EXTENSIONS OF FINITE QUANTUM GROUPS BY
上传者:董虹|上传时间:2015-05-07|密次下载
EXTENSIONS OF FINITE QUANTUM GROUPS BY
EXTENSIONS OF FINITE QUANTUM GROUPS
27Vol. 14, No. 1, 2009, pp.1– TransformationGroups, cBirkh¨??auserBoston(2008)
EXTENSIONSOFFINITEQUANTUMGROUPSBY
FINITEGROUPS
N.ANDRUSKIEWITSCH?
FaMAF-CIEM(CONICET)
UniversidadNacionaldeC´ordoba
MedinaAllendes/n,C.Univ.
5000C´ordoba,Argentina
andrus@mate.uncor.eduG.A.GARC´IA*FaMAF-CIEM(CONICET)UniversidadNacionaldeC´ordobaMedinaAllendes/n,C.Univ.5000C´ordoba,Argentinaggarcia@mate.uncor.edu
Abstract.Wegiveanecessaryandsu?cientconditionfortwoHopfalgebraspresentedascentralextensionstobeisomorphic,inasuitablesetting.WethenstudythequestionofisomorphismbetweentheHopfalgebrasconstructedin[AG]asquantumsubgroupsofquantumgroupsatrootsof1.Finally,weapplythe?rstgeneralresulttoshowtheexistenceofin?nitelymanynon-isomorphicHopfalgebrasofthesamedimension,presentedasextensionsof?nitequantumgroupsby?nitegroups.
1.Introduction
Amajordi?cultyintheclassi?cationof?nite-dimensionalHopfalgebrasisthelackofenoughexamples,sothatwearenotevenabletostateconjecturesonthepossiblecandidatestoexhaustdi?erentcasesoftheclassi?cation.Indeed,weareawareatthistimeofthefollowingexamplesof?nite-dimensionalHopfalgebras:groupalgebrasof?nitegroups;pointedHopfalgebraswithabeliangroupclassi?edin[AS2](thesearevariationsofthesmallquantumgroupsintroducedbyLusztig[L1],[L2]);otherpointedHopfalgebraswithabeliangrouparisingfromtheNicholsalgebrasdiscoveredin[G?n1],[He];afewexamplesofpointedHopfalgebraswithnonabeliangroup[MS],[G?n2];combinationsoftheprecedingviastandardoperations:duals,twisting,Hopfsubalgebrasandquotients,extensions.LetGbeaconnected,simplyconnected,simplecomplexalgebraicgroupandlet??beaprimitive??throotof1,??oddand3????ifGisoftypeG2.In[AG]wedeterminedallHopfalgebraquotientsofthequantizedcoordinatealgebraO??(G).(Finite-dimensionalHopfalgebraquotientsofO??(SLN)werepreviouslyobtainedin[M3].)Abyproductofthemaintheoremof[AG]isthediscoveryofmanynewexamplesofHopfalgebraswith?nitedimension,orwith?niteGelfand–Kirillovdimension.Thequotientsin[AG]areparameterizedbydataD(seebelowfortheprecisede?nition)andthecorrespondingquotientAD?tsintothefollowingcommutativediagramwithexactrows:
DOI:10.1007/S00031-008-9039-4
PartiallysupportedbyCONICET,ANPCyT,Secyt(UNC)andMinisteriodeCienciayTecnolog´?adelaProvinciadeC´ordoba.?
Received??August??25,??2007.??Accepted??March??20,??2008.??Published??online??November??18,??2008.
EXTENSIONS OF FINITE QUANTUM GROUPS
2N.ANDRUSKIEWITSCHANDG.A.GARC´IA
1O(G)
resιO??(G)
O??(L)
sResπu??(g)?u??(l)?
HP11O(L)tιLqD?ιπL1(1)1O(Γ)σADπ?1.
Thepurposeofthepresentpaperistostudywhentheseexamplesarereallynew(neithersemisimplenorpointed,nordualtopointed),andwhentheyareisomorphicasHopfalgebras.Inprinciple,itishardtotellwhentwoHopfalgebraspresentedbyextensionsareisomorphic—notasextensionsbutas“abstract”Hopfalgebras(evenforgroupsthereisnogeneralanswer).Webeginbystudying,inSection2,isomorphismsbetweenHopfalgebrasoftheform:
1KιAπH1,(2)
whereKistheHopfcenterofA,andtheHopfcenterofHistrivial.Oneofourmainresults(Theorem2.15)givesanecessaryandsu?cientconditionfortwoHopfalgebrasofthiskindtobeisomorphic,http://wendang.chazidian.comly,weneed:(i)ANoetherianandH-GaloisoverK;and(ii)anyHopfalgebraautomorphismofH“lifts”toA.Thissettingisampleenoughtoincludeexamplesarisingfromquantumgrouptheoryand,inparticular,from[AG].Indeed,thereisanalgebraic??suchthatAD?tsintothefollowingexactsequence:groupΓ
1O(Γ)??ιADπu??(l0)?1,(3)
??istheHopfcenterofAD,andtheHopfcenterofu??(l0)?istrivial.AsawhereO(Γ)??andu??(l0)areinvariantsoftheisomorphismclassofAD,?rstconsequence,bothΓ
seeTheorem3.12.However,theconditionofliftingofautomorphismsremainsanopenquestion,exceptwhenH=u??(l)?,seeCorollary4.2.Nevertheless,theHopfcenterofu??(l)?istrivialifandonlyifl=g.Inthiscase,weclassifythequotientsofO??(G)uptoisomorphisms,seeTheorem4.14.Thenusingsomeresultsoncohomologyofgroups,weprovethattherearein?nitelymanynonisomorphicHopfalgebrasofthesamedimension.Theycorrespondto?http://wendang.chazidian.comingthisfact,weareabletoprovethattheyformafamilyofnonsemisimple,nonpointedHopfalgebraswithnonpointedduals.ForSL2suchanin?nitefamilywasobtainedbyM¨uller[M3].Tryingtounderstandthisresultwasoneofourmainmotivationstostudytheproblemofquantumsubgroups.
1.1.Conventions
OurreferencesforthetheoryofHopfalgebrasare[Mo]and[Sw],forLiealgebras??the[Hu]andforquantumgroups[J]and[BG].IfΓisagroup,wedenotebyΓ
EXTENSIONS OF FINITE QUANTUM GROUPS
EXTENSIONSOFFINITEQUANTUMGROUPS3
charactergroup.Letkbea?eld.TheantipodeofaHopfalgebraHisdenotedbyS.AlltheHopfalgebrasconsideredinthispaperhavebijectiveantipode.SeeRemark3.5.TheSweedlernotationisusedforthecomultiplicationofHbutdroppingthesummationsymbol.Thesetofgroup-likeelementsofacoalgebraCisdenotedbyG(C).WealsodenotebyC+=KerεtheaugmentationidealofC,πwhereε:C→kisthecounitofC.LetA?→HbeaHopfalgebramap,thenAcoH=Acoπ={a∈A|(id?π)?(a)=a?1}denotesthesubalgebraofrightcoinvariantsandcoHA=coπA={a∈A|(π?id)?(a)=1?a}denotesthesubalgebraofleftcoinvariants.
AHopfalgebraHiscalledsemisimple(resp.,cosemisimple)ifitissemisimpleasanalgebra(resp.,ifitiscosemisimpleasacoalgebra).ThesumofallsimplesubcoalgebrasiscalledthecoradicalofHandisdenotedbyH0.Ifallsimplesub-coalgebrasofHareonedimensional,thenHiscalledpointedandH0=k[G(H)].LetHbeaHopfalgebra,AarightH-comodulealgebrawithstructuremapδ:A→A?H,a→a(0)?a(1)andB=AcoH.TheextensionB?AiscalledaHopfGaloisextensionorH-Galoisifthecanonicalmapβ:A?BA→A?H,a?b→ab(0)?b(1)isbijective.See[SS]formoredetailsonH-Galoisextensions.Acknowledgements.ResearchofthispaperwasbegunwhenG.A.G.wasvisitingtheMathematischesInstitutderLudwig-MaximiliansUniversit¨atM¨unchenunderthesupportoftheDAAD.ResultsinthispaperarepartofthePhDthesisofG.A.G.,writtenundertheadviceofN.A.
TheauthorsthankS.NataleforhelpfulindicationsonLemma4.12andJ.Vargasfordiscussionsonreductivesubgroupsofasimplegroup.G.A.G.thanksH.-J.SchneiderforhospitalityandfruitfulconversationsduringhisstayinM¨un-chen.Theyalsothanktherefereesforaverycarefulreadingofthepaper.
2.CentralextensionsofHopfalgebras
2.1.Preliminaries
WerecallsomeresultsonquotientsandextensionsofHopfalgebras.
De?nition2.1([AD]).AsequenceofHopfalgebrasmaps1→B→?A?→H→1,where1denotestheHopfalgebrak,isexactifιisinjective,πissurjective,Kerπ=AB+andB=coπA.
Remark2.2.NotethatAisarightH-GaloisextensionofBby[T],seealso[SS,
3.1.1].
IftheimageofBiscentralinA,thenAiscalledacentralextensionofB.WesaythatAisacleftextensionofBbyHifthereisanH-colinearsectionγofπwhichisinvertiblewithrespecttotheconvolution,see,forexample,[A,3.1.14].By[Sch2,Theorem2.4],a?nite-dimensionalHopfalgebraextensionisalwayscleft.Weshallusethefollowingresult.
Proposition2.3([AG,Prop.2.10]).LetAandKbeHopfalgebras,BacentralHopfsubalgebraofAsuchthatAisleftorrightfaithfully?atoverBandp:B→KaHopfalgebraepimorphism.ThenH=A/AB+isaHopfalgebraandA?tsιπintotheexactsequence1→B→?A?→H→1.IfwesetJ=Kerp?B,thenιπ
EXTENSIONS OF FINITE QUANTUM GROUPS
4N.ANDRUSKIEWITSCHANDG.A.GARC´IA
(J)=AJisaHopfidealofAandAp:=A/(J)isthepushoutgivenbythefollowingdiagram:
B
pιAq
KjAp.
Moreover,Kcanbeidenti?edwithacentralHopfsubalgebraofApandAp?tsintotheexactsequence1→K→Ap→H→1.??
Remark2.4.LetA,BbeasinProposition2.3,thenthefollowingdiagramofcentralexactsequencesiscommutative:
1B
pιAqπHH1(4)1.1KjApπp
Remark2.5.IfdimKanddimHare?nite,thendimApisalso?nite.Indeed,sincetheGaloismapβ:Ap?KAp→Ap?HisbijectivebyRemark2.2andHis?nitedimensional,by[KT,Theorem1.7],Apisa?nitely-generatedprojectiveK-module;inparticulardimApis?nite.
ThefollowinggenerallemmawaskindlycommunicatedtousbyAkiraMasuoka.Lemma2.6.LetHbeabialgebraoveranarbitrarycommutativering,andletA,A??berightH-GaloisextensionsoveracommonalgebraBofH-coinvariants.AssumethatA??isrightB-faithfully?at.ThenanyH-comodulealgebramapθ:A→A??thatisidenticalonBisanisomorphism.
Proof.See[AG,Lemma1.14].??
Remark2.7.Masuoka’sLemma2.6impliesthefollowingfact:letAandA??beHopfalgebraextensionsofBbyHandsupposethatthereisaHopfalgebramapθ:A→A??suchthatthefollowingdiagramcommutes:
1BBAA??θHH11.1
IfA??isrightB-faithfully?at,thenθmustbeanisomorphism;cf.Remark2.2.ThefollowingpropositionisduetoE.M¨uller.
Proposition2.8([M3,3.4(c)]).Let1→B→?A?→H→1beanexactsequenceofHopfalgebras.LetJbeaHopfidealofAof?nitecodimensionandJ=B∩J.Then1→B/J→A/J→H/π(J)→1isexact.??
2.2.Isomorphisms
NowwestudysomepropertiesoftheHopfalgebrasgivenbyProposition2.3.ιπ
EXTENSIONS OF FINITE QUANTUM GROUPS
EXTENSIONSOFFINITEQUANTUMGROUPS5
De?nition2.9([A,2.2.3]).TheHopfcenterofaHopfalgebraAisthemaximalcentralHopfsubalgebraHZ(A)ofA.Italwaysexistsby[A,2.2.2].
Proposition2.10.Fori=1,2,let1→Ki→Ai→Hi→1beexactsequencesofHopfalgebrassuchthatKi=HZ(Ai).Supposethatω:A1→A2isaHopfalgebraisomorphism.Thenthereexistisomorphisms:K1→K2and:H1→H2suchthatthefollowingdiagramcommutes:
1K1
ι1A1ωπ1H1
H211.1K2ι2A2π2
Proof.Straightforward;see[G,2.3.12]fordetails.??
Thefollowinglemmaanditscorollarieswillbeneededlater.
Lemma2.11.Let1→B→A?→H→1beacentralexactsequenceofHopfalgebrassuchthatAisaNoetherian.IfB?C?HZ(A)isaHopfsubalgebrasuchthatπ(C)=HZ(H),thenC=HZ(A).
Proof.LetB?D?HZ(A)beaHopfsubalgebrasuchthatπ(D)=HZ(H).By
[Sch1,Theorem3.3],Aisfaithfully?atoverD.HenceDisadirectsummandofAasaD-module,see,forexample,[SS,3.1.9].SayA=D⊕M.ThenKerπ|D=DB+,sinceKerπ|D=Kerπ∩D=AB+∩D=(D⊕M)B+∩D=DB+.Besides,B?Dcoπ|D?Acoπ=B,whichimpliesthatD?tsintothecentralexactsequence1→B→D→HZ(H)→1.
Moreover,theextensionB?D??HZ(H)isHZ(H)-GaloisbyRemark2.2.NowtakingD=CandD=HZ(A)wegetthefollowingcommutativediagramwithexactrowswhichareHZ(H)-GaloisextensionsofB:
1BCHZ(A)HZ(H)1(5)HZ(H)
??1.π1BHence,byLemma2.6,itfollowsthatC=HZ(A).
Asimmediatecorollariesweget
Corollary2.12.AssumethehypothesisofLemma2.11.IfHZ(H)=k,thenB=HZ(A).
Proof.ThisfollowsbytakingC=BinLemma2.11.
ιπ??Corollary2.13([A,3.3.9]).Let1→K→?A?→H→1beacentralexact
sequenceof?nite-dimensionalHopfalgebras.IfHZ(H)=k,thenHZ(A)=K.??
Wenowgiveasu?cientconditionfortwoHopfalgebrasconstructedviathepushouttobeisomorphic.Let
1BιAπH1
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 教育日志
- 可爱卡通俏皮六一儿童节Word模板
- 只要用心播种就有结果_八岁儿童能读会写初探_贾丽华
- 玩具柜台前的孩子反思
- 小指甲变了Word
- 《Unit2-My-Schoolbag》Word
- 妈妈我想对您说
- 第五课 热带雨林的故事 词语Word
- 婴儿用品清单
- 我养成了一个好习惯(王马旗尉)
- 放飞梦想儿童卡通六一儿童节动态Word模板
- 古诗词80首
- 学前教育家庭经济困难受助儿童信息档案卷内目录
- 将孝心进行到底_对学生进行孝心教育案例_姜海如
- 阅读题作为语文考题的重要组成部分
- 小儿常备药
- 01龙王岭小学教育基金管理办法
- 学前教育资助档案盒脊面
- 浚县科达小学(北校)三(8)班:李佳坤 我是环保小卫士
- 六一国际儿童节系列活动方案
- 关于幼儿教学的论文精选四篇
- 美国老师如何讲灰姑娘的故事
- 礼仪课教案(教研讨论后修改语言课)
- 学前教育资助档案盒封面
- 幼儿园健康检查制度
- 儿童节邀请函Word
- 六一儿童节庆祝大会方案
- 六一儿童节诗朗诵五首
- 常见问题解答
- unit4-It's-warm-today1Word
网友关注视频
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
- 外研版英语七年级下册module3 unit2第一课时
- 外研版英语七年级下册module3 unit2第二课时
- 七年级英语下册 上海牛津版 Unit5
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 北师大版数学四年级下册第三单元第四节街心广场
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
- 小学英语单词
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 二年级下册数学第二课
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 七年级英语下册 上海牛津版 Unit9
- 七年级下册外研版英语M8U2reading
- 二年级下册数学第一课
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理