Finite volume evolution Galerkin methods for the shallow water equations with dry beds
上传者:李诚人|上传时间:2015-05-07|密次下载
Finite volume evolution Galerkin methods for the shallow water equations with dry beds
有限体积法
FiniteVolumeEvolutionGalerkinMethodsforthe
ShallowWaterEquationswithDryBeds
ˇov´AndreasBollermann1,?,SebastianNoelle1andMariaLuk´aca-
Medvid’ov´a2
1
arXiv:1501.03628v1 [math.NA] 15 Jan 20152IGPM,RWTHAachen,Templergraben55,52062Aachen,Germany.DepartmentofMathematics,UniversityofTechnologyHamburg,Schwarzenbergstraße95,21073Hamburg,GermanyAbstract.WepresentanewFiniteVolumeEvolutionGalerkin(FVEG)schemeforthesolutionoftheshallowwaterequations(SWE)withthebottomtopographyasasourceˇov´term.OurnewschemewillbebasedontheFVEGmethodspresentedin(Luk´aca,NoelleandKraft,J.Comp.Phys.221,2007),butaddsthepossibilitytohandledryboundaries.Themostimportantaspectistopreservethepositivityofthewaterheight.Wepresentageneralapproachtoensurethisforarbitrary?nitevolumeschemes.Themainideaistolimittheoutgoing?uxesofacellwhenevertheywouldcreatenegativewaterheight.Physically,thiscorrespondstotheabsenceof?uxesinthepresenceofvacuum.Well-balancingisthenre-establishedbysplittinggravitationalandgravitydrivenpartsofthe?ux.Moreover,anewentropy?xisintroducedthatimprovesthereproductionofsonicrarefactionwaves.AMSsubjectclassi?cations:65M08,76B15,76M12,35L50PACS:02.60.Cb,47.11.Df,92.10.SxKeywords:Well-balancedschemes,Dryboundaries,Shallowwaterequations,EvolutionGalerkinschemes,Sourceterms1IntroductionTheshallowwaterequations(SWE)areamathematicalmodelforthemovementofwaterundertheactionofgravity.Mathematicallyspoken,theyformasetofhyperboliccon-servationlaws,whichcanbeextendedbysourcetermslikethein?uenceofthebottomtopography,frictionorwindforces.Inthiscase,wewillspeakofabalancelaw.Forsimplicity,thisworkwillconsiderthevariationofthebottomastheonlysourceterm.
Manyimportantpropertiesofthemodelrelyonthefactthatthewaterheightisstrictlypositive.Despitethis,typicalrelevantproblemsincludetheoccurrenceofdryareas,likedambreakproblemsortherun-upofwavesatacoast,withtsunamisasthe?Correspondingauthor.Emailaddress:bollermann@igpm.rwth-aachen.de(A.Bollermann)
GlobalSciencePreprinthttp://wendang.chazidian.com/
有限体积法
January16,2015
mostimpressiveexample.Soforsimulationsoftheseproblems,wehavetodevelopnu-mericalschemesthatcanhandlethe(possiblymoving)shorelineinastableandef?cientway.Anothercrucialpointinsolvingbalancelawsisthetreatmentofthesourceterms.Forprecisesolutions,itisnecessarytoevaluatethesourceterminsuchawaythatcertainsteadystatesarekeptnumerically,i.e.thenumerical?uxandthenumericalsourcetermcanceleachotherexactlyforequilibriumsolutions.
Inthelastyears,manygroupscontributedtothesolutionofthedif?cultiesdescribedabove.In[?],Audusseet.al.proposedareconstructionprocedurewherethefreesurfaceandwaterheightarereconstructedandthebottomslopesarecomputedfromthese.Thisguaranteesthepositivityofthewaterheightandgivesawell-balancedschemeatthesametime.BegnudelliandSandersdevelopedaschemefortriangularmeshesincludingscalartransportsin[?].Theyproposedastrategyhowtoexactlyrepresentthefreesurfaceinpartiallywettedcells,leadingtoimprovedresultsatthewetting/dryingfront.In[?],Brufauet.al.analysehowtodealwith?owonanadverseslope.Theylocallymodifythebottomtopographyincertainsituationstoavoidunphysicalrun-upsorwavecreationatthedryboundary.Gallardoet.al.discussedvarioussolutionsoftheRiemannproblematthefrontandusedtheminamodi?edRoescheme.TheythenusedthelocalhyperbolicharmonicmethodfromMarquina(cf.[?])inthereconstructionsteptoachievehigherorder,see[?].KurganovandPetrovaproposedacentral-upwindschemethatiswell-balancedandpositivitypreservingin[?].Itisbasedonacontinuous,piecewiselinearapproximationofthebottomtopographyandperformsthecomputationintermsofthefreesurfaceinsteadoftherelativewaterheighttosimplifythewell-balancing.ThelastfeatureisalsoabuildingblockintheworkofLiangandMarche[?].Theyalsoprovideamethodtoextendthiswell-balancingfeaturetosituationsincludingwetting/dryingfronts.LiangandBorthwick[?]usedadaptivequad-treegridstoimprovetheef?ciencyoftheirschemes.Wettinganddryingeffectsarehandledaswellasfrictionterms.Inthecontextofresidualdistributionmethods,RicchiutoandBollermanndevelopedapositiv-itypreservingandwell-balancedschemeforunstructuredtriangulations[?].
ˇov´The?nitevolumeevolutionGalerkin(FVEG)methodsdevelopedbyLuk´aca,Mor-
tonandWarnecke,cf.[?,?,?],havebeensuccessfullyappliedtotheSWEin[?].Theyarebasedontheevaluationofsocalledevolutionoperatorswhichpredictvaluesforthe?nitevolumeupdate.Thankstotheseoperators,theschemestakeintoaccountalldirectionsofwavepropagation,enablingthemtopreciselycatchmultidimensionaleffectsevenonCartesiangrids.Theseschemesshowaverygoodaccuracyevenonrelativelycoarsemeshescomparedtootherstateoftheartschemesandtheyarealsocompetitiveintermsofef?ciency(cf.[?]).
However,theexistingFVEGschemesarenotabletodealwithdryboundaries.Thusinthisworkwewillpresentamethodtopreservethepositivityofthewaterheightwithanarbitrary?nitevolumemethod.Toachievethis,wereducetheout?owondrainingcellssuchthatthewaterheightdoesnotbecomenegative.Wewillthenprovidethemeanstopreservethewell-balancingpropertyunderthepresenceofdryareas,andapplybothtechniquestoanewFVEGmethod.Inaddition,wepresentanewentropy?xfor
2
有限体积法
January16,2015
theFVEGschemesthatimprovesthereproductionofsonicrarefactionwaves.
WestartourpaperwithashortpresentationoftheSWEinSection2.Section3de-scribestheFVEGmethodwewillstartfrom.Thearisingdif?cultiesbyintroducingdryareasandmeanstoovercomethemaredescribedinSection4,whichisthemainpartofthepaper.Finally,inSection5,wewillshowselectednumericaltestcasesthatdemon-stratetheperformanceofourschemes.
2
2.1
TheShallowWaterEquations
BalanceLawForm
Weconsidertheshallowwatersysteminbalanceform
?u
+?·F(u)=?S(u, x).?t
Theconservedvariablesandthe?uxaregivenby
h
u=?hv1?,
hv2
?
?
hv1
2?2
F(u)=(F1(u)F2(u))=?hv1+ghhv1v2
?
hv2
?
hv1v2?,
h2
hv2+g2?
(2.2)(2.1)
wherehdenotestherelativewaterheight, v=(v1,v2)Tthe?owspeedandgthe(constant)
gravityacceleration.ThesourcetermS(u, x)isgivenby
??0x)???b(
(2.3)S(u, x)=gh?1?
?b( x)
2
withb( x)thelocalbottomheight.Wealsointroducethefreesurfacelevel,ortotalwaterheight,
H( x)=h( x)+b( x)(2.4)andtheso-calledspeedofsound
c=??.
(2.5)
Thisisthevelocityofthegravitywavesandshouldnotbeconfusedwiththephysical
soundspeedinair.
2.2Quasi-linearForm
ForthederivationoftheevolutionoperatorsinSection3.2,itishelpfultorewrite(2.1)inprimitivevariables.Thesystemthentakestheform
wt+A1(w)wx1+A2(w)wx2=t
3
(2.6)
有限体积法
January16,2015with
??h
w=?v1?,
v2?
v1h0
A1=?gv10?,
00v1
?0
t=??gbx1?.
?gbx2
?
?
?
v20h
A2=?0v20?
g0v2
?
(2.7)
andthesourceterm
(2.8)
Foreachangleθ∈[0,2π)wede?nethedirection ξ(θ):=(cosθ,sinθ).Assystem(2.1)ishyperbolic,foreachofthesedirectionsanda?xedwthematrix
A(w)= ξ1A1(w)+ ξ2A2(w)
hasrealeigenvalues
λ1= v· ξ?c,
λ2= v· ξ,
λ3= v· ξ+c
(2.10)(2.9)
andafullsetoflinearlyindependenteigenvectors
??1θ?r1=?gcos,θgsin?
?
r2=?sinθ?,
?cosθ
?
?
θ?r3=?gcos.θgsin1
?
(2.11)
2.3LakeatRest
Atrivial,butneverthelessimportantsolutionto(2.1)isthelakeatrestsituation,where
thewaterissteadyandthefreesurfacelevelisconstant,i.e.wehave
v=(0,0)TandH( x)=H0.
From(2.4)weimmediatelyget
(2.12)
?h=??b
andtherefore(with(2.1)–(2.3)and v=(0,0)T)
?
00
?b( x)?2
?gh?+?0?=?gh??1?.2
?b( x)0xgx1
2
2
(2.13)
???
?
?
(2.14)
Aschemeful?llingadiscreteanalogonof(2.14)exactlyiscalledwell-balanced.
4
有限体积法
January16,2015
3FVEGSchemes
Finitevolumeschemesareverypopularforsolvinghyperbolicconservationlawsforseveralreasons.Theyrepresenttheunderlyingphysicsinanaturalwayandcanbeim-plementedveryef?ciently.Nevertheless,nearlyallofthemarebasedonthesolutionofone-dimensionalRiemannproblemsandtherewithadimensionalsplitting.Thisintro-ducessomesortofabias:Wavepropagationalignedwiththegridisverywellrepre-sented,whereaswavesobliquetothegridcannotbecaughtasaccurate.
ˇov´InthelastdecadeLuk´acaet.al.developedaclassof?nitevolumeevolutionGalerkin
schemes,seee.g.[?,?,?].TheFVEGschemeisapredictor-correctormethod:Inthepre-dictorstepamultidimensionalevolutionisdone,thecorrectorstepisa?nitevolumeupdate.
Inthissectionwewillrecallthesecondorderschemepresentedin[?].ThismethodwillbethestartingpointforourextensionsforcomputationsincludingdrybedsinSec-tion4.Thereforeweconcentrateonthepropertiesplayingaroleinthiscontextandlimitourselvestothemainideasotherwise.
3.1FiniteVolumeUpdate
Forourcomputations,weuseCartesiangrids,i.e.wedivideourcomputationaldomain?inrectangularcellsCi,separatedbyedgesE.Ontheedges,wehavequadraturepoints xk.Thesubscriptiwillalwaysrefertoacell,whereaskasasubscriptisusedasaglobalindexforquadraturepoints.Ifwetalkaboutthelocalquadraturepointsonasingleedge,weusetheindexjinstead.
Oneachcellwede?netheinitialvalueatas
1u0:=u(0)≈ii|Ci|??Ciu( x,0)d x(3.1)
whereweuseaGaussianquadraturetoapproximatetheintegral.Integrating(2.1)oneachcell,wecanthende?netheupdateas
1uin+1=uin?|Ci|??tn+1????tn?CiF(u( x,t))· nd x+??CiS(u( x,t), x)d xdt??(3.2)
usingtheGausstheorem.HereuindenotescellaverageinCiattimetnand nistheouternormal.Thesolutiononthewholedomainattimetnisthende?nedas
Un( x):=U( x,tn)=uin, x∈Ci.(3.3)
Foranapproximationof(3.2),oneachedgewede?nethreequadraturepoints xj,j=1,2,3,seeFig.1.Thesequadraturepointsarelocatedonthevertices(j=1,3)andthecentre(j=2)ofanedge.The?uxovertheedgeisapproximatedbyusingmidpointruleintimeandSimpson’sruleinspace,hencewewillusetheevolutionoperatorsfromSection3.2
5
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 期中考试通知及进度表
- 2006学年湖州市初中数学竞赛复赛试卷(含答案)
- 数学竞赛试题
- 实外七年级数学竞赛模拟试题(6)-
- 2014年杭州西湖区数学中考一模试题
- 2013年广东省中学生初中生物学联赛试卷和答案
- 2014重庆实验外国语学校数学测试题答案四(图形题、解决问题)
- 小升初2015数学面试测试文档
- 2013西安83中(行知中学)小升初综合素质评价真卷
- 2013年福安市初中二年级质量检测生物试题答题卷
- 2012西电科大附中小升初综合素质评价真卷
- 2014年泉州市初中学业质量检测英语试题参考答案及评分标准
- 楼顶风情画
- 小升初政策
- 环境保护讲稿
- 2013年广东省初中生物联赛试题
- 最美的勇士
- 数学希望杯七年级模拟试题GY
- 英语教案
- 2015年全国初中化学素质和实验能力测试(第24届天原杯)复试试题
- 备战中考作文2015年
- 2013年(2014届)初中结业考试生物试卷
- 2011中学生法律知识竞赛试题
- 宫廷戏红的背后
- 小升初必背——论语孟子
- 2015年佳荣中学八年级数学知识竞赛试题
- 小升初升学技巧
- 2012西交大附中小升初综合素质评价真卷
- 2013年全国初中数学联合竞赛试题及参考答案
- 答卷
网友关注视频
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 外研版八年级英语下学期 Module3
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 冀教版小学英语四年级下册Lesson2授课视频
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 七年级英语下册 上海牛津版 Unit3
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 冀教版英语四年级下册第二课
- 外研版英语七年级下册module3 unit1第二课时
- 冀教版英语三年级下册第二课
- 七年级英语下册 上海牛津版 Unit5
- 二年级下册数学第二课
- 北师大版小学数学四年级下册第15课小数乘小数一
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 冀教版英语五年级下册第二课课程解读
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 外研版英语七年级下册module3 unit2第一课时
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理