Ballast mats for the reduction of railway traffic vibrations. Numerical study
上传者:白世贞|上传时间:2015-05-07|密次下载
Ballast mats for the reduction of railway traffic vibrations. Numerical study
2.5维有限元经典SCI,将该方法计算土工材料对振动的影响分析。
内容需要下载文档才能查看 内容需要下载文档才能查看SoilDynamicsandEarthquakeEngineering42(2012)137–150
ContentslistsavailableatSciVerseScienceDirect
SoilDynamicsandEarthquakeEngineering
journalhomepage:http://wendang.chazidian.com/locate/soildyn
Ballastmatsforthereductionofrailwaytraf?cvibrations.Numericalstudy
P.AlvesCostan,R.Calc-ada,A.SilvaCardoso
UniversityofPorto,FacultyofEngineering,Porto,Portugal
articleinfo
Articlehistory:
Received9December2011Receivedinrevisedform11June2012
Accepted13June2012
Availableonline7July2012
abstract
Thispaperpresentsanumericalstudydevelopedinordertounderstandthedynamicbehaviorofballastedtrackswithmatsincludingthetrain–track–groundinteraction.Inordertoachievethatgoal,acasestudyismodeledbya2.5DFEM–BEMformulation.Acomprehensiveapproachispresentedandtheeffectsofthematstiffnessandlocationindeptharediscussed.Thecomparisonbetweenisolatedandnon-isolatedscenariosallowedconcludingthattheballastmathasadualeffect,focusingonthetrain–trackdynamicbehaviorandonthereductionofhigh-frequencyvibrationsthataretransmittedtotheground.Furthermore,itwasfoundthatglobalef?ciencycanbereachedbyplacingthematbeneaththesubballastinsteadofbelowtheballastlayer.
&2012ElsevierLtd.Allrightsreserved.
1.Introduction
Thegeometricalimperfectionsofwheelsandtracksarethemajorcauseofdynamicloadsdevelopedduringtherollingoftrains.Thesedynamicloadsactandexcitewavespropagatingfromthetracktothefree-?eldandtonearbybuildings,givingrisetothecommonlycalledtrain-inducedgroundvibrations.
Theenvironmentalproblemsrelatedtovibrationsinducedbytrainpassagesarebecominganimportantconcerninrecentyears,mainlyduetothelatesttechnologicaladvancesanddevelop-ments,whichallowforanincreaseofspeed.Thegrowthoftheintensityofurbanoccupationleadstoaworseningofthesurroundingconditions.So,thenuisanceforpeoplewholiveorworkinbuildingsnearrailwaylinesmustbemitigated,demand-ingforthedesignanddevelopmentofef?cientsolutions.
Thecountermeasuresagainstvibrationsinducedbytraf?ccanbegroupedintothreedistinctgroups,dependingonthelocation:i)atthesource;ii)alongthewavepropagationpath;iii)atthereceiver.Thelatter,comprisingtheisolationofthebuildings,doesnotchangethepatternortheamplitudeofthewavesthatpropagatefromthetrack.Alternatively,itisalsopossibletointerruptthewavepath,i.e.,topreventthewavesfromreachingthebuildings[1].
Countermeasurescanalsobeadoptedatthesourcelevel,i.e.,atthetrack.Generally,theobjectiveisachievedbychangingthedynamicbehaviorofthetrackthroughtheinsertionofresilientelementsoradditionalmassestothetrackstructure[2].Theformer,moreusualthanthelatter,canbeplacedatdifferentlocationlevelsoftherailwaytrackcross-section.Themainideais
Correspondingauthor.Tel.:þ351962934245.E-mailaddresses:pacosta@fe.up.pt(P.AlvesCosta),ruiabc@fe.up.pt(R.Calc-ada),scardoso@fe.up.pt(A.SilvaCardoso).0267-7261/$-seefrontmatter&2012ElsevierLtd.Allrightsreserved.http://wendang.chazidian.com/10.1016/j.soildyn.2012.06.014
n
toinducealowernaturalfrequencytotherailwaytrack,whichisconditionedbythemassabovetheresilientelementandbyitsstiffness(lowerthanthatoftheremainingelements).Asisevident,theeffectivenessofthisisolationtechniqueisrelatedtothevalueoftheresonancefrequency.Insertionofresilientelementsimmediatelybeneaththerailsorthesleepers,suchasrailpadsorundersleeperpads,givesrisetohighvaluesfortheresonantfrequencyduetothelowermassabovetheisolation.Ontheotherhand,lowerresonantfrequenciescanbeachievedinheavysystems,suchasin?oatingslabtracksorballastedtrackswithballastmats,whichallowincreasingtheeffectivenessoftheisolationforfrequenciesabovefewtensofHertz.
Ballastmatsareanef?cientcountermeasuretoreducevibrationsinducedinthemiddlefrequencyrange[3].Infact,theintroductionoftheresilientelementsbeneaththeballastorthesub-ballast,allowsachievingalowresonantfrequency,i.e.,from20Hzto50Hz,duetotheheaviermassabovetheresilientelement.Thereductionoftheresonantfrequencyforvalueslowerthan20Hzisdif?cult,especiallyforhighspeedrailways,sincetheballastmatresilienceislimitedbythemaximumallowablestaticrailde?ection.Auersch[4]pointedouttherangeoffrequenciesbetween20Hzand50Hzasusualvaluesfortheresonancefrequencyintroducedbythepre-senceoftheballastmat.Regardingtheeffectivenessoftheisolationprovidedbytheballastmat,Muller[5]showed,basedonexperi-mentaltests,thattheinsertionlossprovidedbythematisconsiderablyhigherifthesupportisstiffer.Therefore,ballastmatsinstalledintunnelsorinstiffersupports(suchasbridges,forinstance)aremuchmoreef?cientthanmatsinstalledinopenlines.SimilarconclusionswerealsoachievedbyLombaertandDegrande[6]fromthenumericalstudyof?oatingslabtracks.
Nevertheless,despitetheresultsobtainedbytheauthorsmentionedabove,thisisoneofthecaseswheretheconstructionindustryisonestepaheadoftheresearch,i.e.,thereareseveral
2.5维有限元经典SCI,将该方法计算土工材料对振动的影响分析。
138P.AlvesCostaetal./SoilDynamicsandEarthquakeEngineering42(2012)137–150
productsandproceduresincontrasttothelackofcomprehensivestudiesaboutitsparticularperformance.Intheauthors’knowl-edge,theexistingnumericalstudiesaboutthistopicarereducedtosimpleone-dimensionalformulations[3,7],withsomeexcep-tionsconcerningthestudiesperformedon?oatingslabtracks[6,8],whichcanberegardedasasimilarsystem,andtoaresearchpaperdedicatedtothetopicpresentedbyAuersch[4].However,effectsofthetrainmovementandtheconsequentdynamictrain–trackinteraction,aswellastheDoppler’seffectinducedbythemovingcharacteristicsoftheload,havenotyetbeenaddressedinanystudy,thusjustifyinganddemandingforfurthercontribu-tionsonthisimportanttopic.
Theaimofthepresentpaperistocontributeforthestudyofthedynamicbehaviorofballastedtrackswithmats,includingthetrain–trackdynamicinteractionandthewavepropagationinthefree-?eld.A2.5DFEM–BEMmodel,developedbytheauthors,isadoptedforthesimulationofthetrack–groundsystem,withtherollingstockmodeledbyamulti-bodymodel.BothmodelswereintegratedinacomputationalcodedevelopedinMatlab,whichallowstakingintoaccountthetrain–trackinteractiondynamicloadsinducedbythetrackunevenness.
Inordertoobtainarealisticscenario,acasestudypreviouslyanalyzedandpresentedbytheauthorswasusedasastartingpointforthepresentnewstudies[9].Thescenarioofthenon-isolatedtrack,whichwaspreviouslyvalidatedbythecomparisonbetweenmeasuredandcomputedresults,isusedasreferencesolutiontogetacomprehensiveunderstandingoftheeffectivenessoftheballastmatonthemitigationofvibrationsinducedbytraf?c.
Thepaperisorganizedasfollows.Firstly,abriefoverviewofthemaincharacteristicsofthecomputationalcodeispresented,comprisingthemodelingofthetrack–groundsystemandthesimulationoftherollingstockaswellasitsinteractionwiththeremainingdomain.Subsequently,someapplicationsaredevel-opedwiththeaimofdiscussingthein?uenceoftheballastmatsonthemechanismofexcitationandpropagationofseismicwaves.Thesecomprehensiveapplicationsaredividedintwomainparts:thediscussionofthein?uenceofthematsonthedynamicbehaviorofthetrackwhensubmittedtostand-stillloadsiscarriedoutinthe?rstpart,whiletheanalysisoftheef?ciencyoftheisolationsystemformovingloadsisevaluatedinthesecondpart.Finally,someconclusionsarepresentedwithfocusontheef?ciencyofthiskindofisolationsystem.
2.Numericalpredictionmodel2.1.Thetrack–groundsystem
Forthecomputationofthe3Dtrack–grounddynamicresponse
inducedbythetrainpassage,anumericalprocedurebasedonthe2.5Dcouplingof?nite(FEM)andboundaryelements(BEM)formulationwasadopted[9–12].The2.5Dformulationcorre-spondstoanattemptforreducingthecomputationaleffortsince,assumingthelinearityandtheinvariabilityofthedomain,theequilibriumcanbeestablishedinthewavenumber-frequencydomain,employingFourierexpansionsforspace(inthetrackdevelopmentdirection)andtime.Therefore,the3Dsolutionisobtainedwithouttheneedofnumericaldiscretizationalongthedevelopmentdirectionofthetrack.
Domaindecompositionisusedtosolvethedynamicproblem,beingthetrackmodeledbythe2.5DFEMandthelayeredgroundsimulatedthrough2.5DBEM,asshowninFig.1.
Thecouplingbetweenbothdomainsisdonebya?niteelementsformulation,comprisingthetransformationofthe?ex-ibilitymatrixthatgovernsthedynamicbehavioroftheBEMdomainintoadynamicstiffnessmatrix.
Fig.1.2.5DFEM–BEMcoupling.
Followingtheproperformalismofthe2.5DFEM,thedynamic
equilibriumequationsofthemediumcanbereachedbyavariationalformulation.So,afterintroducingthediscretizationofthecross-sectioninto2.5D?niteelementsandapplyingaFouriertransformregardingthexcoordinate,thedynamicequili-briumcanbedescribedbythefollowingsystemofequations:ðKglobalþik2
4
1Kglobalþkglobal1Kþkglobal1231Kglobal4
Ào2MþKglobal5
ðk1,oÞÞunðk1,oÞ¼pnðk1,oÞð1Þ
whereKglobal1toKglobal4
arestiffnessmatricesofthedomaindescribedby?niteelements,Mglobalisthemassmatrix,k1istheFourierimageofthecoordinatex,oisthefrequency,unisthevectorofthenodaldisplacements,pnisthevectoroftheexternalforces;and,?nally,Kglobal5
isthematrixthatcollectstheimpe-dancetermsofthelayeredground.
Complementaryinformationaboutthedeductionoftheabovementionedmatricescanbeconsultedelsewhere[13–15].Strate-giesformodelingparticularaspects,asforinstancethesleepersandtherail,havealsobeenreportedbyAlvesCostaetal.[14].ThematrixKglobal5
iscomputedfromthe?exibilitymatrixthatgovernsthedynamicbehaviorofthedomaindescribedby2.5DBEM,accordinglytotheprocedureproposedbyBodeetal.[16].AsusualintheBEMformulation,theselectionoffundamentalsolutions,i.e.,theGreen’sfunctions,isakeyaspect.Indeed,severalalternativeprocedurescanbefollowedforcomputingthe?exibilityfora2.5Dformulation,andfundamentalsolutionsdevelopedinthe2.5Ddomainarealreadyavailable[17–19].However,inthepresentapproach,the3DGreen’sfunctionsforalayeredhalf-spacearecomputedbytheHaskell-Thomsonprocedure,aspreviouslysuggestedbyShengetal.[20].
SolvingthesystemofEq.(1),thenodaldisplacementsinthetransformeddomainareobtained,aswellasthepressuresalongthecouplingboundary.OncethesepressuresandtheGreen’sfunctionsofthedisplacementsareknown,thecomputationofthefree?eldresponseisasimplestep.
2.2.ThetrainanditsinteractionwiththeremainingsystemTheloadappliedbythetrainonthetrackcanbedividedintotwocomponents:i)thestaticload,resultingfromtheweightofthetrain;ii)thedynamicload,duetothedynamicinteractionbetweenthetrainandthetrack.Asthe?rstcomponentisaninputdataandnotanunknownvariable,itsconsiderationonanumericalmodelistrivial.Onthecontrary,thelattercomponentdemandsforthesolutionofthedynamictrain–trackinteractionproblem,whichinthepresentstudyissolvedbyacomplianceprocedureformulatedinaframeofreferencethatmoveswiththetrain,assuggestedbyseveralauthors[21–23].
内容需要下载文档才能查看
2.5维有限元经典SCI,将该方法计算土工材料对振动的影响分析。
P.AlvesCostaetal./SoilDynamicsandEarthquakeEngineering42(2012)137–150139
A2Dvehiclemodelwasadoptedinthepresentstudy.Conse-quently,onlytheverticalmovementofthetrainwastakenintoaccount,i.e.,thedynamicloadsinducedbythemovementofthetraininthedirectionsdifferentfromtheverticalwereneglected.Assumingperfectcontactbetweenthetrainandthetrack,thefollowingrelationshipmustbeadheredtoatanytemporalinstantforallconnectingpoints:
uu??a PðtÞ
c,i¼rðx¼ctþaiÞþDutþicþikð2Þ
Hwhereuc,irepresentstheverticaldisplacementsofthecontact
pointiofthevehicle,uristheverticaldisplacementsofthetrackatthesamelocation,Duistherailunevenness,tisthetime,aiisthelocationofcontactpointiatt¼0sandcisthevehiclespeed,kHistheHertzianstiffnessandPiisthedynamicinteractionloaddevelopedattheconnectionpointi.TheinclusionoftheHertzianspringbetweenthewheelandtherailenablestotakeintoaccountthecontactdeformationbyalinearizationapproach[24,25].Notethatthetrainhasseveralcontactpointswiththetrack,incorrespondencetothenumberofwheelsets.
Eq.(2)canbewritteninmatrixforminthefrequencydomainusingthetransformationoftheunevennessforthatdomain.So,thetrain–trackinteractionforceatthefrequencydomainisgivenbypðOÞ¼ÀðFþFHþAÞÀ1DuðOÞ
ð3Þ
whereFisthetraincomplianceatthecontactpointswiththetrack,FHisadiagonalmatrixwiththetermsequalto1/kH,AisthecompliancematrixofthetrackandOisthedrivenfrequency,i.e.,theoscillationfrequencyofthewheelsetduetotheunevennesswithwavelengthl(O¼2pc/l).Allmatricesaresquarewithadimensionequivalenttothenumberofwheelsets.
FromEq.(3)itispossibletoconcludethatthedynamicstiffnessmatrix,whichestablishesarelationshipbetweentheunevennessperceivedbyeachcontactpointbetweenthetrainandthetrackandthedynamicloaddevelopedateachwheelset,herecalledastrain–trackdynamicstiffnessmatrix,isgivenbyKtÀt¼ðFþFHþAÞÀ1
ð4Þ
Thetrack–groundmodelisusedtocomputethetermsofmatrixAbythefollowingexpression:
A1Zþ1ijðOÞ¼2uGðk1,o¼OÀk1cÞUeiðaiÀaÀ1cjÞk1
dk1ð5ÞwhereuGccorrespondstotheverticaldisplacementoftherailin
thetransformeddomainduetoahalf-unitloadappliedintheheadofeachrail.
Ontheotherhand,matrixF,whichcomprisesthevehiclecompliance,iscomputedthroughasimpli?edvehiclemodel,wherethedynamicsofthesprungmass(carbody)isdiscarded(Fig.2).Actually,arecentstudydevelopedbytheauthorsofthepresentpapershowedthatasimpli?edmodel,whereonlythe
Bogies
PrimaryWheelsetsFig.2.2Dvehiclemodeladoptedonnumericalsimulation.
motionoftheaxlesandbogiesistakenintoaccount,suf?cesfortheevaluationoftrain–trackinteractionloads,sincethesecond-arysuspensioninducesanef?cientisolationofthesprungmassforfrequencieshigherthanafewHertz.
3.Thecasestudy3.1.Generaldescription
Inordertovalidatethenumericalmodeldevelopedbytheauthors,anexperimentaltestsitewasselectedandimplementedinthePortugueserailwaynetwork,neartothetownofCarre-gado[9].Sincethepurposeofthepresentstudyistoevaluatetheeffectoftheballastmatsinareliablescenarioofasurfaceline,thegeometryandmaterialpropertiesregardingthiscasestudywereconsidered.Thecasestudyisassumedasabasicscenario,aroundwhichaparametricstudyisdevelopedinordertostudytheeffectsinducedbytheintroductionofballastmats.
ThetrackpresentsastraightalignmentandcorrespondstoarenewedpartoftherailwayconnectionbetweenPortoandLisbon.ThereadershouldrefertoAlvesCostaetal.[9,26]foradetaileddescriptionoftheexperimentsperformedaswellasforthediscussionofthenumericalcalibrationprocedure.3.2.Soildynamicproperties
Thedynamicpropertiesofthesoilwereobtainedfromtwocross-holetestperformedinthesite.Fig.3showsthepro?leofmeasuredwavevelocities(PandS),aswellastheaveragevalues.Thelayeringofthesoilwasincludedinthenumericalanalysisincorrespondencewiththepro?lesofaveragevaluesdepictedinFig.3.
Regardingthedampingpropertiesoftheground,itsevaluationwasperformedbyaninversionprocedurebymatchingthenumericalandthemeasuredtransferfunctions[9].Followingthatapproach,thedampingpro?ledepictedinFig.4wasassumedasrepresentativeofthehystereticmaterialdampingofthegroundforbothvolumetricandsheardeformation.
Moreover,laboratorytestsdevelopedonsamplesrecoveredinboreholesallowed?ndingthat1900kg/m3isareasonablevalueforthemassdensityofthesoil.
3.3.Trackdynamicpropertiesanditsunevenness
TherailwayconsistsofUIC60railssupportedbyconcretesleepersspacedof0.60m,eachonewith300kgofmass.Thedynamiccharacteristicsoftheremainingelementsofthe
内容需要下载文档才能查看
CH 20
CH 2CH 1
CH1
Average values
Average values
55
)
m( htp1010
eD1515
20
100
200300400
20500
1000150020002500
Cs (m/s)
Cp (m/s)
Fig.3.Seismicwavevelocitypro?le:a)Swaves;b)Pwaves.
2.5维有限元经典SCI,将该方法计算土工材料对振动的影响分析。
140P.AlvesCostaetal./SoilDynamicsandEarthquakeEngineering42(2012)137–150
0246Profundidade(m)
81012141618200
0.02
0.04
0.06
0.08
0.1
Fig.4.Dampingpro?le.
non-isolatedtrackwereestimatedbyreceptancetests[9].Fromthosetestsitwasfoundthatthemechanicalpropertiesoftheembankmentaresimilartothepropertiesofthesubballastlayer.Fig.5showsthetrackgeometryandthemechanicalpropertiesobtainedaftertheinversionofthereceptancetests.Theseproper-tiesareassumedforthenon-isolatedscenario.Forisolatedsystems,thematisintroducedimmediatelybelowthesubballastlayer(scenario1),asdepictedinFig.5a,orbeneaththeballastlayer(Fig.5b;scenario2).Sincetheembankmenthasathicknessof0.30mandthesamemechanicalpropertiesasthesubballastlayer,aproperfoundationforthematisguaranteedwhenitisplacedbeneaththesubballastlayer.
Differentvaluesfortheballastmatstiffnesswereconside-red,alwaysassumingaconstantvalueof0.1foritshystereticdamping.
Unlikeothercasestudies,wherethetrackunevennesswasarti?ciallygenerated,inthepresentstudyitwasmeasured.Fig.6ashowsthemeasuredunevennesspro?leoftherailfortherangeofwavelengthsbetween0.4mand25m.Thesameinformation,butinaspectralrepresentation,isalsoillustratedinFig.6b,wherethespectraldensityfunctionproposedbyBraunandHellenbroich[27]fortrackswithgoodormediumqualityarealsorepresented.
Railpad:k=600 kN/mm
内容需要下载文档才能查看 内容需要下载文档才能查看Railpad:k=600 kN/mm
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看Fig.5.Crosssectionofthetrack:a)scenario1—matbeneathsubballastlayer;b)scenario2—matbeneathballastlayer.
2.5维有限元经典SCI,将该方法计算土工材料对振动的影响分析。
P.AlvesCostaetal./SoilDynamicsandEarthquakeEngineering42(2012)137–1500.01
0.005
141
Unevenness (m
内容需要下载文档才能查看)
PSD (m3/rad
内容需要下载文档才能查看)
-0.005
-0.01
50.54175
25
00
75
50
25
00
.5
.7
.7
.6
.6
.6
.6
41
41
41
41
41
41
41
41.525
Location(km)
Wavenumber (rad/m)
Fig.6.Railunevennesspro?le:a)spatialrepresentation;b)powerspectrumdensity.
内容需要下载文档才能查看Fig.7.GeometryofthetrainAlfa-Pendular.
Table1
Mechanicalpropertiesofthetrain.Axles
PrimarysuspensionBogiesCarbody
Mw(kg)Kp(kN/m)Cp(kNs/m)Mb(kg)Jb(kg/m2)Mc(kg)
1538–1884342036
4712–49325000–515032900–35710
3.4.Rollingstock
Inthefollowinganalysis,thepassageoftrainAlfa-Pendularisconsidered.TheAlfa-PendularisthefastesttrainoperatinginPortugal.Itisaconventionaltraincomposedby6vehicles,asindicatedinFig.7.
Themainmechanicalpropertiesofthetrainwereprovidedbytheoperator.Inspiteofthisinformation,someidenti?cationmodaltestsforthestructuralcharacterizationofthetrainwerealsodevelopedandthepropertiesadoptedinthenumericalmodelwereadjustedinordertoobtainagood?tbetweennumericalandexperimentalnaturalfrequencies[28].Table1summarizesthevaluesofthemainpropertiesofthetrain,adoptedinthenumericalanalyses.Thevehiclesofthetrainarenotexactlyequal;Table1indicatestherangeofvaluesfoundforthedistinctvehiclesofthetrain.
4.Dynamicbehaviorofnon-isolatedandisolatedtracks4.1.Receptanceanalysis
Asimplebutcomprehensiveapproachforunderstandinghowthemataffectsthedynamicbehaviorofthetrain–groundsystemisbasedontheanalysisofitsreceptance.Fig.8showsthereceptanceoftherailforbothscenariosunderconsiderationandfortwovaluesoftheballastmatstiffness.Thereceptancecurvesarecomputedassumingahalf-unitstand-stillloadappliedineachrail,andthedisplacementsareevaluatedattherailundertheloadingposition.
Consideringthedynamicresponseofthenon-isolatedscenarioasreferencesolution,whichisalsodepictedinbothFig.8aandb,
itispossibletoidentifytwomainresonancesofthetrack–groundsystemasfollows:i)the?rstpeakofthereceptance,around9Hz,isrelatedtothedynamicresponseinducedbythelayeringoftheground;ii)thehighestfrequencypeak,around82Hz,correspondstotheresonanceofthetracksystemaboveitsfoundation.AspreviouslydiscussedbyKnothandWu[29],thefull-trackresonancecanbehighlydampedwhenitssupportissoftandhomogeneous,beingmorepronouncedifthegroundislayered,asinthepresentcase.Thevaluefoundforthefrequencyofthefull-trackresonance,82Hz,iswithinthetypicalrangeofvalues.AccordingtoMann[30],ballastedtrackshavefull-trackresonantfrequenciesintherangebetween40Hzand140Hz.ThesameconclusionwasalsoachievedbyDalhberg[31].
Asexpected,theintroductionofthematgivesrisetoanewnaturalfrequencyofthesystem,herecalledascut-onfrequency.Actually,theresonanceinducedbythepresenceofthematisverydampedingeneralsituations,butnotfullyperceptiblewhenthestiffermatislocatedbeneaththesubballastlayer(Fig.8a).However,forfrequenciessuf?cientlyhigherthantheresonanceinducedbythematandforallthescenariosunderanalysis,areductionofthereceptanceoftherailisclear,denotingtheef?ciencyoftheisolationinducedbytheballastmat,whichattenuatestheresonanceofthetrackontheground.
Amoredetailedanalysisallowstopointoutthefollowingmainremarks:i)independentlyofthematposition,theincreaseofitsstiffnessleadstoanincreaseofthefrequencyforwhichtheattenuationeffectsstartstobeeffective;ii)forthesamematstiffness,thecut-onfrequencyinducedbythepresenceofthematisaslowasdeepitspositionis;iii)forthesamematstiffnessandintherangeoflowerfrequencies,theresponseoftherailisemphasizedwhenthematislocatedbeneaththeballast.Thislast?ndingisparticularlyimportantsincetheusageofsoftermatsisusuallynotrecommendedduetotherequiredlimitationofthede?ectionoftherail.However,itseemsthatthislimitationcanbeovercomebyameticulousselectionofthematpositiononthecross-sectionofthetrack.
Inwhatconcernstheisolationofvibrations,amoreinterestingeffectisillustratedinFig.9,wherethecross-receptance,com-putedatthecontactbetweentheembankmentandthenatural
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 武夷学院期末工程合同管理考试试卷答案
- 2015年湖北自考金融法考试大纲其他金融机构管理法律制度
- 人力资源管理 教学大纲
- 微课开发中多媒体的使用技巧
- 关于建设生物化学开放式实验室的探讨
- 学院组织召开自主招生考试协调会
- 企业战略(论坛复习题)
- 03-国学与智慧管理系列-国学智慧与领导艺术
- 员工招聘实务期末论文
- 供应链期末论文
- 2012学年度第二学期卫生学期末补考试卷
- 2015年湖北自考金融法考试大纲利率与汇率管理法律制度
- 管理者的日常功课
- 《基础会计学》教案
- 马楠老师:新时期财政投资项目全过程跟踪评审暨造价精细化管控落地实战
- 乐山师范学院-迎新服务系统-调研提纲
- 经济管理学院成功举办读书报告会
- 人力资源管理专业(专科)毕业作业写作要求 (1)
- 信息技术系毕业论文模板
- 人力资源开发与管理
- 培训课程开发七步法
- 7江海职业技术学院社会捐赠基金管理办法
- 马楠老师:新形势下建设工程项目全过程跟踪审计实战
- 向英俊老师:不确定环境下的房地产项目精准运营及管控
- 班委职责参考
- 法则
- 信息技术系毕业设计文稿规范 (1)
- 2015年珠海自考销售管理本科《销售客户管理》复习要点
- 王建超毕业设计(论文)开题报告
- 集团发展教育教学管理剖析方案
网友关注视频
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 苏教版二年级下册数学《认识东、南、西、北》
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
- 北师大版数学四年级下册3.4包装
- 冀教版小学数学二年级下册第二单元《租船问题》
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 人教版二年级下册数学
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 冀教版英语三年级下册第二课
- 七年级英语下册 上海牛津版 Unit3
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 《空中课堂》二年级下册 数学第一单元第1课时
- 冀教版英语四年级下册第二课
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
- 外研版英语七年级下册module3 unit1第二课时
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 七年级下册外研版英语M8U2reading
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 外研版英语七年级下册module1unit3名词性物主代词讲解
- 《小学数学二年级下册》第二单元测试题讲解
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理