Model selection and model averaging
上传者:丁国强|上传时间:2015-05-05|密次下载
Model selection and model averaging
Cambridge University Press
978-0-521-85225-8 - Model Selection and Model Averaging
Gerda Claeskens and Nils Lid Hjort
ExcerptMore information
1
Modelselection:dataexamplesandintroduction
Thisbookisaboutmakingchoices.Ifthereareseveralpossibilitiesformod-
ellingdata,whichshouldwetake?Ifmultipleexplanatoryvariablesaremea-
sured,shouldtheyallbeusedwhenformingpredictions,makingclassi?cations,
orattemptingtosummariseanalysisofwhatin?uencesresponsevariables,or
willincludingonlyafewofthemworkequallywell,orbetter?Ifso,which
onescanwebestinclude?Modelselectionproblemsarriveinmanyformsand
onwidelyvaryingoccasions.Inthischapterwepresentsomedataexamples
http://wendang.chazidian.comterinthebookwecomeback
tothesedataandsuggestsomeanswers.Ashortpreviewofwhatistocomein
laterchaptersisalsoprovided.
1.1Introduction
Withthecurrenteaseofdatacollectionwhichinmany?eldsofappliedsciencehasbecomecheaperandcheaper,thereisagrowingneedformethodswhichpointtointer-esting,importantfeaturesofthedata,andwhichhelptobuildamodel.Themodelwewishtoconstructshouldberichenoughtoexplainrelationsinthedata,butontheotherhandsimpleenoughtounderstand,explaintoothers,anduse.Itiswhenwenegotiatethisbalancethatmodelselectionmethodscomeintoplay.Theyprovideformalsupporttoguidedatausersintheirsearchforgoodmodels,orfordeterminingwhichvariablestoincludewhenmakingpredictionsandclassi?cations.
Statisticalmodelselectionisanintegralpartofalmostanydataanalysis.Modelselectioncannotbeeasilyseparatedfromtherestoftheanalysis,andthequestion‘whichmodelisbest’isnotfullywell-poseduntilsupplementinginformationisgivenaboutwhatoneplanstodoorhopestoachievegiventhechoiceofamodel.Thesurveyofdataexamplesthatfollowsindicatesthebroadvarietyofapplicationsandrelevanttypesofquestionsthatarise.
Beforegoingontothissurveyweshallbrie?ydiscusssomeofthekeygeneralissuesinvolvedinmodelselectionandmodelaveraging.1© Cambridge University http://wendang.chazidian.com
内容需要下载文档才能查看
Cambridge University Press
978-0-521-85225-8 - Model Selection and Model Averaging
Gerda Claeskens and Nils Lid Hjort
ExcerptMore information
2Modelselection:dataexamplesandintroduction
(i)Modelsareapproximations:Whendealingwiththeissuesofbuildingorselectingamodel,itneedstoberealisedthatinmostsituationswewillnotbeabletoguessthe‘correct’or‘true’model.Thistruemodel,whichinthebackgroundgeneratedthedatawecollected,mightbeverycomplex(andalmostalwaysunknown).Forworkingwiththedataitmightbeofmorepracticalvaluetoworkinsteadwithasimpler,butalmost-as-goodmodel:‘Allmodelsarewrong,butsomeareuseful’,asamaximformulatedbyG.E.P.Boxexpressesthisview.Severalmodelselectionmethodsstartfromthisperspective.
(ii)Thebias–variancetrade-off:Thebalanceandinterplaybetweenvarianceandbiasisfundamentalinseveralbranchesofstatistics.Intheframeworkofmodel?ttingandselectionittakestheformofbalancingsimplicity(fewerparameterstoestimate,leadingtolowervariability,butassociatedwithmodellingbias)againstcomplexity(enteringmoreparametersinamodel,e.g.regressionparametersformorecovariates,meansahigherdegreeofvariabilitybutsmallermodellingbias).Statisticalmodelselectionmethodsmustseekaproperbalancebetweenover?tting(amodelwithtoomanyparameters,morethanactuallyneeded)andunder?tting(amodelwithtoofewparameters,notcapturingtherightsignal).
(iii)Parsimony:‘Theprincipleofparsimony’takesmanyformsandhasmanyfor-mulations,inareasrangingfromphilosophy,physics,arts,communication,andindeedstatistics.TheoriginalOckham’srazoris‘entitiesshouldnotbemultipliedbeyondne-cessity’.Forstatisticalmodellingareasonabletranslationisthatonlyparametersthatreallymatteroughttobeincludedinaselectedmodel.Onemight,forexample,bewillingtoextendalinearregressionmodeltoincludeanextraquadratictermifthismanifestlyimprovespredictionquality,butnototherwise.
(iv)Thecontext:Allmodellingisrootedinanappropriatescienti?ccontextandisforacertainpurpose.AsDarwinoncewrote,‘Howodditisthatanyoneshouldnotseethatallobservationmustbefororagainstsomeviewifitistobeofanyservice’.Onemustrealisethat‘thecontext’isnotalwaysapreciselyde?nedconcept,anddifferentresearchersmightdiscoverorlearndifferentthingsfromthesamedatasets.Also,differentschoolsofsciencemighthavedifferentpreferencesforwhattheaimsandpurposesarewhenmodellingandanalysingdata.Breiman(2001)discusses‘thetwocultures’ofstatistics,broadlysortingscienti?cquestionsintorespectivelythoseofpredictionandclassi?cationononehand(whereevena‘blackbox’modelis?neaslongasitworkswell)andthoseof‘deeperlearningaboutmodels’ontheotherhand(wherethediscoveryofanon-nullparameterisimportantevenwhenitmightnothelpimproveinferenceprecision).ThusS.Karlin’sstatementthat‘Thepurposeofmodelsisnotto?tthedata,buttosharpenthequestions’(inhisR.A.Fishermemoriallecture,1983)isimportantinsomecontextsbutlessrelevantinothers.Indeedtherearedifferentlyspiritedmodelselectionmethods,gearedtowardsansweringquestionsraisedbydifferentcultures.© Cambridge University http://wendang.chazidian.com
内容需要下载文档才能查看
Cambridge University Press
978-0-521-85225-8 - Model Selection and Model Averaging
Gerda Claeskens and Nils Lid Hjort
ExcerptMore information
1.2Egyptianskulldevelopment3
(v)Thefocus:Inappliedstatisticsworkitisoftenthecasethatsomequantitiesorfunctionsofparametersaremoreimportantthanothers.Itisthenfruitfultogearmodelbuildingandmodelselectioneffortstowardscriteriathatfavourgoodperformancepreciselyforthosequantitiesthataremoreimportant.Thatdifferentaimsmightleadtodifferentlyselectedmodels,forthesamedataandthesamelistofcandidatemodels,shouldnotbeconsideredaparadox,asitre?ectsdifferentpreferencesanddifferentlossfunctions.Inlaterchaptersweshallinparticularworkwithfocussedinformationcriteriathatstartfromestimatingthemeansquarederror(varianceplussquaredbias)ofcandidateestimators,foragivenfocusparameter.
(vi)Con?ictingrecommendations:Asisclearfromtheprecedingpoints,questionsabout‘whichmodelisbest’areinherentlymoredif?cultthanthoseofthetype‘foragivenmodel,howshouldwecarryoutinference’.Sometimesdifferentmodelselectionstrategiesendupofferingdifferentadvice,forthesamedataandthesamelistofcandidatemodels.Thisisnotacontradictionassuch,butstressestheimportanceoflearninghowthemostfrequentlyusedselectionschemesareconstructedandwhattheiraimsandpropertiesare.
(vii)Modelaveraging:Mostselectionstrategiesworkbyassigningacertainscoretoeachcandidatemodel.Insomecasestheremightbeaclearwinner,butsometimesthesescoresmightrevealthatthereareseveralcandidatesthatdoalmostaswellasthewinner.Insuchcasestheremaybeconsiderableadvantagesincombininginferenceoutputacrossthesebestmodels.
1.2Egyptianskulldevelopment
MeasurementsonskullsofmaleEgyptianshavebeencollectedfromdifferentarchaeo-logicaleras,withaviewtowardsestablishingbiometricaldifferences(ifany)andmoregenerallystudyingevolutionaryaspects.Changesovertimeareinterpretedanddiscussedinacontextofinterbreedingandin?uxofimmigrantpopulations.Thedataconsistoffourmeasurementsforeachof30skullsfromeachof?vetimeeras,originallypresentedbyThomsonandRandall-Maciver(1905).The?vetimeperiodsaretheearlypredy-nastic(around4000b.c.),latepredynastic(around3300b.c.),12thand13thdynasties(around1850b.c.),theptolemaicperiod(around200b.c.),andtheRomanperiod(around150a.d.).Foreachofthe150skulls,thefollowingmeasurementsaretaken(allinmil-limetres):x1=maximalbreadthoftheskull(MB),x2=basibregmaticheight(BH),x3=basialveolarlength(BL),andx4=nasalheight(NH);seeFigure1.1,adaptedfromManly(1986,page6).Figure1.2givespairwisescatterplotsofthedataforthe?rstandlasttimeperiod,respectively.Similarplotsareeasilymadefortheothertimeperiods.Wenotice,forexample,thatthelevelofthex1measurementappearstohaveincreasedwhilethatofthex3measurementmayhavedecreasedsomewhatovertime.Statisticalmodellingandanalysisarerequiredtoaccuratelyvalidatesuchclaims.© Cambridge University http://wendang.chazidian.com
内容需要下载文档才能查看
Cambridge University Press
978-0-521-85225-8 - Model Selection and Model Averaging
Gerda Claeskens and Nils Lid Hjort
ExcerptMore information
4Modelselection:dataexamplesand
内容需要下载文档才能查看introduction
Fig.1.1.Thefourskullmeasurementsx1=MB,x2=BH,x3=BL,x4=NH;fromManly(1986,page6).
Thereisafour-dimensionalvectorofobservationsyt,iassociatedwithskulliandtimeperiodt,fori=1,...,30andt=1,...,5,wheret=1correspondsto4000b.c.,
¯t,?todenotethefour-dimensionalvectorandsoon,uptot=5for150a.d.Weusey
ofaveragesacrossthe30skullsfortimeperiodt.Thisyieldsthefollowingsummarymeasures:
¯1,?=(131.37,133.60,99.17,50.53),y
¯2,?=(132.37,132.70,99.07,50.23),y
¯3,?=(134.47,133.80,96.03,50.57),y
¯4,?=(135.50,132.30,94.53,51.97),y
¯5,?=(136.27,130.33,93.50,51.37).y
Standarddeviationsforthefourmeasurements,computedfromaveragingvarianceesti-matesoverthe?vetimeperiods(intheorderMB,BH,BL,NH),are4.59,4.85,4.92,
3.19.WeassumethatthevectorsYt,iareindependentandfour-dimensionalnormallydistributed,withmeanvectorξtandvariancematrix??tforerast=1,...,5.However,itisnotgiventoushowthesemeanvectorsandvariancematricescouldbestruc-tured,orhowtheymightevolveovertime.Hence,althoughwehavespeci?edthatdatastemfromfour-dimensionalnormaldistributions,themodelforthedataisnotyetfullyspeci?ed.
Wenowwishto?ndastatisticalmodelthatprovidestheclearestexplanationofthemainfeaturesofthesedata.Giventheinformationandevolutionarycontextalludedtoabove,searchingforgoodmodelswouldinvolvetheirabilitytoanswerthefollowingquestions.Dothemeanparameters(populationaveragesofthefourmeasurements)© Cambridge University http://wendang.chazidian.com
内容需要下载文档才能查看
Cambridge University Press
978-0-521-85225-8 - Model Selection and Model AveragingGerda Claeskens and Nils Lid HjortExcerpt
More information
1.2Egyptianskulldevelopment
120 125 130 135 140 145
115
60
5
10580 85 90 95
NH
120
130
140
BH
BL
120130140
45
120
5055
130140
MB
115
60
MB
60
MB
105
55
NH
80 85 90 95
50
NH
120 125 130 135 140 145
BL
45
120 125 130 135 140 145
45
80 85 90 95
5055
105115
BH
120 125 130 135 140 145
115
BH
60
BL
10580 85 90 95
NH
120
130
140
BH
BL
120130140
45
120
5055
130140
MB
115
60
MB
60
MB
105
55
NH
80 85 90 95
50
NH
120 125 130 135 140 145
BL
45
120 125 130 135 140 145
45
80 85 90 95
5055
105115
BHBHBL
Fig.1.2.PairwisescatterplotsfortheEgyptianskulldata.Firsttworows:earlypredy-nasticperiod(http://wendang.chazidian.comsttworows:Romanperiod(150a.d.).
© Cambridge University http://wendang.chazidian.com
内容需要下载文档才能查看下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 2.4大气压与人类生活教案
- 八年级上册期中测试题
- 名校2015学年九年级联考英语试卷及答案
- 名校2015学年九年级联考英语试卷及答案
- 浅议初中数学复习课
- 新人教版2014--2015学年度中考语文试卷 (5)
- 浙江中考生物探究策略(1)
- 第5节 风
- 测滑轮组的机械效率
- 蒸发与沸腾
- 新人教版2014--2015学年度中考语文试卷 (5)
- 汽化和液化
- 什么是自然笔记
- 新课程理念下的初中数学复习课
- 课件与板书优势互补小课题研究方案
- 新人教版2014--2015学年度中考语文试卷 (5)
- 培养动手能力 搭高青春梦想
- 七年级下科学第一章知识点总结
- 化学式意义练习
- 深圳外国语分校初二下期末考试题目
- 初一光学重点试题
- 化合价口诀及化合价专题训练
- 科学试卷
- 初中科学---浙江,知识点概括
- 八年级物理第5周周末卷
- 八年级生物上册试卷分析
- 八上科学知识点
- 青春期学生如何管理
- 蒸发与沸腾
- 7:重力
网友关注视频
- 外研版英语七年级下册module3 unit2第一课时
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 河南省名校课堂七年级下册英语第一课(2020年2月10日)
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 二年级下册数学第一课
- 冀教版小学数学二年级下册第二单元《租船问题》
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
- 冀教版英语五年级下册第二课课程解读
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
- 六年级英语下册上海牛津版教材讲解 U1单词
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 苏科版八年级数学下册7.2《统计图的选用》
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理