Model selection and model averaging
上传者:丁国强|上传时间:2015-05-05|密次下载
Model selection and model averaging
Cambridge University Press
978-0-521-85225-8 - Model Selection and Model Averaging
Gerda Claeskens and Nils Lid Hjort
ExcerptMore information
1
Modelselection:dataexamplesandintroduction
Thisbookisaboutmakingchoices.Ifthereareseveralpossibilitiesformod-
ellingdata,whichshouldwetake?Ifmultipleexplanatoryvariablesaremea-
sured,shouldtheyallbeusedwhenformingpredictions,makingclassi?cations,
orattemptingtosummariseanalysisofwhatin?uencesresponsevariables,or
willincludingonlyafewofthemworkequallywell,orbetter?Ifso,which
onescanwebestinclude?Modelselectionproblemsarriveinmanyformsand
onwidelyvaryingoccasions.Inthischapterwepresentsomedataexamples
http://wendang.chazidian.comterinthebookwecomeback
tothesedataandsuggestsomeanswers.Ashortpreviewofwhatistocomein
laterchaptersisalsoprovided.
1.1Introduction
Withthecurrenteaseofdatacollectionwhichinmany?eldsofappliedsciencehasbecomecheaperandcheaper,thereisagrowingneedformethodswhichpointtointer-esting,importantfeaturesofthedata,andwhichhelptobuildamodel.Themodelwewishtoconstructshouldberichenoughtoexplainrelationsinthedata,butontheotherhandsimpleenoughtounderstand,explaintoothers,anduse.Itiswhenwenegotiatethisbalancethatmodelselectionmethodscomeintoplay.Theyprovideformalsupporttoguidedatausersintheirsearchforgoodmodels,orfordeterminingwhichvariablestoincludewhenmakingpredictionsandclassi?cations.
Statisticalmodelselectionisanintegralpartofalmostanydataanalysis.Modelselectioncannotbeeasilyseparatedfromtherestoftheanalysis,andthequestion‘whichmodelisbest’isnotfullywell-poseduntilsupplementinginformationisgivenaboutwhatoneplanstodoorhopestoachievegiventhechoiceofamodel.Thesurveyofdataexamplesthatfollowsindicatesthebroadvarietyofapplicationsandrelevanttypesofquestionsthatarise.
Beforegoingontothissurveyweshallbrie?ydiscusssomeofthekeygeneralissuesinvolvedinmodelselectionandmodelaveraging.1© Cambridge University http://wendang.chazidian.com
内容需要下载文档才能查看
Cambridge University Press
978-0-521-85225-8 - Model Selection and Model Averaging
Gerda Claeskens and Nils Lid Hjort
ExcerptMore information
2Modelselection:dataexamplesandintroduction
(i)Modelsareapproximations:Whendealingwiththeissuesofbuildingorselectingamodel,itneedstoberealisedthatinmostsituationswewillnotbeabletoguessthe‘correct’or‘true’model.Thistruemodel,whichinthebackgroundgeneratedthedatawecollected,mightbeverycomplex(andalmostalwaysunknown).Forworkingwiththedataitmightbeofmorepracticalvaluetoworkinsteadwithasimpler,butalmost-as-goodmodel:‘Allmodelsarewrong,butsomeareuseful’,asamaximformulatedbyG.E.P.Boxexpressesthisview.Severalmodelselectionmethodsstartfromthisperspective.
(ii)Thebias–variancetrade-off:Thebalanceandinterplaybetweenvarianceandbiasisfundamentalinseveralbranchesofstatistics.Intheframeworkofmodel?ttingandselectionittakestheformofbalancingsimplicity(fewerparameterstoestimate,leadingtolowervariability,butassociatedwithmodellingbias)againstcomplexity(enteringmoreparametersinamodel,e.g.regressionparametersformorecovariates,meansahigherdegreeofvariabilitybutsmallermodellingbias).Statisticalmodelselectionmethodsmustseekaproperbalancebetweenover?tting(amodelwithtoomanyparameters,morethanactuallyneeded)andunder?tting(amodelwithtoofewparameters,notcapturingtherightsignal).
(iii)Parsimony:‘Theprincipleofparsimony’takesmanyformsandhasmanyfor-mulations,inareasrangingfromphilosophy,physics,arts,communication,andindeedstatistics.TheoriginalOckham’srazoris‘entitiesshouldnotbemultipliedbeyondne-cessity’.Forstatisticalmodellingareasonabletranslationisthatonlyparametersthatreallymatteroughttobeincludedinaselectedmodel.Onemight,forexample,bewillingtoextendalinearregressionmodeltoincludeanextraquadratictermifthismanifestlyimprovespredictionquality,butnototherwise.
(iv)Thecontext:Allmodellingisrootedinanappropriatescienti?ccontextandisforacertainpurpose.AsDarwinoncewrote,‘Howodditisthatanyoneshouldnotseethatallobservationmustbefororagainstsomeviewifitistobeofanyservice’.Onemustrealisethat‘thecontext’isnotalwaysapreciselyde?nedconcept,anddifferentresearchersmightdiscoverorlearndifferentthingsfromthesamedatasets.Also,differentschoolsofsciencemighthavedifferentpreferencesforwhattheaimsandpurposesarewhenmodellingandanalysingdata.Breiman(2001)discusses‘thetwocultures’ofstatistics,broadlysortingscienti?cquestionsintorespectivelythoseofpredictionandclassi?cationononehand(whereevena‘blackbox’modelis?neaslongasitworkswell)andthoseof‘deeperlearningaboutmodels’ontheotherhand(wherethediscoveryofanon-nullparameterisimportantevenwhenitmightnothelpimproveinferenceprecision).ThusS.Karlin’sstatementthat‘Thepurposeofmodelsisnotto?tthedata,buttosharpenthequestions’(inhisR.A.Fishermemoriallecture,1983)isimportantinsomecontextsbutlessrelevantinothers.Indeedtherearedifferentlyspiritedmodelselectionmethods,gearedtowardsansweringquestionsraisedbydifferentcultures.© Cambridge University http://wendang.chazidian.com
内容需要下载文档才能查看
Cambridge University Press
978-0-521-85225-8 - Model Selection and Model Averaging
Gerda Claeskens and Nils Lid Hjort
ExcerptMore information
1.2Egyptianskulldevelopment3
(v)Thefocus:Inappliedstatisticsworkitisoftenthecasethatsomequantitiesorfunctionsofparametersaremoreimportantthanothers.Itisthenfruitfultogearmodelbuildingandmodelselectioneffortstowardscriteriathatfavourgoodperformancepreciselyforthosequantitiesthataremoreimportant.Thatdifferentaimsmightleadtodifferentlyselectedmodels,forthesamedataandthesamelistofcandidatemodels,shouldnotbeconsideredaparadox,asitre?ectsdifferentpreferencesanddifferentlossfunctions.Inlaterchaptersweshallinparticularworkwithfocussedinformationcriteriathatstartfromestimatingthemeansquarederror(varianceplussquaredbias)ofcandidateestimators,foragivenfocusparameter.
(vi)Con?ictingrecommendations:Asisclearfromtheprecedingpoints,questionsabout‘whichmodelisbest’areinherentlymoredif?cultthanthoseofthetype‘foragivenmodel,howshouldwecarryoutinference’.Sometimesdifferentmodelselectionstrategiesendupofferingdifferentadvice,forthesamedataandthesamelistofcandidatemodels.Thisisnotacontradictionassuch,butstressestheimportanceoflearninghowthemostfrequentlyusedselectionschemesareconstructedandwhattheiraimsandpropertiesare.
(vii)Modelaveraging:Mostselectionstrategiesworkbyassigningacertainscoretoeachcandidatemodel.Insomecasestheremightbeaclearwinner,butsometimesthesescoresmightrevealthatthereareseveralcandidatesthatdoalmostaswellasthewinner.Insuchcasestheremaybeconsiderableadvantagesincombininginferenceoutputacrossthesebestmodels.
1.2Egyptianskulldevelopment
MeasurementsonskullsofmaleEgyptianshavebeencollectedfromdifferentarchaeo-logicaleras,withaviewtowardsestablishingbiometricaldifferences(ifany)andmoregenerallystudyingevolutionaryaspects.Changesovertimeareinterpretedanddiscussedinacontextofinterbreedingandin?uxofimmigrantpopulations.Thedataconsistoffourmeasurementsforeachof30skullsfromeachof?vetimeeras,originallypresentedbyThomsonandRandall-Maciver(1905).The?vetimeperiodsaretheearlypredy-nastic(around4000b.c.),latepredynastic(around3300b.c.),12thand13thdynasties(around1850b.c.),theptolemaicperiod(around200b.c.),andtheRomanperiod(around150a.d.).Foreachofthe150skulls,thefollowingmeasurementsaretaken(allinmil-limetres):x1=maximalbreadthoftheskull(MB),x2=basibregmaticheight(BH),x3=basialveolarlength(BL),andx4=nasalheight(NH);seeFigure1.1,adaptedfromManly(1986,page6).Figure1.2givespairwisescatterplotsofthedataforthe?rstandlasttimeperiod,respectively.Similarplotsareeasilymadefortheothertimeperiods.Wenotice,forexample,thatthelevelofthex1measurementappearstohaveincreasedwhilethatofthex3measurementmayhavedecreasedsomewhatovertime.Statisticalmodellingandanalysisarerequiredtoaccuratelyvalidatesuchclaims.© Cambridge University http://wendang.chazidian.com
内容需要下载文档才能查看
Cambridge University Press
978-0-521-85225-8 - Model Selection and Model Averaging
Gerda Claeskens and Nils Lid Hjort
ExcerptMore information
4Modelselection:dataexamplesand
内容需要下载文档才能查看introduction
Fig.1.1.Thefourskullmeasurementsx1=MB,x2=BH,x3=BL,x4=NH;fromManly(1986,page6).
Thereisafour-dimensionalvectorofobservationsyt,iassociatedwithskulliandtimeperiodt,fori=1,...,30andt=1,...,5,wheret=1correspondsto4000b.c.,
¯t,?todenotethefour-dimensionalvectorandsoon,uptot=5for150a.d.Weusey
ofaveragesacrossthe30skullsfortimeperiodt.Thisyieldsthefollowingsummarymeasures:
¯1,?=(131.37,133.60,99.17,50.53),y
¯2,?=(132.37,132.70,99.07,50.23),y
¯3,?=(134.47,133.80,96.03,50.57),y
¯4,?=(135.50,132.30,94.53,51.97),y
¯5,?=(136.27,130.33,93.50,51.37).y
Standarddeviationsforthefourmeasurements,computedfromaveragingvarianceesti-matesoverthe?vetimeperiods(intheorderMB,BH,BL,NH),are4.59,4.85,4.92,
3.19.WeassumethatthevectorsYt,iareindependentandfour-dimensionalnormallydistributed,withmeanvectorξtandvariancematrix??tforerast=1,...,5.However,itisnotgiventoushowthesemeanvectorsandvariancematricescouldbestruc-tured,orhowtheymightevolveovertime.Hence,althoughwehavespeci?edthatdatastemfromfour-dimensionalnormaldistributions,themodelforthedataisnotyetfullyspeci?ed.
Wenowwishto?ndastatisticalmodelthatprovidestheclearestexplanationofthemainfeaturesofthesedata.Giventheinformationandevolutionarycontextalludedtoabove,searchingforgoodmodelswouldinvolvetheirabilitytoanswerthefollowingquestions.Dothemeanparameters(populationaveragesofthefourmeasurements)© Cambridge University http://wendang.chazidian.com
内容需要下载文档才能查看
Cambridge University Press
978-0-521-85225-8 - Model Selection and Model AveragingGerda Claeskens and Nils Lid HjortExcerpt
More information
1.2Egyptianskulldevelopment
120 125 130 135 140 145
115
60
5
10580 85 90 95
NH
120
130
140
BH
BL
120130140
45
120
5055
130140
MB
115
60
MB
60
MB
105
55
NH
80 85 90 95
50
NH
120 125 130 135 140 145
BL
45
120 125 130 135 140 145
45
80 85 90 95
5055
105115
BH
120 125 130 135 140 145
115
BH
60
BL
10580 85 90 95
NH
120
130
140
BH
BL
120130140
45
120
5055
130140
MB
115
60
MB
60
MB
105
55
NH
80 85 90 95
50
NH
120 125 130 135 140 145
BL
45
120 125 130 135 140 145
45
80 85 90 95
5055
105115
BHBHBL
Fig.1.2.PairwisescatterplotsfortheEgyptianskulldata.Firsttworows:earlypredy-nasticperiod(http://wendang.chazidian.comsttworows:Romanperiod(150a.d.).
© Cambridge University http://wendang.chazidian.com
内容需要下载文档才能查看下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 脑电信号在麻醉深度监测中的临床应用
- 春季肝病高发专家教您如何预防
- 便秘易引发乳腺癌?
- 比较实用能量足疗操作技巧
- 护士健商状况影响因素分析
- 特种稻研究与利用_赵则胜
- 浅谈功能性稻米生产的发展前景_钱淑峰
- 刮痧适应症
- 慢性浅表性胃炎脾胃湿热证胃粘膜病理幽门螺杆菌感染及胃粘膜分泌特点
- 36例百日咳综合征患儿的护理体会
- 妊娠合并症护理及健康教育
- 《中国实用医刊》之溃疡性结肠炎的病因病机及证治探析
- 危重病人抢救流程
- 功能型水稻研究现状和发展趋向_苏宁
- 适合于养生行业加盟的运营方案
- 补水保湿产品哪个好
- 患儿家长安全用药知信行调查及干预效果评估_黄丽文(1)
- 三种减肥冬瓜的做法
- 高危人群知晓率调查问卷
- 4中药饮片验收操作规程
- 玖一租赁宝,告诉您三个方法自测身体是否老化
- 蝴蝶猪头的加工方法
- 8中药处方审核、调配、核对操作规程程
- 沼液沼渣在蔬菜无土栽培中的应用研究
- 10中药饮片清斗操作规程
- 运动小条
- 2014年棉花市场调研报告
- 正确的睡眠习惯
- 肾小球巨大稀少症1例
- 三基护理
网友关注视频
- 人教版二年级下册数学
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 北师大版数学四年级下册3.4包装
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 外研版八年级英语下学期 Module3
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 冀教版小学数学二年级下册第二单元《租船问题》
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 外研版英语七年级下册module3 unit1第二课时
- 《空中课堂》二年级下册 数学第一单元第1课时
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 冀教版小学英语四年级下册Lesson2授课视频
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 《小学数学二年级下册》第二单元测试题讲解
- 3月2日小学二年级数学下册(数一数)
- 苏科版八年级数学下册7.2《统计图的选用》
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理