数学论文_英文翻译
内容需要下载文档才能查看
毕业设计(论文)附录
(翻译)
课 题 名 称 一些周期性的二阶线性微分方程解的方法
学 生 姓 名 万 益
目 录
1.毕业设计(论文)附录(翻译)英文
2.毕业设计(论文)附录(翻译)中文
2014年 5月25日
Some Properties of Solutions of Periodic Second Order
Linear Differential Equations
1. Introduction and main results
In this paper, we shall assume that the reader is familiar with the fundamental results and the stardard notations of the Nevanlinna's value distribution theory of meromorphic functions [12, 14,
(f)and (f)to denote respectively the order 16]. In addition, we will use the notation (f),
of growth, the lower order of growth and the exponent of convergence of the zeros of a meromorphic function f, e(f)([see 8]),the e-type order of f(z), is defined to be
e(f) limlogT(r,f) r r
Similarly, e(f),the e-type exponent of convergence of the zeros of meromorphic function f, is defined to be
log N(r,1/f) e(f) lim r r
We say thatf(z)has regular order of growth if a meromorphic functionf(z)satisfies
(f) limlogT(r,f) r logr
We consider the second order linear differential equation
f Af 0
Where A(z) B(e z)is a periodic entire function with period 2 i/ . The complex oscillation theory of (1.1) was first investigated by Bank and Laine [6]. Studies concerning (1.1) have een carried on and various oscillation theorems have been obtained [2{11, 13, 17{19]. WhenA(z)is rational in e,Bank and Laine [6] proved the following theorem
Theorem A LetA(z) B(e z)be a periodic entire function with period 2 i/ and rational in e z z.IfB( )has poles of odd order at both and 0, then for every solutionf(z)( 0)of (1.1), (f)
Bank [5] generalized this result: The above conclusion still holds if we just suppose that both and 0are poles ofB( ), and at least one is of odd order. In addition, the stronger conclusion
log N(r,1/f) o(r) (1.2)
holds. WhenA(z)is transcendental ine, Gao [10] proved the following theorem
Theorem B Let B( ) g(1/ ) jb j 1j,whereg(t)is a transcendental entire function p z
zwith (g) 1, p is an odd positive integer andbp 0,Let A(z) B(e).Then any
non-trivia solution fof (1.1) must have (f) . In fact, the stronger conclusion (1.2) holds.
An example was given in [10] showing that Theorem B does not hold when (g)is any positive integer. If the order (g) 1 , but is not a positive integer, what can we say? Chiang and Gao [8] obtained the following theorems
zTheorem C Let A(z) B(e),whereB( ) g1(1/ ) g2( ),g1andg2are entire
functionsg2transcendental and (g2)not equal to a positive integer or infinity, andg1arbitrary. (i) (g2) 1. (a) If f is a non-trivial solution of (1.1) with e(f) (g2);
thenf(z)andf(z 2 i)are linearly dependent. (b) Iff1andf2are any two linearly independent solutions of (1.1), then e(f) (g2). Suppose
(g2) 1 (a) If f is a non-trivial solution of (1.1)
with e(f) 1,f(z)andf(z 2 i)are linearly dependent. Iff1andf2are any two linearly independent solutions of (1.1),then e(f1f2) 1.
Theorem D Letg( )be a transcendental entire function and its order be not a positive integer or (ii) Suppose infinity. LetA(z) B(e z); whereB( ) g(1/ ) pjb and p is an odd positive jj 1
integer. Then (f) or each non-trivial solution f to (1.1). In fact, the stronger conclusion (1.2) holds.
Examples were also given in [8] showing that Theorem D is no longer valid when (g)is infinity.
The main purpose of this paper is to improve above results in the case whenB( )is transcendental. Specially, we find a condition under which Theorem D still holds in the case when (g)is a positive integer or infinity. We will prove the following results in Section 3.
Theorem 1 Let A(z) B(e),whereB( ) g1(1/ ) g2( ),g1andg2are entire functions withg2transcendental and z (g2)not equal to a positive integer or infinity, andg1arbitrary. If Some properties of solutions of periodic second order linear differential equationsf(z) and f(z 2 i)are two linearly independent solutions of (1.1), then
e(f)
Or
e(f) 1 (g2) 1 2
We remark that the conclusion of Theorem 1 remains valid if we assume (g1)
is not equal to a positive integer or infinity, andg2arbitrary and still assumeB( ) g1(1/ ) g2( ),In the case wheng1is transcendental with its lower order not equal to an integer or infinity andg2is arbitrary, we need only to consider B*( ) B(1/ ) g1( ) g2(1/ )in0 , 1/ .
Corollary 1 LetA(z) B(e),whereB( ) g1(1/ ) g2( ),g1andg2are
entire functions with g2 transcendental and
(a)
(b) z (g2)no more than 1/2, and g1 arbitrary. If f is a non-trivial solution of (1.1) with e(f) ,thenf(z) and f(z 2 i)are linearly dependent. Iff1andf2are any two linearly independent solutions of (1.1),
then e(f1f2) .
Theorem 2 Letg( )be a transcendental entire function and its lower order be no more than 1/2.
zLetA(z) B(e),whereB( ) g(1/ ) pb j 1jjand p is an odd positive integer,
then (f) for each non-trivial solution f to (1.1). In fact, the stronger conclusion (1.2) holds.
We remark that the above conclusion remains valid if
B( ) g( ) b j j
j 1p
We note that Theorem 2 generalizes Theorem D when (g)is a positive integer or infinity but (g) 1/2. Combining Theorem D with Theorem 2, we have
zCorollary 2 Letg( )be a transcendental entire function. LetA(z) B(e) where
B( ) g(1/ ) j 1bj jand p is an odd positive integer. Suppose that either (i) or (ii) below holds:
(i) (g) is not a positive integer or infinity;
(ii) (g) 1/2;
then (f) for each non-trivial solution f to (1.1). In fact, the stronger conclusion (1.2) holds.
2. Lemmas for the proofs of Theorems
Lemma 1 ([7]) Suppose thatk 2and thatA0,.....Ak 2are entire functions of period2 i,and that f is a non-trivial solution of p
y(k) Aj(z)y(j)(z) 0
i 0k 2
Suppose further that f satisfieslog N(r,1/f) o(r); that A0 is non-constant and rational
zine,and that ifk 3,thenA1,.....Ak 2are constants. Then there exists an integer q with1 q k such thatf(z) and f(z q2 i)are linearly dependent. The same conclusion
z holds ifA0is transcendental ine,and f satisfieslogN(r,1/f) o(r),and if k 3,then
through a setL1r
k 2. haveT(r,Aj) o(T(r,Aj))forj 1,.....as
zof infinite measure, 1we and be Lemma 2 ([10]) LetA(z) B(e z)be a periodic entire function with period 2 i transcendental ine, B( )is transcendental and analytic on0 .IfB( )has a pole of
odd order at or 0(including those which can be changed into this case by varying the period ofA(z) andEq. (1.1) has a solutionf(z) 0which satisfies log N(r,1/f) o(r), thenf(z) and f(z )are linearly independent.
3. Proofs of main results
The proof of main results are based on [8] and [15].
Proof of Theorem 1 Let us assume e(f) .Sincef(z) and f(z 2 i)are linearly independent, Lemma 1 implies that f(z)and f(z 4 i)must be linearly dependent. LetE(z) f(z)f(z 2 i),ThenE(z)satisfies the differential equation
E (z)2E (z)c2
, (2.1) 4A(z) () 2 E(z)E(z)E(z)2
Where c 0is the Wronskian off1andf2(see [12, p. 5] or [1, p. 354]), andE(z 2 i) c1E(z)or some non-zero constantc1.Clearly, E /E
and E /Eare both periodic functions with period2 i,whileA(z)is periodic by definition.
2Hence (2.1) shows thatE(z)is also periodic with period 2 i.Thus we can find an analytic
function ( )in0
yields ,so thatE(z)2 (ez)Substituting this expression into (2.1) c2 3 4B( ) 2()2 2 (2.2) 4
Since bothB( )and ( )are analytic inC* :1 ,the Valiron theory [21, p. 15] gives their representations as
n B( ) R( )b( ), ( ) n1R1( ) ( ), (2.3)
n1are some integers, R( )andR1( )are functions that are analytic and non-vanishing wheren,
on C* { },b( )and ( ) are entire functions. Following the same arguments as used in [8], we have
T( , ) N( ,1/ ) T( ,b) S( , ), (2.4)
whereS( , ) o(T( , )).Furthermore, the following properties hold [8]
e(f) e(E) e(E2) max{ eR(E2), eL(E2)},
eR(E2) 1( ) ( ),
Where eR(E2)(resp, eL(E2)) is defined to be
log NR(r,1/E2)log NR(r,1/E2)lim(resp, lim), r r rr
Some properties of solutions of periodic second order linear differential equations
)(resp. NL(r,1/E2)denotes a counting function that only counts the zeros
2of E(z)in the right-half plane (resp. in the left-half plane), 1( )is the exponent of convergence of the zeros of inC*, which is defined to be
log N( ,1/ ) 1( ) lim log
Recall the condition e(f) ,we obtain ( ) . whereNR(r,1/E
Now substituting (2.3) into (2.2) yields 2
nR 3nR c2
4 R( )b( ) n1 (1 1 ) 2(1 1 )2 R1 4 R1 R1( ) ( )
R1 n1R1n1 R1 R1 2n1(n1 1) ( 2 2 2 ) (2.5) 2 R1 R1 R1 n
Proof of Corollary 1 We can easily deduce Corollary 1 (a) from Theorem 1 .
Proof of Corollary 1 (b). Supposef1andf2are linearly independent and e(f1f2) ,then e(f1) ,and
Corollary 1 (a) that
Letfj(z)and e(f2) .We deduce from the conclusion of fj(z 2 i)are linearly dependent, j = 1; 2. E(z) f1(z)f2(z).Then we can find a non-zero constant c2such thatE(z 2 i) c2E(z).Repeating the same arguments as used in Theorem 1 by using the fact
2that E(z)is also periodic, we obtain
e(E) 1 (g2) 1 2,a contradiction since (g2) 1/2.Hence e(f1f2) .
Proof of Theorem 2 Suppose there exists a non-trivial solution f of (1.1) that satisfies log N(r,1/f) o(r). We deduce e(f) 0, so f(z)andf(z 2 i) are linearly dependent by Corollary 1 (a). However, Lemma 2 implies that f(z)andf(z 2 i)are linearly
independent. This is a contradiction. Hence logN(r,1/f) o(r)holds for each non-trivial
solution f of (1.1). This completes the proof of Theorem 2.
Acknowledgments The authors would like to thank the referees for helpful suggestions to improve this paper.
References
[1] ARSCOTT F M. Periodic Di®erential Equations [M]. The Macmillan Co., New York, 1964.
[2] BAESCH A. On the explicit determination of certain solutions of periodic differential
equations of higher order [J]. Results Math., 1996, 29(1-2): 42{55.
[3] BAESCH A, STEINMETZ N. Exceptional solutions of nth order periodic linear differential
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 机电一体化专业毕业设计指导书
- 道路施工技术第六章复习思考题
- 市场营销学试卷A 及答案
- 道路施工技术第八章复习思考题
- 高一下家长会班主任发言稿
- 任务书+摘要+目录
- 第28届全国中学生物理竞赛预赛试题及评分标准
- 英国高中留学申请:申请途径
- 电子线路课程设计
- 英国留学高中生申请条件解析
- 《计算机网络应用基础》综合练习四
- 高中物理奥林匹克竞赛解题方法讲座:(2)隔离法(含答案)
- 定时8
- 五不达标教学模式
- 英国高中留学申请:资料准备
- 道路施工技术第五章复习思考题
- 用汗水铸就辉煌
- 宏观经济学试卷B及答案
- 软件课程设计1指导书
- 第28届全国中学生物理竞赛复赛试卷及标准答案
- 微观经济学试卷B及答案
- 调幅折算计算
- 2009年会考
- 英国高中留学申请:入学条件
- 道路施工技术第九章复习思考题
- 道路施工技术第三章复习思考题
- 数值分析大作业
- 数据结构课后习题答案
- 监控第一章(3.4)
- 2015丽水科学模拟试卷
网友关注视频
- 二年级下册数学第二课
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 冀教版英语四年级下册第二课
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 人教版二年级下册数学
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 七年级下册外研版英语M8U2reading
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 3月2日小学二年级数学下册(数一数)
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 外研版英语三起6年级下册(14版)Module3 Unit1
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 河南省名校课堂七年级下册英语第一课(2020年2月10日)
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 北师大版数学四年级下册3.4包装
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 三年级英语单词记忆下册(沪教版)第一二单元复习
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理