EstimationMulti Frequency Hopping Signals Based on Compressive Spatial Time-frequency Joint Analysis
上传者:龚锦龙|上传时间:2015-04-26|密次下载
EstimationMulti Frequency Hopping Signals Based on Compressive Spatial Time-frequency Joint Analysis
Parameter Estimation of Multi Frequency Hopping
Signals Based on Compressive Spatial
Time-frequency Joint Analysis
Chunlei Zhang
I.T. Institute of Zhengzhou Zhengzhou, Henan Province, China
chunlei927@http://wendang.chazidian.com
Abstract—In order to estimate the parameters of multi Frequency-Hopping(FH) signals in the condition of non-cooperation and overcome the bottleneck of huge data processing, a parameter estimation method based on compressive saptial time-frequency joint analysis is proposed. First the arbitrary compressive array structure is analyzed, then based on this structure we propose a method to estimate the direction of arrivals (DOAs) with only a small number compressive samplings by exploiting the spatial sparsity of multi FH signlas. Then by exploiting the sparsity in frequency domain, a spectrogram estimation algorithm is proposed by using the same compressive sampling. Simulation results show that this algorithm can effectively estimate multi Frequency-Hopping signals’ DOAs and specrtograms with a tiny samplings. This algorithm is lower in computation complexity, and can be very practical in real-time Frequency-Hopping signal processing.
Keywords-Compressive sensing; Parameter estimation; Multi Frequency-Hopping signal; Spatial time-frequency joint analysis
Lichun Li
I.T. Institute of Zhengzhou Zhengzhou, Henan Province, China
leetracy@http://wendang.chazidian.com
original FH signal, which can greatly reduce the computation complex and computation time. However, some prior parameters, such as hop period have to be known, which can be a limitation in practical using. References [4]-[6]have studied the compressive beaming method for far field acoustic signal , but only spatial sparsity is taken into consideration.
Inspired by all these work listed above, this paper investigates a new joint parameter estimation method for FH signals based on compressive spatial time-frequency(CS-STF) analysis, i.e. DOAs of multi FH source signal and carrier frequencies without any prior knowledge. This method has several advantages over traditional approaches, since these traditional methods require Nyquist sampling at the array sensors while CS-STF just needs a few compressive samplings. Simulations show that this proposed algorithm can greatly reduce the amount of data, and solve the computation time.
II.
BACKGROUND OF COMPRESSIVE SENSING
The theory of CS[7]-[9] was first introduced by Candès, Tao and Donoho in 2004, published in 2006. According to this theory, any sparse signal or compressive signal can be sampled by a much lower rate than Nyquist sampling theorem and be reconstructed by nonlinear optimal algorithms. So CS consists of three aspects: the sparse representation of signal, the linear projection of the signal and the reconstruction of the origin signal.
A. Sparse representation
Consider a finite-length, discrete-time signalx, which can be seen as a N?1vector with elementsx?n?,
I. INTRODUCTION
With a lot of advantages such as high security, good anti-jam performance and low probability of interception, Frequency Hopping (FH) signal has been widely used in many key areas, especially in military field. Therefore, parameter estimation of FH signal becomes more and more important such as the direction of arrivals (DOAs) and spectrogram. The most common used methods to estimate the DOAs include multiple signal classification[1] (MUSIC), ESPRIT[2] and other method like Root-MUSIC. And the most common methods to estimate the spectrogram is to use short time Fourier transform (STFT),Wigner Ville distribution (WVD), wavelet transform and so on. But all this methods listed above have the same disadvantage that the source signal should be acquired at the Nyquist rate at each array, which can be great pressure on analog-to-digital convertor(ADC) since the frequency range of FH signal has a trend of becoming large and large.
To overcome this disadvantage, a new theory called compressive sensing (CS) has been proposed to reduce the sampling cost, since CS can sample the sparse or compressive signals at a sampling rate far below than the Nyquist sampling rate .So we can use CS technology to sample the FH signal since FH is a sparse signal in a certain hopping period. Reference [3] have studied the estimation of FH signal just with the compressive measurement, without reconstructing the
n?1,2,,N.Using a N?N basis matrix Ψ???1?2to represent the signalx, so it can be expressed as ?
x??siψi
i?1N
?N?
orx?Ψs?????
Wheresis the coefficient vector consist weightsi?x,ψi, and the ?1?2?Ncan be some basis vectors or some frames. The key point of spare representation is that if onlyKof the si coefficients are nonzero and the other ?N?K? are zero, then we can say that signal x is compressible or K-sparse.
____________________________________978-1-4799-3279-5 /14/$31.00 ©2014 IEEE
549
B. Linear Projection Consider a M?N
matrix whose rows are
???
j
Mj?1
?
(M?N), process some linear projection
?cos ssin?s?1T?
?i??s???i?sin ssin?s???c
??cos?s??
????
asyj?x,?j. Arrange the measurement vectorsyj in a
M?1 vectory. Then y can be written as
?
y?Φs??????
Here the coherence between matrix Φand Ψmust be
small, in other words, the matrix Φ must obey the restricted isometry property (RIP). In fact, form Φ by I.I.D. entries from the normal distribution or symmetric Bernoulli distribution obeys the RIP with overwhelming probability. C. Signal Recovery
If the RIP holds, then the recovery of signal can be seen as a problem like this: ?
Since different DOAs of the source can lead to different time delays compared with the signal received at the origin sensor, so we discretize to produce a bearing-angle dictionary and can get a sparse representation in this dictionary at each sensor. Generate a set of Nangles pairs????1,?2,,?N?, and Ndetermines the angle domain resolution. Let bdetermines the bearing pattern,so the signal received at sensor i?i can be expressed as: ?
?i?Ψib?
??1??i???i?t0?,?i?t0??,
Fs????
?N?1??
,?i?t0?t???
Fs????
T
????
?????
minxN
x?R
l0
subjecttoΦx?y??????
Where Fsrepresents the Nyquist sampling rate, each column
of Ψi represents the different time delay signal of souce
There are two main recovery methods, one is the Orthogonal Matching Pursuit (OMP)[10] and other methods based on OMP, the other is to convert the problem tol1norm minimization[11] and use convex optimization to solve it. Both of the methods need large number of computations, so if we can find some method which can directly deal with compressive samplingsyto detect weather x exists or not without reconstructing original signalx, a lot of computation burden can be saved.
III. PARAMETER ESTIMATION OF FH SIGNAL BASED ON
CS-STF A. Single FH signal estimation model
Suppose there are Ldifferent sensors and the sensors’ positions are assumed known and given by
T
?i??xi,yi,zi?,i?1,2,,L. If there is a known signal s?t? far from this array, then the ith sensor receives a time-delay and attenuated version of s?t?: ?Where
s?t?corresponding to the angle-pair ?j:
?
?Ψi?j
'
??st0??i??j?,?
??
,st
?
'K?1
??i??j??
???
T
????
Where t'?t?
R
.The sampling rate Fs is typically high c
since FH signal can be seen as a wide-band signal, and there is huge date to be processed. So, we proposed a new data sampling model based on CS which can lower the sampling rate effectively. Let the matrix Φibe the compressive sensing matrix at the ith sensor, then the compressive samplings received at the ith sensorβican be written as:
?
βi?Φi?i?ΦΨiib?
????
?i?t???s?t??i??s??
?
?R???c?
????
For all the Ldifferent sensors, the sparsity pattern of beaming estimation can be solved byl1 minization problem: ?Where
??argminbs.t.Ab?β?bTβ????1,T
T
?,?L?
T
?????and
? denotes the attenuation factor and kept
constant,?s?? s,?s?represents the DOA of s?t?( srepresents the angle with Zaxis,?srepresents the angle
,,ΦL?.
A?ΦΨ
with Xaxis),Ris the distance from the signal source to the array,cis the signal transmitting speed ,?i??s? is the relative time delay at the ith sensor with bearing ?s compared with the origin of the array. From the geometry aspect we can conclude that the relationship between time delay ?i??s? with ?s:
TT
?Ψ=?Ψ,,Ψ1L??, Φ=diag?Φ1,
When s?t?is unknown to us, sensor should sample the signal
at the Nyquist rate or even higher, this high-rate sensor’s location should be seen as the origin of this array, while the other sensors can sample the signal at a lower sampling rate required by CS theory.
550
When we take noise into consideration , (10) can be written as: ?
??argminbs.t.AT?β?Ab?b?
??1?
?????
(11),only the large terms inAT?andATAbbe cancelled can
statisty this condition. With these assumptions, the two largest elements inAT?occur when ?n??1and?n??2. So inATAbwhen?n??1,that is ?r??1in
Where ?1 represents the noise level. The optimization problem (11) can be solved by Dantzig selector[12]。 B. Multi FH signals estimation model
Suppose there is another far-field FH signals2?t?,and its’ bearing is ?2,these two signals are not relative. So the signal received at the reference sensor is: ?
b
,the term
R11??i??n?,???1??in AT? can be canceled;Likewise
when ?n=?r??2, the term R22??i??n?,???1?? in
AT? can also be canceled[6].
All in all, by optimization method Dantzig selector we can solve the DOAs estimation problem of multi FH signals with a tiny compressive samplings.
Since FH signals is sparse in frequency domain in specific time which is far short than one hopping period, so we can get: ?
?0?t??s1?t??s2?t??
A possible scenario is shown in Fig.1:
内容需要下载文档才能查看?????
β=ΦΨfx?
?????
Where Ψf is a discrete Fourie basis,xdenotes the sparse cofficients of FH signal in frequency domain which can be estimate the carrier frequency of multi FH signals,we can use OMP to estimate its spectrogram.
For multi frequency hopping signal based on compressive signals, we can use that the the sparsity of array compressive signals in the spatial and frequency domain is the same, so combine (11) and (16) we can get:
?
Figure 1. A model for compressive beamforming
Suppose the two signals have the same amplitude, then the signal received at ith sensor is: ?
?b??argminbs.t.AT?β?Ab?
?
?
??argminx?0s.t.β=ΦΨfx??x?
?=x?0b?0?
?
??1
?
?????
?i?t??s1?t??i??1???s2?t??i??2???
?????
Where ?i??1?and?i??2?represents the time delay for signal bearing ?1and?2at ith sensor。AT?andATA are usually
auto- and cross-correlations, For AT?, the nth element is:
Convex optimization and OMP algorithm are used to
?andx?,to get the DOAs and estimate the parameter b
spectrogram of multi FH signals.
IV. SIMULATION RESULTS AND ANALYSIS
A. DOAs estimation for multi FH signals
In this section, we compare our method with traditional DOA estimation method, MUSIC. We adopt a total of L?8 uniform linear array with an RS sensor added at the origin with a Nyquist sampling rate Fs=100MHz,while the other sensor working at the compressive sampling rate Fc?Fs/8?12.5MHz, and the sensor space d?60m.The source FH signals are placed at 31o and 142o,the SNR at each source is 10dBand their hoping rang is between 12.5MHzand 37.5MHz. Compared the proposed CS-STF algorithm with MUSIC, and the angle domain resolutionN?180, and the simulation results are as follows:
?
R11??i??n?,???1???R12??i??n?,???2???R12??i??n?,???1???R22??i??n?,???2??
??????
For ATA,the element in nth row and rth column is:
?
R11??i??n?,???r???R12??i??n?,???r???R12??i??n?,???r???R22??i??n?,???r??
??????
Since s1?t?ands2?t?are not relative,the corss correlation R12?,
? is very small. Then we examine the constraint in
551
内容需要下载文档才能查看
DOA(°)
that is to say the compressive sampling contains more
information about original signal, so we can get a more accurate results by using CS-STF; When the SNR increases, the OMP has a higher probability to choose the exact coefficient in frequency domain, so CS-STF can also get a more accurate spectrogram estimation.
V.
CONCLUSION
Based on CS, this paper presents a new FH signal estimation method only with a tiny number of compressive measurements. This algorithm (CS-STF) fully exploits the sparse property in spatial and frequency domain of the FH signal. What’s more, as we only use the time delay of reference sensor, the geometry of the array can be arbitrarily, which is more flexible in practical using. Meanwhile, as only using the compressive samplings, the proposed method can greatly reduce the estimation complexity and time.
REFERENCES
[1] Schmidt R O. Multiple emitter location and signal parameter estimation.
Antennas and Propagation, IEEE Transactions on, 1986, 34(3): 276-280. [2] Capon J. High-resolution frequency-wavenumber spectrum analysis.
Proceedings of the IEEE, 1969, 57(8): 1408-1418.
[3] Yuan J, Tian P and Yu H. “Subspace compressive frequency estimation
of frequency hopping signal.” Wireless Communications, Networking and Mobile Computing, 2009. WiCom'09. 5th International Conference on. IEEE, 2009: 1-4.
[4] Gurbuz A C, McClellan J H and Cevher V. “A compressive
beamforming method. Acoustics,” Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on. IEEE, 2008: 2617-2620.
[5] Cevher V, Gurbuz A C, McClellan J H and Chellappa R. “Compressive
wireless arrays for bearing estimation.” Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on. IEEE, 2008: 2497-2500.
[6] Gurbuz A C, Cevher V and McClellan J H. “Bearing estimation via
spatial sparsity using compressive sensing.” Aerospace and Electronic Systems, IEEE Transactions on, 2012, 48(2): 1358-1369. [7] Candès E and Tao T. “Near-optimal signal recovery from random
projections: Universal encoding strategies ?” .IEEE Transactions on Information Theory, Vol.52(2006), No.12,p: 5406-5425. [8] Candès E. “Compressive sampling.” Proceedings of the International
Congress of Mathematicians, Madrid, Spain, August 22-30, 2006, 3, 1433-1452. [9] Candès E, Romberg J, and Tao T. “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information.” IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
[10] Tropp J A and Gilbert A C. “Signal recovery from random
measurements via orthogonal matching pursuit. Information Theory,” IEEE Transactions on, Vol.53(2007),No.12,p. 4655-4666.
[11] Candes E J and Tao T. “Decoding by linear programming.” Information
Theory, IEEE Transactions on, Vol.51(2005), No.12, p. 4203-4215.
[12] Candes E and Tao T. “The Dantzig selector: Statistical estimation when
p is much larger than n.” The Annals of Statistics, 2007: 2313-2351.
Figure 2. The DOA estimation for MUSIC and CS-STF algorithm
In Fig.2,MUSIC take 256 measurements at Nyquist rate, while CS-ST only take 16 measurements. In CS-STF, each using random measurement matricesΦ?Φ?CM?N? for each sensor drawn independently from I.I.D N?0,1?. Note that the CS-STF algorithm’s results are sparse compared with MUSIC as expected since CS-STF use the characteristic that FH signals is sparse in spatial.
B. Spectrogram estimation for multi FH signals
Using the same array structure as listed above, we estimate the spectrogram of two frequency-hopping signals Fh1 and Fh2. Fh1 and Fh2 are both working at the frequency band 12.5MHzand 37.5MHzand modulated by FSK, and the minimum frequency interval is 2.5MHz. The hopping rate is 2000 hop/s and 4000 hop/s. As shown in Fig. 3,we can get the spectrogram estimation under different SNRs and compression rate. The hopping frequency collection of Fh1 is ?35MHz,30MHz?,and the hopping collection of FH2 is
37.5MHz,15MHz?, the observation time is ?37.5MHz,20MHz,
1ms.
内容需要下载文档才能查看(A)
内容需要下载文档才能查看(B)
内容需要下载文档才能查看frequency(MHz)
time(ms)
内容需要下载文档才能查看frequency(MHz)
time(ms)
frequency(MHz)
time(ms)
frequency(MHz)
time(ms)
Figure 3. different spectrogram estimation results under different SNRs and M/N.(A)SNR=-5dB,M/N=0.25;(B)SNR=0dB,M/N=0.25;(C)SNR=-5dB,M/N
=0.125;(D)SNR=0dB,M/N=0.125
From Figure 3. , as the M/N increase, the CS measurement matrix Φ has a higher probability to satisfy the RIP condition,
552
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 2009年报关员资格全国统一考试模拟试卷
- 报关员资格全国统一测验应试规矩[优质文档]
- 2013年中级会计职称《经济法》考试大纲
- 2007年报关员考试培训班讲义练习题
- 2009年报关员资格考试模拟试题
- 报关员资格全国统一考试模拟试卷20089246105219281
- 我的医考之路--追逐梦想的医者
- 2010年报关员资格测验纲目[精华]
- 2006年报关员资格全国统一模拟考试试卷二
- 2012年第58期报关员报关业务岗位考”成绩合格人员登_21090
- 2012江苏会计从业资格无纸化考试-财经法规与会计职业道德考点精讲及归类题库
- 2006年报关员资格考试真题试题及答案解析(单选题)
- 山东省会计从业资格考试《初级电算化》试题汇总
- 2009年报关员考试综合实务强化练习
- 2012报关员考试内容
- 2011年报关员考试真题试卷及答案一
- 2008年报关员资格全国统一测验猜测试题[精品]
- [资料]2012年报关员资格全国统一测验教材第四章
- 2015报关员资格考试真题汇总 (5)
- 报关员资格测验温习建议[优质文档]
- 武进会计培训简介
- 2008年报关员资格全国统一测验全真模拟试卷52835[教学]
- 2008年报关员资格全国统一测验演习题05760[教学]
- 2011年报关员考试基础强化练习题及答案(7)
- 2010年报关员资格考试模拟
- 2012年报关员资格考试特点及其学习方法(7月版)
- 2010报关员测验纲目64115[资料]
- 2014年报关员考试复习指南考试大纲及考前预测模拟试题
- 2011年报关员资格考试第4类商品归类
- ★《2010年报关员资格全国统一考试大纲》(二)
网友关注视频
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 小学英语单词
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 北师大版小学数学四年级下册第15课小数乘小数一
- 七年级下册外研版英语M8U2reading
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 冀教版小学数学二年级下册1
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 外研版英语三起6年级下册(14版)Module3 Unit2
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 《空中课堂》二年级下册 数学第一单元第1课时
- 外研版英语七年级下册module3 unit2第二课时
- 冀教版小学英语四年级下册Lesson2授课视频
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 六年级英语下册上海牛津版教材讲解 U1单词
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理