Model selection and model averaging
上传者:丁国强|上传时间:2015-05-05|密次下载
Model selection and model averaging
Cambridge University Press
978-0-521-85225-8 - Model Selection and Model Averaging
Gerda Claeskens and Nils Lid Hjort
ExcerptMore information
1
Modelselection:dataexamplesandintroduction
Thisbookisaboutmakingchoices.Ifthereareseveralpossibilitiesformod-
ellingdata,whichshouldwetake?Ifmultipleexplanatoryvariablesaremea-
sured,shouldtheyallbeusedwhenformingpredictions,makingclassi?cations,
orattemptingtosummariseanalysisofwhatin?uencesresponsevariables,or
willincludingonlyafewofthemworkequallywell,orbetter?Ifso,which
onescanwebestinclude?Modelselectionproblemsarriveinmanyformsand
onwidelyvaryingoccasions.Inthischapterwepresentsomedataexamples
http://wendang.chazidian.comterinthebookwecomeback
tothesedataandsuggestsomeanswers.Ashortpreviewofwhatistocomein
laterchaptersisalsoprovided.
1.1Introduction
Withthecurrenteaseofdatacollectionwhichinmany?eldsofappliedsciencehasbecomecheaperandcheaper,thereisagrowingneedformethodswhichpointtointer-esting,importantfeaturesofthedata,andwhichhelptobuildamodel.Themodelwewishtoconstructshouldberichenoughtoexplainrelationsinthedata,butontheotherhandsimpleenoughtounderstand,explaintoothers,anduse.Itiswhenwenegotiatethisbalancethatmodelselectionmethodscomeintoplay.Theyprovideformalsupporttoguidedatausersintheirsearchforgoodmodels,orfordeterminingwhichvariablestoincludewhenmakingpredictionsandclassi?cations.
Statisticalmodelselectionisanintegralpartofalmostanydataanalysis.Modelselectioncannotbeeasilyseparatedfromtherestoftheanalysis,andthequestion‘whichmodelisbest’isnotfullywell-poseduntilsupplementinginformationisgivenaboutwhatoneplanstodoorhopestoachievegiventhechoiceofamodel.Thesurveyofdataexamplesthatfollowsindicatesthebroadvarietyofapplicationsandrelevanttypesofquestionsthatarise.
Beforegoingontothissurveyweshallbrie?ydiscusssomeofthekeygeneralissuesinvolvedinmodelselectionandmodelaveraging.1© Cambridge University http://wendang.chazidian.com
内容需要下载文档才能查看
Cambridge University Press
978-0-521-85225-8 - Model Selection and Model Averaging
Gerda Claeskens and Nils Lid Hjort
ExcerptMore information
2Modelselection:dataexamplesandintroduction
(i)Modelsareapproximations:Whendealingwiththeissuesofbuildingorselectingamodel,itneedstoberealisedthatinmostsituationswewillnotbeabletoguessthe‘correct’or‘true’model.Thistruemodel,whichinthebackgroundgeneratedthedatawecollected,mightbeverycomplex(andalmostalwaysunknown).Forworkingwiththedataitmightbeofmorepracticalvaluetoworkinsteadwithasimpler,butalmost-as-goodmodel:‘Allmodelsarewrong,butsomeareuseful’,asamaximformulatedbyG.E.P.Boxexpressesthisview.Severalmodelselectionmethodsstartfromthisperspective.
(ii)Thebias–variancetrade-off:Thebalanceandinterplaybetweenvarianceandbiasisfundamentalinseveralbranchesofstatistics.Intheframeworkofmodel?ttingandselectionittakestheformofbalancingsimplicity(fewerparameterstoestimate,leadingtolowervariability,butassociatedwithmodellingbias)againstcomplexity(enteringmoreparametersinamodel,e.g.regressionparametersformorecovariates,meansahigherdegreeofvariabilitybutsmallermodellingbias).Statisticalmodelselectionmethodsmustseekaproperbalancebetweenover?tting(amodelwithtoomanyparameters,morethanactuallyneeded)andunder?tting(amodelwithtoofewparameters,notcapturingtherightsignal).
(iii)Parsimony:‘Theprincipleofparsimony’takesmanyformsandhasmanyfor-mulations,inareasrangingfromphilosophy,physics,arts,communication,andindeedstatistics.TheoriginalOckham’srazoris‘entitiesshouldnotbemultipliedbeyondne-cessity’.Forstatisticalmodellingareasonabletranslationisthatonlyparametersthatreallymatteroughttobeincludedinaselectedmodel.Onemight,forexample,bewillingtoextendalinearregressionmodeltoincludeanextraquadratictermifthismanifestlyimprovespredictionquality,butnototherwise.
(iv)Thecontext:Allmodellingisrootedinanappropriatescienti?ccontextandisforacertainpurpose.AsDarwinoncewrote,‘Howodditisthatanyoneshouldnotseethatallobservationmustbefororagainstsomeviewifitistobeofanyservice’.Onemustrealisethat‘thecontext’isnotalwaysapreciselyde?nedconcept,anddifferentresearchersmightdiscoverorlearndifferentthingsfromthesamedatasets.Also,differentschoolsofsciencemighthavedifferentpreferencesforwhattheaimsandpurposesarewhenmodellingandanalysingdata.Breiman(2001)discusses‘thetwocultures’ofstatistics,broadlysortingscienti?cquestionsintorespectivelythoseofpredictionandclassi?cationononehand(whereevena‘blackbox’modelis?neaslongasitworkswell)andthoseof‘deeperlearningaboutmodels’ontheotherhand(wherethediscoveryofanon-nullparameterisimportantevenwhenitmightnothelpimproveinferenceprecision).ThusS.Karlin’sstatementthat‘Thepurposeofmodelsisnotto?tthedata,buttosharpenthequestions’(inhisR.A.Fishermemoriallecture,1983)isimportantinsomecontextsbutlessrelevantinothers.Indeedtherearedifferentlyspiritedmodelselectionmethods,gearedtowardsansweringquestionsraisedbydifferentcultures.© Cambridge University http://wendang.chazidian.com
内容需要下载文档才能查看
Cambridge University Press
978-0-521-85225-8 - Model Selection and Model Averaging
Gerda Claeskens and Nils Lid Hjort
ExcerptMore information
1.2Egyptianskulldevelopment3
(v)Thefocus:Inappliedstatisticsworkitisoftenthecasethatsomequantitiesorfunctionsofparametersaremoreimportantthanothers.Itisthenfruitfultogearmodelbuildingandmodelselectioneffortstowardscriteriathatfavourgoodperformancepreciselyforthosequantitiesthataremoreimportant.Thatdifferentaimsmightleadtodifferentlyselectedmodels,forthesamedataandthesamelistofcandidatemodels,shouldnotbeconsideredaparadox,asitre?ectsdifferentpreferencesanddifferentlossfunctions.Inlaterchaptersweshallinparticularworkwithfocussedinformationcriteriathatstartfromestimatingthemeansquarederror(varianceplussquaredbias)ofcandidateestimators,foragivenfocusparameter.
(vi)Con?ictingrecommendations:Asisclearfromtheprecedingpoints,questionsabout‘whichmodelisbest’areinherentlymoredif?cultthanthoseofthetype‘foragivenmodel,howshouldwecarryoutinference’.Sometimesdifferentmodelselectionstrategiesendupofferingdifferentadvice,forthesamedataandthesamelistofcandidatemodels.Thisisnotacontradictionassuch,butstressestheimportanceoflearninghowthemostfrequentlyusedselectionschemesareconstructedandwhattheiraimsandpropertiesare.
(vii)Modelaveraging:Mostselectionstrategiesworkbyassigningacertainscoretoeachcandidatemodel.Insomecasestheremightbeaclearwinner,butsometimesthesescoresmightrevealthatthereareseveralcandidatesthatdoalmostaswellasthewinner.Insuchcasestheremaybeconsiderableadvantagesincombininginferenceoutputacrossthesebestmodels.
1.2Egyptianskulldevelopment
MeasurementsonskullsofmaleEgyptianshavebeencollectedfromdifferentarchaeo-logicaleras,withaviewtowardsestablishingbiometricaldifferences(ifany)andmoregenerallystudyingevolutionaryaspects.Changesovertimeareinterpretedanddiscussedinacontextofinterbreedingandin?uxofimmigrantpopulations.Thedataconsistoffourmeasurementsforeachof30skullsfromeachof?vetimeeras,originallypresentedbyThomsonandRandall-Maciver(1905).The?vetimeperiodsaretheearlypredy-nastic(around4000b.c.),latepredynastic(around3300b.c.),12thand13thdynasties(around1850b.c.),theptolemaicperiod(around200b.c.),andtheRomanperiod(around150a.d.).Foreachofthe150skulls,thefollowingmeasurementsaretaken(allinmil-limetres):x1=maximalbreadthoftheskull(MB),x2=basibregmaticheight(BH),x3=basialveolarlength(BL),andx4=nasalheight(NH);seeFigure1.1,adaptedfromManly(1986,page6).Figure1.2givespairwisescatterplotsofthedataforthe?rstandlasttimeperiod,respectively.Similarplotsareeasilymadefortheothertimeperiods.Wenotice,forexample,thatthelevelofthex1measurementappearstohaveincreasedwhilethatofthex3measurementmayhavedecreasedsomewhatovertime.Statisticalmodellingandanalysisarerequiredtoaccuratelyvalidatesuchclaims.© Cambridge University http://wendang.chazidian.com
内容需要下载文档才能查看
Cambridge University Press
978-0-521-85225-8 - Model Selection and Model Averaging
Gerda Claeskens and Nils Lid Hjort
ExcerptMore information
4Modelselection:dataexamplesand
内容需要下载文档才能查看introduction
Fig.1.1.Thefourskullmeasurementsx1=MB,x2=BH,x3=BL,x4=NH;fromManly(1986,page6).
Thereisafour-dimensionalvectorofobservationsyt,iassociatedwithskulliandtimeperiodt,fori=1,...,30andt=1,...,5,wheret=1correspondsto4000b.c.,
¯t,?todenotethefour-dimensionalvectorandsoon,uptot=5for150a.d.Weusey
ofaveragesacrossthe30skullsfortimeperiodt.Thisyieldsthefollowingsummarymeasures:
¯1,?=(131.37,133.60,99.17,50.53),y
¯2,?=(132.37,132.70,99.07,50.23),y
¯3,?=(134.47,133.80,96.03,50.57),y
¯4,?=(135.50,132.30,94.53,51.97),y
¯5,?=(136.27,130.33,93.50,51.37).y
Standarddeviationsforthefourmeasurements,computedfromaveragingvarianceesti-matesoverthe?vetimeperiods(intheorderMB,BH,BL,NH),are4.59,4.85,4.92,
3.19.WeassumethatthevectorsYt,iareindependentandfour-dimensionalnormallydistributed,withmeanvectorξtandvariancematrix??tforerast=1,...,5.However,itisnotgiventoushowthesemeanvectorsandvariancematricescouldbestruc-tured,orhowtheymightevolveovertime.Hence,althoughwehavespeci?edthatdatastemfromfour-dimensionalnormaldistributions,themodelforthedataisnotyetfullyspeci?ed.
Wenowwishto?ndastatisticalmodelthatprovidestheclearestexplanationofthemainfeaturesofthesedata.Giventheinformationandevolutionarycontextalludedtoabove,searchingforgoodmodelswouldinvolvetheirabilitytoanswerthefollowingquestions.Dothemeanparameters(populationaveragesofthefourmeasurements)© Cambridge University http://wendang.chazidian.com
内容需要下载文档才能查看
Cambridge University Press
978-0-521-85225-8 - Model Selection and Model AveragingGerda Claeskens and Nils Lid HjortExcerpt
More information
1.2Egyptianskulldevelopment
120 125 130 135 140 145
115
60
5
10580 85 90 95
NH
120
130
140
BH
BL
120130140
45
120
5055
130140
MB
115
60
MB
60
MB
105
55
NH
80 85 90 95
50
NH
120 125 130 135 140 145
BL
45
120 125 130 135 140 145
45
80 85 90 95
5055
105115
BH
120 125 130 135 140 145
115
BH
60
BL
10580 85 90 95
NH
120
130
140
BH
BL
120130140
45
120
5055
130140
MB
115
60
MB
60
MB
105
55
NH
80 85 90 95
50
NH
120 125 130 135 140 145
BL
45
120 125 130 135 140 145
45
80 85 90 95
5055
105115
BHBHBL
Fig.1.2.PairwisescatterplotsfortheEgyptianskulldata.Firsttworows:earlypredy-nasticperiod(http://wendang.chazidian.comsttworows:Romanperiod(150a.d.).
© Cambridge University http://wendang.chazidian.com
内容需要下载文档才能查看下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 教育学会2014年度微型课题申报书
- 关于在全校开展“传承立信文化 青春创业我先行”爱心义卖活动的通知
- 关于进一步完善招商引资工作目标管理责任制的决定
- 物理课题评审书
- 关于做好省市两级职业教育教学改革研究课题研究工作的通知
- 毕业生户档关系留校申请表
- 《河海大学学报(自然科学版)》征稿简则
- 佛山禅城工商注册[金账本]关于开展注册大厅服务满意度调查的通告
- 电脑操作和课件现场制作比赛
- 全国中学生生物学联赛(浙江赛区)竞赛委员会_28827
- 关于供电企业实行双月抄表收费的可行性报告(已处理)
- 江苏省苏北地区暨徐州师范大学2011届毕业生公益供需洽谈会...【精品-doc】
- 中医中药中国行陕西省大型科普宣传活动
- 国产碳纤维复合材料及其在飞行器上应用技术 高技术产业化示范工程 项目资金申请报告
- z石家庄2013年中考美术专业测试时间 4月29日
- 关于举办全省初中教育论坛(《初中生世界》秋季论坛)的通知
- 关于创建我市首批国民休闲旅游示范单位的通知
- 北京理工大学与美国史蒂文斯理工学院2005招生简章
- 自然科学基金申请须知
- 中国传媒大学2012年艺术类本科专业招生简章34004756
- 全国第四届中小学艺术教育科研论文报告会论文申报书
- 中国民用航空飞行学院2011年招飞初检
- 长江大学石油工程学院第七届科技论文报告会获奖作品
- 博士学位申请表学号姓名
- 2012-2013学年学生综合测评公示
- 拟获奖学金学生名单
- 北大人口研究所考研复试-北京大学人口研究所2015年硕士研究生复试名单
- 关于在全市农村小学实施爱心书屋建设工程的通知
- 水土调控关键技术研究与示范课题申请指南
- 公共卫生硕士(MPH)专业学位
网友关注视频
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 苏科版八年级数学下册7.2《统计图的选用》
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
- 七年级英语下册 上海牛津版 Unit3
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 二年级下册数学第一课
- 二年级下册数学第二课
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 七年级英语下册 上海牛津版 Unit5
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 冀教版英语三年级下册第二课
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 小学英语单词
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
- 《小学数学二年级下册》第二单元测试题讲解
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 北师大版数学四年级下册第三单元第四节街心广场
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
- 冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 冀教版英语五年级下册第二课课程解读
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理