教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 初中教育> 学科竞赛> 初一数学竞赛讲座⑶奇偶分析

初一数学竞赛讲座⑶奇偶分析

上传者:刘显贵
|
上传时间:2015-05-11
|
次下载

初一数学竞赛讲座⑶奇偶分析

初一数学竞赛讲座

第3讲 奇偶分析

我们知道,全体自然数按被2除的余数不同可以划分为奇数与偶数两大类。被2除余1的属于一类,被2整除的属于另一类。前一类中的数叫做奇数,后一类中的数叫做偶数。关于奇偶数有一些特殊性质,比如,奇数≠偶数,奇数个奇数之和是奇数等。灵活、巧妙、有意识地利用这些性质,加上正确的分析推理,可以解决许多复杂而有趣的问题。用奇偶数性质解题的方法称为奇偶分析,善于运用奇偶分析,往往有意想不到的效果。

例1 右表中有15个数,选出5个数,使它们

的和等于30,你能做到吗?为什么?

分析与解:如果一个一个去找、去试、去算,

那就太费事了。因为无论你选择哪5个数,它们的

和总不等于30,而且你还不敢马上断言这是做不到的。最简单的方法是利用奇偶数的性质来解,因为奇数个奇数之和仍是奇数,表中15个数全是奇数,所以要想从中找出5个使它们的和为偶数,是不可能的。

例2 小华买了一本共有96张练习纸的练习本,并依次将它的各面编号(即由第1面一直编到第192面)。小丽从该练习本中撕下其中25张纸,并将写在它们上面的50个编号相加。试问,小丽所加得的和数能否为2000?

解:不能。

由于每一张上的两数之和都为奇数,而25个奇数之和为奇数,故不可能为2000。 说明:“相邻两个自然数的和一定是奇数”,这条性质几乎是显然的,但在解题过程中,能有意识地运用它却不容易做到,这要靠同学们多练习、多总结。

例3 有98个孩子,每人胸前有一个号码,号码从1到98各不相同。试问:能否将这些孩子排成若干排,使每排中都有一个孩子的号码数等于同排中其余孩子号码数的和?并说明理由。

解:不能。

如果可以按要求排成,每排中都有一个孩子的号码数等于同排中其余孩子号码数的和,那么每一排中各号码数之和都是某一个孩子号码数的2倍,是个偶数。所以这98个号码数的总和是个偶数,但是这98个数的总和为

1+2+?+98=99×49,是个奇数,矛盾!所以不能按要求排成。

例4 如右图,把图中的圆圈任意涂上红色或蓝色。

问:有无可能使得在同一条直线上的红圈数都是奇数?

请说明理由。

解:不可能。

如果每条直线上的红圈数都是奇数,而五角星有五

条边,奇数个奇数之和为奇数,那么五条线上的红圈共

有奇数个(包括重复的)。从另一个角度看,由于每个 圆圈是两条直线的交点,则每个圆圈都要计算两次,因

此,每个红圈也都算了两次,总个数应为偶数,得出矛盾。所以,不可能使得在同一条直线上的红圈数都是奇数。

说明:上述两题都是从两个不同的角度去分析处理同一个量,而引出矛盾的。

内容需要下载文档才能查看 内容需要下载文档才能查看

1

例5 有20个1升的容器,分别盛有1,2,3,?,20厘米水。允许由容器A向容器B倒进与B容器内相同的水(在A中的水不少于B中水的条件下)。问:在若干次倒水以后能否使其中11个容器中各有11厘米3的水? 解:不可能。

在倒水以后,含奇数立方厘米水的容器数是不会增加的。事实上以(偶,偶)(偶,奇)(奇,奇)来表示两个分别盛有偶数及偶数,偶数及奇数,奇数及奇数立方厘米水的容器。于是在题中条件限制下,在倒水后,(偶,偶)仍为(偶,偶);而(偶,奇)会成为(偶,奇)或(奇,偶);(奇,奇)却成为(偶,偶)。在任何情况下,盛奇数立方厘米水的容器没有多出来。

因为开始时有10个容器里盛有奇数立方厘米的水,所以不会出现有11个盛有奇数立方厘米水的容器。

例6 一个俱乐部里的成员只有两种人:一种是老实人, 永远说真话;一种是骗子,永远说假话。某天俱乐部的全 体成员围坐成一圈,每个老实人两旁都是骗子,每个骗子 两旁都是老实人。外来一位记者问俱乐部的成员张三: “俱乐部里共有多少成员?”张三答:“共有45人。” 另一个成员李四说:“张三是老实人。”请判断李四是老

实人还是骗子?

分析与解:根据俱乐部的全体成员围坐一圈,每个老实人两旁都是骗子,每个骗子两旁都是老实人的条件,可知俱乐部中的老实人与骗子的人数相等,也就是说俱乐部的全体成员总和是偶数。而张三说共有45人是奇数,这说明张三是骗子,而李四说张三是老实人,说了假话,所以李四也是骗子。

说明:解答此题的关键在于根据题设条件导出老实人与骗子的人数相等,这里实质上利用了对应的思想。 类似的问题是:

围棋盘上有19×19个交叉点,现在放满了黑子与白子,且黑子与白子相间地放,并使黑子(或白子)的上、下、左、右的交叉点上放着白子(或黑子)。问:能否把黑子全移到原来的白子的位置上,而白子也全移到原来黑子的位置上? 提示:仿例6。答:不能。

例7 某市五年级99名同学参加数学竞赛,竞赛题共30道,评分标准是基础分15分,答对一道加5分,不答记1分,答错一道倒扣1分。问:所有参赛同学得分总和是奇数还是偶数?

解:对每个参赛同学来说,每题都答对共可得165分,是奇数。如答错一题,就要从165分中减去6分,不管错几道,6的倍数都是偶数,165减去偶数,差还是奇数。同样道理,如有一题不答,就要减去4分,并且不管有几道题不答,4的倍数都是偶数,因此,从总分中减去的仍是偶数,所以每个同学的得分为奇数。而奇数个奇数之和仍为奇数,故99名同学得分总和一定是奇数。

例8 现有足够多的苹果、梨、桔子三种水果,最少要分成多少堆(每堆都有苹果、梨和桔子三种水果),才能保证找得到这样的两堆,把这两堆合并后这三种水 果的个数都是偶数。

分析与解:当每堆都含有三种水果时,三种水果的奇偶情况如下表:

内容需要下载文档才能查看

3

内容需要下载文档才能查看

2

可见,三种水果的奇偶情况共有8种可能,所以必须最少分成9堆,才能保证有两堆的三种水果的奇偶性完全相同,把这两堆合并后这三种水果的个数都是偶数。

说明:这里把分堆后三种水果的奇偶情况一一列举出来,使问题一目了然。

例9 有30枚2分硬币和8枚5分硬币,5角以内共有49种不同的币值,哪几种币值不能由上面38枚硬币组成?

解:当币值为偶数时,可以用若干枚2分硬币组成;

当币值为奇数时,除1分和3分这两种币值外,其余的都可以用1枚5分和若干枚2分硬币组成,所以5角以下的不同币值,只有1分和3分这两种币值不能由题目给出的硬币组成。

说明:将全体整数分为奇数与偶数两类,分而治之,逐一讨论,是解决整数问题的常用方法。

若偶数用2k表示,奇数用2k+1表示,则上述讨论可用数学式子更为直观地表示如下: 当币值为偶数时,2k说明可用若干枚2分硬币表示;

当币值为奇数时,2k+1=2(k-2)+5,

其中k≥2。当k=0,1时,2k+1=1,3。1分和3分硬币不能由2分和5分硬币组成,而其他币值均可由2分和5分硬币组成。

例10 设标有A,B,C,D,E,F,G的7盏灯顺次排成一行,每盏灯安装一个开关。现在A,C,D,G这4盏灯亮着,其余3盏灯没亮。小华从灯A开始顺次拉动开关,即从A到G,再从A开始顺次拉动开关,他这样拉动了999次开关后,哪些灯亮着,哪些灯没亮?

解:一盏灯的开关被拉动奇数次后,将改变原来的状态,即亮的变成熄的,熄的变成亮的;而一盏灯的开关被拉动偶数次后,不改变原来的状态。由于999=7×142+5,

因此,灯A,B,C,D,E各被拉动143次开关,灯F,G各被拉动142次开关。所以,当小华拉动999次后B,E,G亮,而A,C,D,F熄。

例11 桌上放有77枚正面朝下的硬币,第1次翻动77枚,第2次翻动其中的76枚,第3次翻动其中的75枚??第77次翻动其中的1枚。按这样的方法翻动硬币,能否使桌上所有的77枚硬币都正面朝上?说明你的理由。

分析:对每一枚硬币来说,只要翻动奇数次,就可使原先朝下的一面朝上。这一事实,对我们解决这个问题起着关键性作用。

解:按规定的翻动,共翻动1+2+?+77=77×39次,平均每枚硬币翻动了39次,这是奇数。因此,对每一枚硬币来说,都可以使原先朝下的一面翻朝上。注意到:

77×39=77+(76+1)+(75+2)+?+(39+38),

根据规定,可以设计如下的翻动方法:

第1次翻动77枚,可以将每枚硬币都翻动一次;第2次与第77次共翻动77枚,又可将每枚硬币都翻动一次;同理,第3次与第76次,第4次与第75次??第39次与第40次都可将每枚硬币各翻动一次。这样每枚硬币都翻动了39次,都由正面朝下变为正面朝上。

说明:(1)此题也可从简单情形入手(如9枚硬币的情形),按规定的翻法翻动硬币,从中获得启发。

(2)对有关正、反,开、关等实际问题通常可化为用奇偶数关系讨论。

例12 在8×8的棋盘的左下角放有9枚棋子,组成一个3×3的正方形(如左下图)。规定每枚棋子可以跳过它身边的另一枚棋子到一个空着的方格,即可以以它旁边的棋子为中心作对称运动,可以横跳、竖跳或沿着斜线跳(如右下图的1号棋子可以跳到2,3,4号位置)。问:这些棋子能否跳到棋盘的右上角(另一个3×3的正方形)?

3

解:自左下角起,每一个方格可以用一组数(行标、列标)来表示,(自下而上)第i行、(自左而右)第j列的方格记为(i,j)。问题的关键是考虑9枚棋子(所在方格)的列标的和S。

一方面,每跳一次,S增加0或偶数,因而S的奇偶性不变。另一方面,右上角9个方格的列标的和比左下角9个方格的列标之和大

3×(6+7+8)-3×(1+2+3)=45,

这是一个奇数。

综合以上两方面可知9枚棋子不能跳至右上角的那个3×3的正方形里。

奇偶分析作为一种分析问题、处理问题的方法,在数学中有广泛的应用,是处理存在性问题的有力工具,本讲所举例题大多属于这类问题。这种方法具有很强的技巧性,尤其是选择什么量进行奇偶分析往往是很困难的。选准了,只须依据奇偶数的性质,分析这个量的奇偶特征,问题便迎刃而解;选不好,事倍功半。同学们应认真领会本讲所举例题,以把握选择合适的量进行奇偶分析的技巧。

练习3

1.下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?

□+□=□ □-□=□

□×□=□ □÷□=□

2.任意取出1234个连续自然数,它们的总和是奇数还是偶数?

3.一串数排成一行,它们的规律是:前两个数都是1,从第三个数开始,每一个数都是前两个数的和。如右所示:1,1,2,3,5,8,13,21,34,55,?

试问:这串数的前100个数(包括第100个数)中,有多少个偶数?

4.能不能将1010写成10个连续自然数之和?如果能,把它写出来;如果不能,说明理由。

5.能否将1至25这25个自然数分成若干组,使得每一组中的最大数都等于组内其余各数的和?

6.在象棋比赛中,胜者得1分,败者扣1分,若为平局,则双方各得0分。今有若干个学生进行比赛,每两人都赛一局。现知,其中有一位学生共得7分,另一位学生共得20分,试说明,在比赛过程中至少有过一次平局。

7.在黑板上写上1,2,?,909,只要黑板上还有两个或两个以上的数就擦去其中的任意两个数a,b,并写上a-b(其中a≥b)。问:最后黑板上剩下的是奇数还是偶数?

8.设a1,a2,?,a64是自然数1,2,?,64的任一排列,令b1=a1-a2,b2=a3-a4,?,b32=a63-a64;

c1=b1-b2,c2=b3-b4,?,c16=b31-b32;

d1=c1-c2,d2=c3-c4,?,d8=c15-c16;

??

这样一直做下去,最后得到的一个整数是奇数还是偶数?

练习3答案:

内容需要下载文档才能查看

4

1.至少有6个偶数。

2.奇数。解:1234÷2=617,所以在任取的1234个连续自然数中,奇数的个数是奇数,奇数个奇数之和是奇数,所以它们的总和是奇数。

3.33。提示:这串数排列的规律是以“奇奇偶”循环。

4.不能。

如果1010能表示成10个连续自然数之和,那么中间2个数的和应当是1010÷5=202。但中间 2个数是连续自然数,它们的和应是奇数,不能等于偶数202。所以,1010不能写成10个连续自然数之和。

5.不能。提示:仿例3。

6.证:设得7分的学生胜了x1局,败了y1局,得 20分的学生胜了x2局,败了y2局。由得分情况知:

x1-y1=7,x2-y2=20。

如果比赛过程中无平局出现,那么由每人比赛的场次相同可得x1+y1=x2+y2,即x1+y1+x2+y2是偶数。另一方面,由x1-y1=7知x1+y2为奇数,由x2-y2=20知x2+y2为偶数,推知x1+y1+x2+y2为奇数。这便出现矛盾,所以比赛过程中至少有一次平局。

7.奇数。解:黑板上所有数的和S=1+2+?+909是一个奇数,每操作一次,总和S减少了a+b-(a-b)=2b,这是一个偶数,说明总和S的奇偶性不变。由于开始时S是奇数,因此终止时S仍是一个奇数。

8.偶数。

解:我们知道,对于整数a与b,a+b与a-b的奇偶性相同,由此可知,上述计算的第二步中,32个数

a1-a2, a3-a4,?,a63-a64,

分别与下列32个数

a1+a2, a3+a4,?,a63+a64,

有相同的奇偶性,这就是说,在只考虑奇偶性时,可以用“和”代替“差”,这样可以把原来的计算过程改为

第一步:a1,a2,a3,a4,?,a61,a62,a63,a64;

第一步:a1+a2,a3+a4,?,a61+a62,a63+a64;

第三步:a1+a2+a3+a4,?,a61+a62+a63+a64;

??

最后一步所得到的数是a1+a2+?+a63+a64。由于a1,a2,?,a64是1,2,?,64的一个排列,因此它们的总和为1+2+?+64是一个偶数,故最后一个整数是偶数。

5

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

《花海孽果》—教资初中考试习题
语文学科知识与教学能力模拟卷高级中学(二)
2016下半年教师资格《生物学科知识与教学能力(高级中学)》考前冲刺模拟卷
2017年教师资格教育知识与能力(中学)模拟试题答案
2017年教师资格笔试考题精练 (高级中学)
全国教师资格考试数学模拟卷(初中)
教师资格考试《高中语文学科知识与能力》模拟试题
2017上半年教师资格考试历史学科知识与教学能力模拟试卷答案(初级中学)
2017年全国教师资格考试《信息技术》学科知识与能力
语文学科知识与教学能力模拟卷高级中学(一)
全国教师资格考试数学模拟卷(高中)
教师资格初中思想品德练习题(二)
教师资格笔试考题精练化学学科(初中)
2017上半年教师资格考试教育教学知识与能力模拟试卷
2017上半年教师资格考试综合素质模拟试卷(中小学)答案
2017年下半年中小学教师资格考试 信息技术学科知识与教学能力试题
2017年教师资格教育知识与能力试题(中学)模拟试题
2017下半年中小学教师资格考试 数学学科知识与教学能力模拟试题(初级中学)
2017年教资数学学科知识与教学能力模拟卷(初级中学)
语文学科知识与教学能力模拟卷高级中学(三)
2017上半年教师资格考试教育知识与能力模拟试卷(中学)
教师资格考试高中信息技术试题
教师资格考试《初中语文学科知识与能力》模拟试题
2016下半年教师资格《生物学科知识与教学能力(初级中学)》考前冲刺模拟卷【答案】
教师资格考试《综合素质》主观题模拟试题
初中教师资格考试体育保健学专题训练
教师资格考试高中物理学科易错题搜集
语文学科知识与教学能力模拟卷(初级中学)
2016下半年教师资格《生物学科知识与教学能力(高级中学)》考前冲刺模拟卷【答案】
2017年教资考试 数学知识与教学能力模拟卷(高级中学)参考答案

网友关注视频

冀教版小学数学二年级下册第二单元《余数和除数的关系》
外研版英语三起6年级下册(14版)Module3 Unit1
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
冀教版小学数学二年级下册第二单元《租船问题》
8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
七年级英语下册 上海牛津版 Unit3
沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
二年级下册数学第三课 搭一搭⚖⚖
北师大版数学四年级下册第三单元第四节街心广场
第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
人教版历史八年级下册第一课《中华人民共和国成立》
苏科版数学七年级下册7.2《探索平行线的性质》
【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
外研版英语七年级下册module3 unit1第二课时
沪教版八年级下册数学练习册21.3(2)分式方程P15
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
3月2日小学二年级数学下册(数一数)
沪教版八年级下册数学练习册21.4(1)无理方程P18
七年级下册外研版英语M8U2reading
每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
外研版英语七年级下册module1unit3名词性物主代词讲解
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
冀教版小学数学二年级下册1
二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
冀教版英语四年级下册第二课