重要方面固定燃烧系统源PM2.5的排放测量和表征
上传者:陈作贤|上传时间:2015-05-05|密次下载
重要方面固定燃烧系统源PM2.5的排放测量和表征
FuelProcessingTechnology85(2004)687–
内容需要下载文档才能查看 内容需要下载文档才能查看699
http://wendang.chazidian.com/locate/fuproc
ImportantaspectsinsourcePM2.5emissions
measurementandcharacterizationfrom
stationarycombustionsystems
S.WinLee*,I.He,B.Young
CANMETEnergyTechnologyCentre,NaturalResourcesCanada,Ottawa,ON,CanadaK1A1M1
Abstract
Duringtheconstructionandevaluationofasamplerformeasurementandcharacterizationfineparticulatematter(PM)emissionsfromstationarycombustionequipment,severaltechnicalchallengeswerenoted.Thesamplerdesignincorporateddilution,coolingandmoistureadditiontothestackgasinsideaninertdilutiontunneltocloselysimulatenear-ambientconditionstopromoteatmospherictransformationofsourceparticles.Theautomatedandon-lineprocesscontrolcapabilitiesofthesystemallowsforsimulationofarangeofambient-likehumidityandtemperatureconditionsforPMsampling,whileprovidingreproducibleparticulatemassemissionresults.SubsequentanalysesofthesizesegregatedPM2.5,PM10andtotalparticulatesamplesyieldconcentrationsofparticlemass,carbons,acidicspeciesandtraceelements.Thefirst-generationsamplingsystemwasappliedona150-kWoil-firedboileranda0.7-MWthcoal-firedpilotscaleboilertoprovidesourcePMcharacteristicprofiles.Challengesnotedduringtheinitialstudiesincluded(a)difficultyinachievingoptimumdilutionandresidencetimewhilesustainingisokineticsamplingforhighfluegasvelocities;(b)inaccuraciesinmeasurementandcontrolofsamplingsystemflowratestomaintainabalancedflowsystem;and(c)particledepositionsinseveralsystemcomponents.Asecond-generationsystemwaslaterconstructedthatprovidedahigherdilutionupto80-foldandtheextendedresidencetimesupto80s.ReliablemeasurementandcontrolofthegasflowrateswereachievedusingaCO2tracertechnique.Samplingsfromthecombustionunitswithstackvelocitiesrangingfrom3to10m/sweresuccessfullyperformed.ForPMmeasurementonboilerswithastackvelocityhigherthan10m/s,afluepre-separatororsplitterisrequired.Thesampler’soveralldesignisbeingfurthermodifiedforadditionalimprovementsincludingasuitablesplitterdesign.ThispaperfocusesprimarilyonthetechnicalissuesrelatingtosourcePMsamplingequipment,
*Correspondingauthor.
0378-3820/$-seefrontmatterD2004ElsevierB.V.Allrightsreserved.doi:10.1016/j.fuproc.2003.11.014
688S.W.Leeetal./FuelProcessingTechnology85(2004)687–699
whileinitialPM2.5massemissionresultsfromthecombustionofaNo.4fueloilarereportedsimplytoillustrateitscapabilities.
D2004ElsevierB.V.Allrightsreserved.
Keywords:Particulatematter;Stationarycombustionsystem;Dilution
1.Introduction
ThenewUSNationalAmbientAirQualityStandardsof1997andtheCanadaWideStandardsof2000demonstratetheimportanceofreportedassociationsbetweenparticlepollutionandadversehealtheffects[1,2].InCanada,PM10,orparticulatematterwithanaerodynamicdiameterequaltoorlessthan10Am,hasbeendeclaredtoxicundertheCanadianEnvironmentalProtectionActin2000[3].TheCanadaWideStandardsplacePM2.5underregulatoryadvisementthatneedstobeimplementedby2010[4].Muchhasbeenreportedinrecentyearsonpolicyandregulatoryissues,exposurelevelsandhealtheffects,sourceapportionmentmodelingandmethodologydevelopmenttobridgecriticalknowledgegapsrelatedtofinePM.Opposingviewsonthenewrulescontinuetoexistamongregulatorsandindustrybutitisagreedthatmorescientificdataareneeded.Althoughitisgenerallyacceptedthatcombustiongeneratedparticleshaveagreaterimpactonhumanhealththannaturallyoccurringparticles,onlylimitedsizeandchemicalcompositiondataareavailablefortheseanthropogenicsources,especiallyforstationarycombustionsystems.Asignificantlylargeramountofresearchdataisaccessibleforthetransportationdieselenginederivedparticulates,generallyknownasdieselparticulatematterorDPM.SourcePMcontributiontotheambientfromindividualpointsourcesincludingcombustionprocessesisdifficulttoelucidatebecauseofitscomplexatmo-spherictransformationsoccurringunderdiversemeteorologicalconditions.Sourceappor-tionmentmethodsarenormallyappliedinassessingtheimpactofthetypeandquantitiesofvariousemissionsourcesonambientPMconcentrations[5–9].Thesizeandchemicalcompositionofemissionsfromeachsourcetype,knownassourcesignaturesorsourceprofiles,arerequiredinsourceapportionmentmodeling.However,commonlyavailablesource-emissioninventorydatahavebeenidentifiedasinadequatesincesampleshavebeencollectedusingconventionalhightemperaturefiltermethodsthatdonotaddressadequatelythenormaldilutionandcoolingthatoccursinaplume.OneofthesereferencemethodsistheUSEPAMethod5,whichhasbeenextensivelyusedfortotalPMmeasurementfromvariousstationarycombustionsources.Basedonthisneed,sourcedilutiontechniqueswherethehotfluegaswasdilutedwithcleanairorinertgaspriortoparticulatesamplingweredeveloped[10–14].Thesourcedilutionsamplingapproachattemptstomimicatmospherictransformationofprimaryandsecondaryparticlesinaplumeinclosevicinityanddownwindofastack.However,inadequaciesstillexistinthecurrenttechnologiesduetothecomplexitiesassociatedwithsimulationoftheambientenvironmentandthemechanicsinvolvedincontrollingisokineticsamplingandsampledilution.
Intheinterim,environmentalregulationsarealsomovingtowardsstricterengineandfuelspecificationstoreduceairpollutantemissionsfromthetransportationand
S.W.Leeetal./FuelProcessingTechnology85(2004)687–699689
industrialsectors.Quantificationandimpactassessmentofparticleemissionsfromindividualpointsourcesareessentialfortheindustryfortheirenvironmentalpolicyandeffectivemanagementofplantemissions.Theapparentneedforasamplingprocedurethatallowsforclosesimulationofnaturalcooling,http://wendang.chazidian.comboratoryexperimentswereconductedtomeasurePMemissionsforseveralresidualoilsandpulverizedcoalblendsusingthefirstgenerationprototypemeasurementsystemandtheresultshavebeenreportedelsewhere[15–22].Theimprovedperformanceofthesecond-generationsourcePMmeasurementsystemwasevaluatedandtechnicalchallengesandtheapproachestakentoaddresstheseissuesarepresented.Sincethetimeoforiginalsubmissionofthisdocument,athird-generationsamplerhasbeendesignedandiscurrentlyevaluatedforfielddemonstration.
2.Experimental
ThispapermainlydealswiththetechnicalaspectsinthedevelopmentofasourcePMmeasurementandcharacterizationtechnologyandthereforelessemphasisisgiventotheexperimentalprocedures.Althoughseveralfuelsandcombustionsystemswereusedduringmanylaboratoryexperiments,thecombustionofonlyonespecificfuelwasincludedinthisdiscussion.
2.1.Testfuel
InTable1,thepropertiesoftheNo.4typeresidualfueloilarereported.AllfuelanalyseswereperformedatCETCfollowingtheASTMtestmethodsandestablishedTable1
PropertiesofNo.4fueloil
Propertiesoffueloil
Ultimateanalysis(wt.%)
Carbon
Hydrogen
Nitrogen
Sulphur
Watercontent—KarlFisher(wt.%)
Densityat15jC(kg/m3)
Grosscalorificvalue(cal/g)
Grosscalorificvalue(MJ/kg)
Grosscalorificvalue(Btu/lb)
Kinematicviscosityat100jC(cSt)No.487.0312.200.180.730.34897.910,5824419,0512.6
690S.W.Leeetal./FuelProcessingTechnology85(2004)687–699
proceduresdevelopedfromparticipatingininternationalroundrobinstudies.Duringcombustion,thefueloilisheatedandcontinuouslyagitatedusingacirculationpumptoensuresamplehomogeneity.
http://wendang.chazidian.combustionfacility
InitiallaboratoryexperimentsfortheprototypePMsamplingsystememployeda150-kWoil-firedboilerforsimplicityandcostsavings.Theunitisasinglepass,castiron,hotwater/steamboilerdesignedfordistillateoilornaturalgasfiring.TorepresentindustrialoilfiredboilersknowntogeneratehighPMconcentrations,theexistingunitwasmodifiedtoburnNo.4typeresidualoilbyretrofittingitwithawaste-oilburner.Oilatomizationwasassistedwithafuelpre-heaterandhigh-pressureairintroducedintothenozzlealongitscentreaxis.Thedescriptionoftheunithasbeenreportedinanearlierpublication[17].
2.3.Boileroperationandemissionsmeasurement
Operatingproceduresfortheoil-firedboilerhavebeenreportedinearlierpublications
[16–18].ThecombustionsystemwasoperatedwithsomewhatatypicalboilerefficiencysettingstoallowforsuitablePMsamplingconditions.Forexample,theoilboilerwasintentionallyfiredwithNo.4fueltosimulateindustrialboileremissionsthatusuallyburnresidualoils.Inaddition,residualfuelsgeneratehigherPMconcentrationsthanNo.2oilornaturalgas,therebyshorteningthesamplingtimedrastically.Fluegasvelocityoftheunitwasapproximately3m/s.TheboilerwasallowedtoreachsteadystatecombustionconditionstoattainrepresentativeandconsistentfluegasemissionspriortoPMmeasurement.Gaseousspeciesinthedilutedfluegaswerealsodeterminedusingstandardcontinuousemissionanalyzers.Itwasalsonecessarytomonitorthefluegastemperatureandvelocitytoestablishnear-isokineticsampling.Afterdeterminingtheisokineticsamplingrateforaspecificcombustionexperiment,totalsourceparticulatesamplingwascarriedoutusingthestandardEPAMethod5procedures.PMmeasurementusingthesourcedilutionprototypeequipmentimmediatelyfollowedMethod5toensurethatthemeasurementswereperformedundersimilarboileroperatingconditions.
2.4.Fineparticulatemeasurementsystems
Twoprototypesystemshavebeenconstructedandevaluatedfordieselandlightdistillateheatingoils,residualtypeNo.4andNo.6fueloilsandpulverizedcoalblends,usingpilot-scalecombustionfacilities.TheprimaryeffortsindevelopingasourcedilutionPMmeasurementsysteminvolvedtheselectionandconstructionofsystemcomponentsandmethodprotocols.Thekeyareasarethefluegassamplingprobe,dilutionairsupplysystem,moistureintroductionsystemforhumiditycontrol,thedilutiontunnel,residencetimechamber,PMsamplingportsandtheprocesscontrolanddatamonitoringcapabilities.Inbrief,thebasicprincipleofthemethodinvolvesdilutionoffluegaswithpurifiedairby20–40timesinsideadilutiontunnelmaintainedat40%relativehumiditytoallowforcoolingandsimulationofatmospherictransformationprocesses.PortionsofthedilutedgasarewithdrawnthroughselectedcycloneandimpactorinletsandfilterpackstocollectPM2.5,
S.W.Leeetal./FuelProcessingTechnology85(2004)687–699691
PM10andtotalPMfractions.Particulatesampleswereanalyzedfortheirfilterablemass,sizedistributionandconcentrationsoftraceelements,carbonandsolublesulphatesusingappropriateanalyticaltechniques.TheanalyticalschemefortreatmentofPMsampleshasbeenreportedelsewherewithaspecialemphasisonthereceptor-comparabilityofthePMcharacteristics[18].
Thefirst-generationsystemwasconstructedbyextensivemodificationofacommercialunitmanufacturedbyURGCorporationintheUSA.Themodifiedunitusedtheoriginalsamplingprobe,dilutiontunnelandthesamplingdevices,beingPM2.5cyclone,PM10impactorandfilterpackfortotalparticulates.Theunit’stotalvolumeis0.76ft3or21.5landsampleresidencetimesof15–34sarepossibleata40-foldsampledilution[22].Majormodificationstothecommercialsystemincludedtheintroductionofmoistureinjectionmechanism,massflowcontrollersandprocesscontrolsoftware.Controlfunctionsalsoincludeafeedbackfeaturethatautomaticallyadjustsandmaintainsthedilutionratioatapre-setlevel,inresponsetothefluctuationsofstackvelocityandfluegasconditions.InitialtestssuggestedthatadditionalimprovementsaredesirabletoachieveaccurateflowmeasurementsofthefluegassamplingrateandthePMsamplestreams,increasedturbulentmixingoffluegasanddilutionairinsidethemixingchamber,longerresidencetimeandtheabilitytosampleonstackswithhigherfluegasvelocities.
Basedontheobservationsfromtheinitialwork,acustomizedsystemspecificallyintendedforindustrialandutilityboilerapplicationshasbeendesigned,asshowninFig.1.Theimproved,second-generationsystemismadeupofseverallightweightmodularpiecesforfieldportability.Thefluegasanddilutionairmixingsectionmeasures60in.inlengthwith2.5in.ID.Thetransfersectionisa32-in.long,curvedconnectorthattransfersthedilutedgastotheresidencetimechamber.Thecylindricalchamberis72in.highwithadiameterof18.5in.Theentiredilutionsystemhasavolumecapacityof11.5ft3or325l.Thesystemallowshighersampledilutionratiosofupto80-fold.AresidencetimechamberwasalsointroducedtoincreasetheresidencetimeandanewPMsamplewithdrawalconceptwasincorporatedtoensurethathomogeneoussamplesaretransferredfromtheresidencechambertothecyclonesandfilterpacks.Thehorizontalarrangementforthesamplingportsontheprevioussystemwaschangedtoawell-spaced,verticallayouttominimizeparticulatesettling.Mostimportantly,aCO2tracertechniquewasintegratedtopermitaccuratemeasurementandcontroloffluegassamplingrates.ThesamplingsystemhasbeensuccessfullyusedforPMmeasurementonboilerswithmaximumfluegasvelocitiesof10m/s.Thiscapabilityisbeingupgradedforlargercombustioninstallationshavingvelocitiesofupto30m/s,byincorporatingafluegaspre-separatororsplitteronthesamplingunit.
Althoughthesecond-generationsamplersharessomecommondesignswiththeCalTechdesign[23],suchasamixingchamberandaresidencetimechamberwithsamplingportsattachednearthebottom,theCETCsamplerhasthefollowinguniquefeatures:
Themechanismtoadjustandcontrolrelativehumidityinsidethetunnel,whichhasstrongeffectonsecondaryparticulateformation.
UsesCO2tracertechniqueinsteadoforificemetertoaccuratelymeasureandcontrolfluegassamplingrates.Thisallowssimulationofdifferentambient-likeconditionsandalsoprovidescomparabledatafordifferentsamplinglocations.
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 2015教资国考|信息技术基础知识:信息的加工与表达(五)
- 2015教资国考计算机网络基础知识综合练习(1)
- 2015教资国考|动画制作【专项练习】
- 2015教资国考备考资料:“网络”知识点归纳(一)
- 2015教资备考资料:PPT使用技巧(二)
- 2015教资国考|信息技术基础知识(一)
- 2015教资国考|图像、声音、视频的加工【专项练习一】
- 2015教资国考|信息技术基础知识(二)
- 2015教资国考|信息技术基础知识:信息的加工与表达(四)
- 2015教资国考:信息技术基础知识1.3
- 2015教资备考资料:PPT使用技巧(三)
- 2015教资国考|图像、声音、视频的加工【专项练习二】
- 2015教师资格统考信息技术备考策略
- 2015教资备考资料:PPT使用技巧(一)
- 2015教资国考|网络应用【专项练习五】
- 2015教资国考|文字处理(Word)【专项练习】
- 2015教资国考|信息技术基础知识:信息的加工与表达(三)
- 2015教资备考资料:PPT使用技巧(四)
- 2015教资国考备考资料:“网络”知识点归纳(四)
- 2015教资国考|信息技术基础知识:信息的加工与表达(六)
- 2015教资国考|网络应用【专项练习一】
- 教资国考|Excel使用技巧之数据分析和管理技巧(二)
- 2015教资国考|信息技术基础知识:信息的加工与表达(一)
- 2015教资国考备考资料:“网络”知识点归纳(六)
- 2015教资国考备考资料:“网络”知识点归纳(五)
- 2015教资国考|Windows操作【专项练习一】
- 2015教资国考|网络应用【专项练习三】
- 2015教资国考|信息技术基础知识:信息的加工与表达(二)
- 2015教资国考备考资料:“网络”知识点归纳(七)
- 2015教资国考|Windows操作【专项练习二】
网友关注视频
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 七年级英语下册 上海牛津版 Unit5
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 北师大版数学四年级下册3.4包装
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 二年级下册数学第二课
- 外研版八年级英语下学期 Module3
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 人教版二年级下册数学
- 冀教版英语五年级下册第二课课程解读
- 冀教版小学英语四年级下册Lesson2授课视频
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 七年级英语下册 上海牛津版 Unit3
- 六年级英语下册上海牛津版教材讲解 U1单词
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 二年级下册数学第一课
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 二年级下册数学第三课 搭一搭⚖⚖
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 3月2日小学二年级数学下册(数一数)
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理