobecontrolled.2.3.Characterization
Ultraviolet–visible(UV–vis)absorptionspectraweremeasuredonaLambdaBIO35spectrophotometer.Transmissionelectronmicroscopy(TEM)andhigh-resolutiontransmissionelectronmicroscopy(HRTEM)imagesweretakenonaFEITecnaiG220transmissionelectronmicroscopyoperatedat200kV.Diffracto-gramsofHRTEMwereobtainedbyFouriertransformation.ThesampleforTEMobservationwaspreparedbyplacingadropofthecolloidaldispersionontoacoppergridcoatedwithaperforatedcarbon?lm,followedbyevaporatingthesolventatambienttemperature.Theaverageparticlesizeandthedistributionweredeterminedfromtheenlargedmicrographsonthebasisofthemeasurementofabout300particles.X-raypowderdiffraction(XRD)patternswererecordedonaBrukerD8advanceX-raydiffractometeremployingCuKaradiationwith40kVand50mA.ThemeansizeofPdnanoparticleswasalsoestimatedbyusingtheScherrer’sequation.
3.Resultsanddiscussion
3.1.UV–visabsorptionspectraofthereactionprocess
Fig.1showsthetime-dependentUV–visabsorptionspectrafortheformationofPdnanoparticlesintheabovetypicalsynthesisprocessfrom0to100s.AsshowninFig.1,atthebeginningthereactionsolutionshowedtwostrongcharacteristicabsorptionpeaksataround300and420nm,correspondingtothatofPdCl42Àion.Inaddition,anotherpeakataround530nmforPdCl42Àionwasalsoobservedbuttooweaktoidentify.Itcanbeseenthatwhenthereactionsolutionwasheatedbymicrowaveirradiationfor40s,thecharacteristicabsorptionpeaksofPdCl42Àionreducedobviously.Whenthereactionproceededfor60s,accompaniedbyaslightblue-shift,thepeakat300nmreducedcontinuously,whilethepeakat420nmdisappearedalmostcompletelywithappearanceofasurfaceplasmonscattering,indicatingthataPdcolloidbegantoform.Withincreasingtheirradiationtime,theplasmonscatteringfurtherenhancedduetotheincreaseofPdnanoparticles.Whenthereactionwascontinuouslyirradiatedbymicrowavefor80s,theplasmonabsorptionreachedthemaximum.Eventhoughtheirradiationwasprolongedto100s,theabsorptionwasasthesameasthatfor80s.Thiscon?rmedthatthereactionhas?nishedcompletelyat80s.3.2.TEMcharacterization
Fig.2showsTEMimagesoftheas-preparedPdnanoparticlesintheabovetypicalsynthesis,inwhichtheprecursorconcentrationwas3mmolLÀ1andthemolarratioofH2PdCl4/CTAB/PVPwas1/4/4.Ascanbeseen,uniformandwell-de?nedPdnanocubesandshortnanobarswereobtained(Fig.2a).Theaveragesizewasabout23.8nmbystatisticcalculation.Fig.2bdisplaysatypicalhigh-resolutionTEMimageofasinglePdnanocube.Theinterplanard
spacingisabout2A
?,correspondingtothatofthe{100}latticeplanesoffccPd.TheinsetofFig.2bshowsaFastFourierTransform(FFT)patternoftheselectedPdnanocube.Thepresenceofthetwodistinctspots,correspondingtotheplanesoffccPd,indicatesthattheas-preparedPdnanocubesaresinglecrystallinestructure.3.3.XRDpatternofPdnanocubesandnanobars
TheXRDpatternofthePdnanocubesandnanobarsobtainedintheabovetypicalexperimentisshowninFig.3.FourcharacteristicpeaksofPdat2u=40.58,46.88,68.48,82.38,correspondingtothe{111},{200},{222},{311}latticeplanes,areobserved.Allthediffractionpeakscanbewell-indexedtofccPdaccordingtotheJCPDScardno.00-001-1201,indicatingthattheas-preparedPdnanocubesandnanobarshaveahighpurityandhigh
内容需要下载文档才能查看crystallinity.
Fig.1.UV–visabsorptionspectraofthereactionsystematdifferentstages.
Y.Yuetal./MaterialsResearchBulletin45(2010)159–164161
Fig.2.TEMandhigh-resolutionTEMimagesofPdnanoparticles.(a)TEMimage,theinsetarrowsshowsomeofthenanobars;(b)HRTEMimage,theinsetisafastFouriertransform(FFT)patternoftheselectedPd
内容需要下载文档才能查看nanocube.
TheaverageparticlesizeisestimatedbytheScherrer’sequationtobeabout23.6nm,whichisexcellentlyconsistentwiththeobservationbyTEM.3.4.EffectofCTABandPVP
ItisnoteworthythatanappropriateamountofCTABandPVPplaysanimportantroleincontrollingthemorphologiesofthe?nalPdnanoparticles.Fig.4showsTEMimagesofPdnanoparticleswithdifferentamountsofCTABandPVP.AsshowninFig.4a,anobviousagglomerationwasobservedwithouttheadditionofPVPwhentheotherconditionswerekeptthesameasthatintheabovetypicalexperimentinwhichtheprecursorconcentrationwas3mmolLÀ1andH2PdCl4/CTABmolarratiowas1/4.Whenthereactionsystemcontained12mmolLÀ1ofPVP,inwhichthemolarratioofH2PdCl4/CTAB/PVPwas1/4/4,Pdnanocubesandnanobarswithuniformsizeandwelldispersionwereobtained,asshowninFig.4b.However,whentheconcentrationoftheprecursorandPVPwaskeptunchanged,themorphologiesofPdnanoparticlesvariedwiththeconcentrationofCTAB.AsshowninFig.4candd,mixstructureswithvariousmorphologiesofPdnanoparticleswereproducedwhenthemolarratioofH2PdCl4/CTAB/PVPwas1/3/4and1/10/4,respectively.ItwasfoundthattheabsenceofeitherPVPorCTABinthereactionsystemwouldhardlyproducePdnanocubesandnanobars.TheseresultsshowthattheformationofPdnanocubesandnanobarsdependsonthecoexistenceofCTAB
Fig.3.XRDpatternofthetypicalPdnanocubesandnanobars.
andPVP.WhenPVPconcentrationwas12mmolLÀ1,themostappropriaterangeofCTABconcentrationforthecontrolsynthesisofPdnanocubesandnanobarswas12–24mmolLÀ1.Inotherword,themostappropriaterangeofthemolarratioofH2PdCl4/CTAB/PVPwas1/4/4to1/8/4.
ThesynthesiswastypicallyconductedundermicrowaveirradiationinTEGwithH2PdCl4asaprecursorinthepresenceofPVPandCTAB.TEGservedasbothasolventandareducingagent.NodoubtPVPplaysanimportantroleincontrollingthemorphologiesof?nalPdnanoparticles.ThePVPnotonlyservesasacolloidalstabilizertoeliminaterandomagglomeration,butalsodirectstheparticlestogrowintothewell-de?nedshapesduringthesynthesis[32].ItiswellknownthatCTABiswidelyusedasashapecontrollerinnanostructuresynthesis.Nevertheless,Prof.Xia’sgrouphascon?rmedthatbromideplayedacriticalroleintheformationofPdnanobarsandnanorods[28].TheydemonstratedthatbromidecanchemisorbontothesurfaceofPdseedsandaltertheorderofsurfacefreeenergiesfordifferentfacetssotheformationof{100}surfacecanbegreatlypromotedtogeneratenanocubesandnanobars.Tofurtherunderstandourexperimentalresults,weusedKBr,CTAC,andKClinsteadofCTAB,respectively,inthesamereactionsystemunderthesamecondition.Fig.5a–dshowstheTEMimageoftheas-preparedPdcolloidcorrespondingtoCTAB,CTAC,KBr,andKClsystem,respectively.Obviously,theshapesoftheas-obtainedPdnanoparticlesforCTACsystem(Fig.5b)aredifferentfromthatofCTABsystem(Fig.5a).ThecooperationofCTACandPVPresultedintheformationofanicosahedralPdnanostructure,whichillustratesahexagonalshapeunderTEM,asshowninFig.5b.SimilarresultswerealsoobservedforKBrandKClsystem.Asitcanbeseen,PdnanocubesandnanobarswerealsoobtainedforthereactionsystemwithKBr(Fig.5c)insteadofCTAB,whilePdicosahedrawereobtainedforthatwithKCl(Fig.5d)insteadofCTAC.SynthesisinthepresenceofeitherCTABorKBrallgeneratednanocubesandnanobars,whilethatintheabsenceofbromideorinthepresenceofchloridemainlyproducedicosahedra.SinceCTABandCTAC,aswellasKBrandKCl,haveasamecation,thedifferenceinthemorphologyofPdnanoparticlescanbeattributedtotheirdifferentcounterions,BrÀandClÀ,respectively.ThustheformationofPdnanocubesandnanobarsshouldbeascribedtotheexistenceofBrÀanions.
IthasbeenreportedthatPdCl42Àionisnottherealprecursorspeciesinthereductionprocess[35].Ithasbeenprovedthatthemajorfunctionofbromideinthesynthesisisitschemisorptiononnanocrystalsurfaceanditalsocontributedtotheslow
内容需要下载文档才能查看reduction
162Y.Yuetal./MaterialsResearchBulletin45(2010)159–164
Fig.4.TEMimagesofPdnanoparticleswithdifferentamountsofCTABandPVP.(a)H2PdCl4/CTAB=1/4,withoutPVP;(b)H2PdCl4/CTAB/PVP=1/4/4;(c)H2PdCl4/CTAB/PVP=1/3/4;(d)H2PdCl4/CTAB/PVP=1/10/4.Inallcases,theconcentrationoftheprecursorwas3mmolLÀ1.
duetotheformationofamorestablecoordinatedanionPdBr42Àinthereactionsystemaftertheadditionofbromide.ThepotentialofH2PdCl4islowerthanthatofH2PdBr4.Theadditionofbromidereducedthepotentialofpalladiumionsothatcouldreducethereductionrate.Torealizetheeffectofthecoordinationreplace-mentonthereductionrateandnanocrystalgrowthundermicrowaveirradiation,UV–visabsorptionspectroscopywasemployed.Fig.6showstheUV–visabsorptionspectraofthepalladiumprecursorinTEGwithdifferentadditives.TwocharacteristicabsorptionpeakscorrespondingtothoseofPdCl42Àionwereobservedat260and340nmforH2PdCl4solutioninTEGwithoutanyotheradditiveduetotheligandmetalchargetransfer.Moreover,thoughPVPandCTAC(orKCl)wasintroducedintotheH2PdCl4-TEGsolution,notanychangeoftheabsorptionbandswasobserved.However,whentheH2PdCl4-TEGsolutioncontainedPVPandCTABorKBrwiththesameconcentration,theabsorptionbandsenhancedandaredshiftoccurred.Thetwoligandmetalchargetransferpeaksareshiftedto300and420nm,respectively,andtheredshiftisindependentonPVPforthesameamountofCTABandKBr.TheredshiftoftheabsorptionbandscanbeattributedtothechangeofthepalladiumcomplexfromligandClÀtoligandBrÀ.Inotherword,achangeofthecoordinationbondorligandincoordinatedpalladiumiontookplace.TheseresultsdemonstratedthatthecoordinatedionPdBr42ÀwasformedduetothecoordinationreplacementoftheligandClÀionbyBrÀionafter
theadditionofbromide,whiletheadditionofCTACorKCldidnotbringaboutanychangeofligand.Inaddition,thesameredshiftoftheabsorptionbandforCTABandKBrsystemsindicatesthatthepeakshiftisindependentontheformationofsurfactant-PdBr42ÀcomplexduetotheinteractionbetweensurfactantandPdBr42À,buttheformationofcoordinatedionPdBr42À.ThisresultisconsistentwiththeTEMobservationofsimilarnanocubesandnanobars(Fig.5aandc)forboththeCTABandKBrsystems.Thatistosay,theformationofthePdnanocubesandnanobarsdependsonthereductionkineticsandadsorptionofkineticsoftheBrÀionsonthesurfaceofgrowingPdnanoparticles.TheformationofthecoordinatedionPdBr42Àreducestheredoxpotentialaswellasthereductionrate,whilethepreferentialadsorptionofBrÀionsonthesurfaceofgrowingPdnanoparticlespromotestheformationof{100}facets.ThisisinagreementwiththereportsbyXia’sgroup[21,28].
Furthermore,itwasfoundthatthered-shiftdistancewasdependentontheconcentrationofbromide.Withtheincreaseofthebromide,thecharacteristicpeaksat260and340nmshiftedgraduallyto300and420nm,asshowninFig.7.WhenthemolarratioofH2PdCl4/KBrwas1/4,withcontinuouslyincreasingtheamountofKBr,theredshiftbecameunobvious.Thismeantthe4-foldBrÀionscansubstitutemostClÀionsinthePdCl42ÀionstoformPdBr42Àions.SimilarphenomenonwasobservedforCTABinsteadofKBr.Thusascanbeseen,theeffectofCTABorKBrcomesfrom
内容需要下载文档才能查看the
Y.Yuetal./MaterialsResearchBulletin45(2010)159–164163
Fig.5.TEMimagesofPdnanoparticles.(a)H2PdCl4/CTAB/PVP=1/4/4;(b)H2PdCl4/CTAC/PVP=1/4/4;(c)H2PdCl4/KBr/PVP=1/4/4;(c)H2PdCl4/KCl/PVP=1/4/4.Inallcases,theconcentrationoftheprecursorwas3mmolLÀ1
内容需要下载文档才能查看.
formationofBrcomplex.ThefunctionofCTABorKBrisjusttoforma
morestableBrcomplextolowertheredoxpotential.Theseresults
con?rmthattheformofprecursorisimportantindeterminingthe
morphologyofPdnanoparticles,andalsoexplainthatwhythe
uniformPdnanocubesandnanobarsproducedonlywiththemolar
Fig.6.UV–visabsorptionspectraofthepalladiumprecursorinTEGwithdifferent
additives.(A)H2PdCl4;(B)H2PdCl4+PVP;(C)H2PdCl4+PVP+CTAC;(D)
H2PdCl4+PVP+KCl;(E)H2PdCl4+PVP+KBr;(F)H2PdCl4+PVP+CTAB;(G)
H2PdCl4+CTAB;(H)H2PdCl4+KBr.Allcontain0.3mmolLÀ1ofH2PdCl4.ratioof1/4/4to1/8/4ofH2PdCl4/CTAB/PVP.ThoughthecompletesubstitutionofallchlorideinthePdCl42Àionsneeds10-foldBrÀions[35],anappropriatelylowconcentrationofbromideismorefavorablefortheformationofsingle-crystalnanocubesandnanobars[28].Inthepresentcase,4-to8-foldBrÀionsaresuitableforPdnanocubesandnanobars.TheseUV–visabsorptionchar-acteristicsareconsistentwiththeTEMobservation.Inaddition,TEGmaybeanotheressentialfactorfortheshape-andsize-controlofPdnanocubesandnanobars.ItwasfoundthatPdnanocubesandnanobarswithmono-morphologyandwelldispersionwerenotobtainedifEGwasusedasasolventandareducingagentinsteadofTEGunderthesameconditions.Thereasonmaybeascribedtothestructure,viscosityandreducingabilityofTEG.Firstly,TEGhasfourethylene-oxygenunitswhichdemonstrateacertainaf?nityformetalionsandmetalnanopar-ticlessothatitcanbeadsorbedonthesurfacesofPdparticlesmorestronglythanEG[36,37].Secondly,TEGhasahigherviscosity(208C,59cPs)thanEG(208C,22.1cPs)[38].Thirdly,TEGhasweakerreducingpowerthanEG[39],thoughitalsohastwoterminalhydroxylgroupssimilartoEG.BothamilderreductionandahigherviscosityofTEGwouldslowdownthenucleationrateandthegrowthrateofPdnanoparticles,andmaybebene?cialtothelargersizesofPdnanocubesandnanobars,whereasthestrongeraf?nityisbene?cialtostabilizingthedispersionofPd
内容需要下载文档才能查看nanoparticles.
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 37女生节活动策划书
- 《倚天屠龙记》中黄衫女子的是谁的后人
- 预备党员思想汇报
- 如何解决老员工消极怠工问题?
- 2016年预备党员思想汇报(九)
- 2016年预备党员思想汇报(五)
- 中小民营企业要如何构建自己的企业文化
- 2016年大学生两会思想汇报
- 能让企业文化落地生根的4条路径
- 最新入党转正申请书
- 预备党员转正的考察材料汇报
- 建设自己的企业文化的措施有哪些
- 2016年预备党员思想汇报(二)
- 华为技术面试流程及常问问题
- 2016年预备党员思想汇报(三)
- 预备党员思想汇报
- 入党转正申请书(一)
- 企业文化和品牌文化如何建设
- 2016年预备党员思想汇报(十)
- 优秀企业文化应具备的特征
- 女生节晚会活动策划及总结
- 最新预备党员思想汇报
- 2016年预备党员思想汇报(十六)
- 如何做好企业培训?
- 入党转正申请书
- 优秀的企业文化是企业凝聚力的来源
- 企业文化管理的新趋势
- 幼儿园教育应该关注哪类知识?
- 带出最好团队的8条原则
- 2016年预备党员思想汇报(十二)
网友关注视频
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 冀教版英语五年级下册第二课课程解读
- 七年级下册外研版英语M8U2reading
- 外研版英语三起6年级下册(14版)Module3 Unit1
- 《空中课堂》二年级下册 数学第一单元第1课时
- 人教版二年级下册数学
- 七年级英语下册 上海牛津版 Unit5
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 外研版英语七年级下册module3 unit2第一课时
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 外研版英语七年级下册module3 unit2第二课时
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
- 冀教版英语四年级下册第二课
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理