教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 工程科技> 材料科学> Deformation and dynamic recrystallization behavior of a high Nb containing TiAl alloy

Deformation and dynamic recrystallization behavior of a high Nb containing TiAl alloy

内容需要下载文档才能查看

DeformationanddynamicrecrystallizationbehaviorofahighNbcontainingTiAlalloy

LiangCheng?,HuiChang,BinTang,HongchaoKou,JinshanLi

StateKeyLaboratoryofSolidi?cationProcessing,NorthwesternPolytechnicalUniversity,Xi’an,Shaanxi710072,China

articleinfoabstract

Thehotdeformationanddynamicrecrystalliztion(DRX)behaviorofahighNbcontainingTiAlalloywerestudiedusinghotuniaxialcompressiontests.Thetestswereconductedattemperaturesof1000–1150°Candstrainratesof0.001–0.5sÀ1.DuetohighNbadditions,thisalloypossessesawidehot-workingwin-dow.Thestress–straincurveexhibitspeakstressatlowstrainfollowedbydynamicsofteningandsteady-state?ow.Thedependenceofthepeakstressonthedeformationtemperatureandstrainratecanwellbeexpressedbyahyperbolic-sinetypeequation.Theactivationenergy,Q,wasmeasuredtobe427kJ/mol(4.3eV)andthestressexponentwasmeasuredas4.16.Basedontheconventionalstrainhardeningratecurves(dr/deversusr),thecharacteristicpointsincludingthecriticalstrainforDRXinitiation(ec)andthestrainforpeakstress(ep)wereidenti?edtoexpresstheevolutionofDRXandecis0.92timesep.InordertocharacterizetheevolutionofDRXvolumefraction,theDRXkineticswasstudiedbyAvramitypeequation.ThelowAvramiexponentsoftheproposedequationindicatealowerrecrystallizationratecomparedtoordinaryalloys.Besides,theroleofbphaseandthesofteningmechanismduringhotdefor-mationwerediscussedindetail.

Ó2012ElsevierB.V.Allrightsreserved.

Articlehistory:

Received8October2012

Receivedinrevisedform10November2012Accepted12November2012

Availableonline23November2012Keywords:

HighNbcontainingTiAlalloyHotdeformation

Dynamicrecrystallizationbphase

1.Introduction

Inrecentyears,TNB(abbreviationforhighNbcontainingTiAlalloyswithabaselinecompositionofTi–(42–45)Al–(5–10)Nb–X[1])alloyshavebeenpaidmoreandmoreattentionandregardedasanewgenerationTiAlalloy.DuetohighNbadditions,thetensilestrength,creepstrengthaswellasoxidationresistanceoftheal-loyshavebeensigni?cantlyimprovedcomparedwithlowNb-bearingTiAlalloys[2–5].Becauseoftheirattractiveproperties,TNBalloyshavebeenconsideredforhightemperatureapplicationsinaerospaceandautomotiveindustries.However,theplasticdeformabilityofTiAlalloysispoorowingtotheirnaturalbrittle-ness,andhighNbadditionscannotonlystrengthenbutalsoembrittlethecphaseandfurtherdecreasetheductilityoftheseal-loys[6,7].However,grainre?nementbyhotworkingisprovedtobeaneffectiveapproachtoenhancetheoverallperformanceofTNBalloys.Thus,itisofgreatimportancetostudythehotdefor-mationbehaviorofthesealloys.

Theoccurrenceofdynamicrecrystallization(DRX)duringhotdeformationbringsaboutgrainre?nementanddeformationresis-tancereduction[8].Accordingtothedescriptionof?owbehavior,thepredictionofDRXallowstheformingprocesscontrolinmulti-scale.ThegeneraldescriptivemodelforDRXisthatthenucleation

ofrecrystallizedgrainscaninitiateatacriticalstrainwhichisafunctionofinitialmicrostructureanddeformationconditions.Then,theevolutionofDRXmicrostructurecanproceedfurtherbyincreasingdeformation.Ithasbeenshownthatdeformationconditionssuchastemperatureandstrainrate,havepronouncedeffectsontheDRXstructureandDRXgrainsize[9–11].Consider-ableresearchonDRXofTiAlalloyshavefocusedonanalyzingimagesofthefrozenmicrostructurefordifferentdeformationcon-ditions[12–14],andmadesubstantialprogressinunderstandingtheDRXmechanism.However,onlyafewinvestigatorshavepaidattentiontoDRXkineticsofTNBalloysbyanalyzing?owcurvesobtainedbyhotcompressiontests.

ThepresentpaperaimsatstudyingthehotdeformationandDRXbehaviorofaTNBalloyindetail.Forthispurpose,thehot-workingwindowandempiricalmodelfordeformationweredevel-oped.Thestrainhardeninganddynamicsofteningofthe?owcurveswereanalyzedbasedon?owcurves.ThekineticmodelforDRXisdevelopedbyanindirectmethod.Furthermore,theroleofbphaseandthesofteningmechanismduringhotdeformationwereinvestigatedanddiscussed.

2.Experiment

TheingotofthehighNbcontainingTiAlalloywithanominalcompositionofTi–42Al–8Nb–0.2W–0.1YwaspreparedbyVARmelting,thentheingotwasHIPed(hotisostaticpressing)at1280°Cand140MPafor4h.Uniaxialhotcompressiontestswereperformedtoobtain?owcurves.Forthispurpose,cylindricalsampleswith8mmindiameterand12mminheightweremachinedfromtheingot.

Correspondingauthor.Tel.:+862988460568;fax:+862988460294.

E-mailaddress:chengliang525@http://wendang.chazidian.com(L.Cheng).

内容需要下载文档才能查看

0925-8388/$-seefrontmatterÓ2012ElsevierB.V.Allrightsreserved.http://wendang.chazidian.com/10.1016/j.jallcom.2012.11.076

364L.Chengetal./JournalofAlloysandCompounds552(2013)363–369

CompressiontestswereconductedonGleeble-3500thermosimulationmachineunderargonatmosphereattemperaturesof1000,1050,1100,1150°Candstrainratesof10À3,10À2,10À1,0.5sÀ1.Tantalumfoilswereemployedaslubricanttomin-imizethefrictionduringthetest.Beforethecompression,eachspecimenwasheatedatarateof10°C/storeachthetargettemperature,andthenkeptitfor300s.Themaximumstrainobtainedinthetestswas60%.Toretainthedeformedmicrostructure,thespecimenswerequenchedtoroomtemperatureimmediatelyoncethehotcompression?nished.Thetruestresswascalculatedfromthecross-sectionalchangeundertheassumptionthathomogeneousdeformationoccurredthroughoutthewholevolume.Afterthatalltheobtained?owcurvesweremodi?edtoeliminatetheeffectoffrictionusingthemethodpublishedelsewhere[15].Metallographicobservationswereperformedinthecentersectionsofthedeformedsamples.

Ascomparison,as-castc-TiAlalloysampleswithnominalcompositionofTi–50Al–2Cr–2Nbwerecompressedunder1150°C/10À2sÀ1byusingthesamemethodmentionedabove.

3.Results

3.1.Deformationbehavior

内容需要下载文档才能查看

ature(T)duringdeformation,theZener–Hollomonparameter(Z)isusedandtheirhyperbolicsinerelationshipcanberepresentedasfollows[17]:

Z¼e

_expðQ=RTÞ¼A½sinhðarÞ nð1Þ

Forthelowstressregime(ar<0:8),Eq.(1)canberepresentedby:

e

_¼Brn0

ð2Þ

Andforthehighstressregime(ar>1:2),Eq.(1)canberepresentedasfollows:

e

_¼B0expðbrÞð3Þ

whereQisactivationenergy,nandn0arestressexponents.a,A,B,B0arematerialconstants.Bylinearcurve?tting,parameterafortheproposedalloycanbeworkedout,andthevalueis3.6Â10À3.Therefore,thevaluesofarofthepresentalloyarebetween0.3and2.2,sotheactivationenergyshouldbecalculatedbyEq.(4):

Q¼R

??@lne

_

@ln½sinhðÞ

Â

??@ln½sinhðarÞ T@ð1=TÞð4Þ

_e

Themeanslopeoflne

_–ln[sinh(ar)]andln[sinh(ar)]À1/Tcurvescanbeobtained,thusthevalueofactivationenergyQis427kJ/mol(4.3eV),whichissigni?cantlylowerthanthatofotherAl-lean(<44at.%)TiAlalloys(showninTable1),butmuchhigherthanactivationenergyforTiandAlself-diffusioninsinglec-TiAlalloys[23,24].SuchahighvalueapparentlyindicatesthatDRXwasinvolvedinthedeformation[16].Subsequently,asshowninFig.2,thereisalinearrelationshipbetweenlnZandln[sinh(ar)],thusnandAareequalto4.16and3.3Â1014,respectively.

Accordingtothesurfaceandinternalmorphologyofthecom-pressedsamples,hot-workingwindowforthecompressionofthepresentalloywasdeveloped.AsFig.3showsthat,soundsampleswithadeformationof60%canbeachievedatawiderangeoftemper-atureandstrainrate.Evenundertheformingconditionof1150°C/10À1sÀ1,specimenwithoutexternalandinternalcrackscanbeob-tained.IncomparisontoordinaryTiAlalloysorotherTNBalloy[25–28],thehot-workingwindowofthealloyisnoticeablywider,whichindicatesthepresentalloypossessesbetterhotworkabilitythanotherTiAlalloys.Thewiderhot-workingwindowismainlyas-cribedtothelargevolumefractionofbphase(Itsvolumefractionwasmeasuredtobeabout15.6%accordingtometallographicanaly-sis),andthereasonswillbediscussedlaterinSection4.1.3.2.Workhardening

AsshowninFig.1,theworkhardeningstageoftheproposedal-loyisextremelysteep(theelasticstagecannotbeidenti?edduetothelargeYoung’smodulus),the?owcurvesexhibitthepeakstresswithinaverylowstrain.Tostudythehardeningbehaviorindepth,curvesuptothepeaksareanalyzedusingthestrainhardeningrates,h=@r/@e,asafunctionofstrain.Ingeneral,theworkharden-ingcurveconsistsoftwostages.Inthe?rststage,workhardening

Table1

http://wendang.chazidian.composition

Initial

PreparationQ(kJ/microstructuremethodmol)Ti–42Al–8Nb–0.1Y

NLIM427Ti–42Al–6Nb–3Mn–0.2B[18]NLIM477Ti–43Al[19]FLIM528Ti–43.8Al[20]FLIM672Ti–43Al–9V[21]

FLIM577Ti–43Al–9V–0.3Y[21]FLIM451Ti–43Al–4Nb–1Mo[22]

NL

IM

578

ratedecreasesrapidlywithincreasingstrainduetodynamicrecov-ery,andthesofteningeffectgraduallydecreasesuptotheinitia-tionofasecondstage,whereDRXisconsideredtostartandwherearemarkablechangeoccursintheslopeofthecurves.Thisslopechangeisusedtoidentifyacriticalstress(rc)andstrain(ec)forinitiationofDRX.Withthefurtherincreaseofthedeformation,thehardeningratedeclinesfaster.Detailsoftheabovedescriptionhavebeenexplainedelsewhere[29,30].AsshowninFig.4,theworkhardeningrateofthepresentalloyseemsmuchhigherthanordinaryalloys.Whenthestrainreachestothecriticalvalue,thehardeningratedropssharplyduetotheinitiationofDRX.Afterthat,thepeakstressshowsupafteraextremelylowstrain(lessthan0.005)andthengraduallydecreases.ThisphenomenonmayindicatethattheDRX(ornucleation)explosivelyoccursoncethespecimensdeformedtothecriticalstrain,andthusgreatlyaffectstheshapeof?owcurve(e.g.muchsharperpeakthanthatofordin-aryalloyssuchassteels).

Thevaluesofpeakstrainandcriticalstrainatvariousdeforma-tionconditionsareshowninFig.5.Thetwoparameterscanbede-scribedasafunctionofZrespectively,andtheapproximaterelationshipbetweenecandepisidenti?edas:

ec¼0:92ep

ð5Þ

3.3.Dynamicsoftening

Comparedwithordinarymetalsandalloys,TiAlbasedalloyspossessmuchlowerstackingfaultenergy(i.e.thesuperlattice

intrinsicstackingfaultenergy(SISFE)).AndforTNBalloys,thestackingfaultenergyisfurtherreducedbyhighNbadditions[2].Thus,whenTNBalloydeformedtothecriticalstrain,DRXwilltakeplacedramatically(pointedinSection3.2).Thenthehighanglegrainboundaries(HAGBs)willmigratefastandannihilatelargeamountofdislocations.Thepeakstresswillshowupwhendy-namicsofteningdominates.

Manypapers[31–33]claimedthemainsofteningmechanismofTiAlalloyisDRX,aswellasthepresentstudy.However,itisdif?-culttostudytheDRXbehaviordirectlyduetothecomplexityofdeformedmicrostructure.BecausethesofteningofTNBalloysismainlycausedbyDRX,Xdcanthereforebeestimatedby[34]:

XrpÀrd¼

ð6Þ

pÀss

whererpandrssarepeakstressandsteadystate?owstress,respectively.AsshowninFig.6,theevolutionofrecrystallizedvol-umefractionofthepresentalloyisalsodifferentfromotheralloys.Forordinaryalloyswithlowstackingfaultenergy,theDRXcurveexhibitstheclassic‘‘s’’style,whichindicatesrecrystallizationrateislowatthebeginning,andincreasesdramaticallyuptoanin?ec-tionpoint,andthengraduallydecreasesuntiltherecrystallizationcompletes.However,undermostdeformationconditions,DRXbehaviorofthepresentalloyalmostdirectlyslowsdownafterthepeakstrainandtheDRXcurvedisplaysarelativelylowerDRXratethanordinaryalloys.

内容需要下载文档才能查看

366L.ChengetImayev[12]havestudiedvariousTiAlalloys

内容需要下载文档才能查看 内容需要下载文档才能查看

lizedfractioncurveswereexperimentallythecompositionandmicrostructureofthepresentfromalloysproposedbyImayev,thetrendofDRXaccordancewiththatofTi–47Al–1.5Nb–1Cr–1Mn–0.2Si–0.5B(DRXratedown),whichcon?rmsthattheDRXcurvesentpaperarereasonable.Besides,itisrateofthepresentalloyseemsevenlower2Nballoyatthesamedeformationcondition(Fig.willbespeci?callydiscussedlater.

Inaddition,consideredasasolid-stateumefractionofDRXcanbeanalyzedbyAvramiX????eÀe??n

c??

d¼1ÀexpÀk

0:5

WhereXdistherecrystallizedvolumefraction,nisAvramiexponent.e0.5isthestrainfor50pctrecrystallization.AlthoughthecriticalstrainecforonsetofDRXispreferabletodescribethissofteningmechanism,mostauthorsassociatethecriticalstrainwithepduetoitseasydetermination.

Foralldeformationconditions,e0.5canbeobtainedfromtheDRXcurvesdirectly,andtherelationshipbetweenparameterZande0.5isshowninFig.7.Therefore:

e0:5¼4:6Â10À3Z0:13

ð8Þ

ParameterskandninEq.(7)canbecalculatedbyregressionanalysis.TheresultisshowninTable2.Itcanbeconcludedthatexceptthecrackedspecimens(redcolor),http://wendang.chazidian.comparisonofAvramiexponentsbe-tweenthepresentalloyandsomeotheralloysisshowninTable3.TherelativelylowerAvramiexponentofthealloycon?rmsalowerDRXrateasmentionedabove.

WahabiandCabrera[42]thoughtthatifAvramiexponentisrel-ativelyhigh(thevalueofnisabout2),nucleationwouldtakeplacesongrainandtwinedges,andDRXiscontrolledbynucle-ationduetotherelativelysmallamountofnucleationsites.Ifthecoef?cientislow(thevalueofnisabout1),nucleiwouldformintheinterfacialsurfaceofgrainandtwinboundaries,DRXiscon-pleformationsoftwinsanddislocationcells,andseemsagreewiththeanalysisinSection3.3.Thus,DRXofpresentalloymaybedom-inatedbygraingrowth.4.Discussion4.1.Hotworkability

Micro-crackinitiation,whichsigni?cantlyaffectsthehotdefor-mabilityofTiAlalloys,issensitivetoprocessingparametersandphasecomposition.However,itisdifferentfromotheras-castTNBalloys(whichusuallyconsiststhreephases:c,asmallvolumefractionofbanda2),asshowninFig.8,theproposedalloyonlyconsistsoftwophases,candarelativelylargervolumefractionofbphase(X-raymeasurementsqualitativelycon?rmedthatthequantityofthebphaseismuchmorethanordinaryTNBalloys[45,28]).Theroleofbphaseduringhotworkinghasbeeninvesti-gatedbymanystudies.Ingeneral,bphaseisconsideredsofterthanthea2orcphaseduetoitsbccstructure.Hencethebphasecanactuallyenhancesgrainboundarycohesionandmayactlikealu-bricantlayerduringdeformation,thusitcanpromotegrainbound-aryslidingeffectivelytoreleasestressconcentration[18,46–49],andhighstraincanbeachievedwithoutproducingmicro-cracks.Inthisstudy,however,bphasedisplaysadistinctivemorphology.AsFig.8(a)shows,bphasecannotonlydistributeinthetriple-junctionsoflamellacoloniesbutalsopresentasribbonsbetweenclaths.Thismorphologyseemsabletorelaxthestressconcentra-tionandhencedelayscavitationsandfractureprocessingmoreeffectively.Thusthepresentalloyshowsagoodhotworkability.Itisgenerallyacceptedthatactivationenergycanre?ecttheworkabilityofmetalsoralloys.ForTiAlbasedalloys,activationen-ergyisquitesensitivetothecomposition.Accordingtothecom-parisonofvariousTiAlbasedalloys,Kim[10]foundthattheactivationenergyisrelatedtotheatomicfractionratiobetweenTiandAl:

Q¼À460þ800ðTi=AlÞð9Þ

Forthepresentalloy,thecalculatedvalueofactivationenergyisapproximate639kJ/molusingEq.(9),whichismuchhigherthanexperimentalresult.ThedisagreementofthetworesultsismainlyattributedtohighNbadditions,andtheresultingbphase.Becauseofitsbccstructure,bphaseprovidesmoreslipsystemsthancphaseduringdeformationandconsequentlydecreasestheactiva-tionenergy.

However,Appel[50]suggestedthatthedeformationincompat-ibilitybetweenbphaseandmatrixwillresultinhighinternalstressesandthusinducemicro-cracksintheirinterfacesandre-ducethedeformabilityofthealloy,especiallyunderintensive

L.Chengetal./JournalofAlloysandCompounds552(2013)363–369

367

hotworkingsuchascombiningtorsionandcompression.Thisdeformationbehaviorofthebphaseoftenovershadowsthelowworkabilitynaturewhensmalltestpiecesarecompressedinordertodeterminehot-workingwindows.However,thedeformationmodeofthecurrenttestissimilarwithupsetting,thushot-work-ingwindowdevelopedinSection3.1stillappliestoindustrialupsetting.

内容需要下载文档才能查看

strainrate,asshowninFig.9(a),themicrostructureisnearlyequi-axialduetoDRXandlamellaefragmentation-spheroidization.Ononehand,theonsetoflamellaebreakuptakesplaceatthetriple-junctionoflamellaecolonieswhereinternalstresscanbeeasilyconcentrated.Ontheotherhand,therecrystallizedcgrainswillre-sultinthelamellaebeingbrokenintofragments[51].Therefore,recrystallizedgrainsandspheroidizingfragmentsareindistin-guishableindeformedsamples.

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

2014年云南省直属公务员面试真题(7月13日)
云南公务员考试行测每日一练言语理解练习题11.20
云南公务员考试行测每日一练言语理解练习题答案11.20
2018云南公务员面试中情景模拟题:巧用生活智慧
云南公务员面试题型:最经典的公务员面试题目大全及解析(十一)
2017年云南省考面试真题(7月15日上午)【考生回忆版】
2018云南公务员考试行测演练厅之生活常识模拟题
云南公务员考试行测每日一练言语理解练习题答案11.13
云南公务员考试行测每日一练判断推理练习题11.21
2015年云南省大理公务员面试真题(8月6日)
2015年云南省昆明市公务员面试真题(8月6日)
云南公务员面试题型:最经典的公务员面试题目大全及解析(十六)
云南公务员考试行测每日一练数量关系练习题10.26
云南公务员考试行测每日一练数量关系练习题答案11.17
2016年云南大理公务员面试真题(7月25日下午)
云南公务员面试题型:最经典的公务员面试题目大全及解析(十五)
云南公务员考试行测每日一练判断推理练习题11.16
2017年云南省考面试真题(7月15日下午)【考生回忆版】
云南公务员考试行测每日一练判断推理练习题答案11.21
2016年云南保山市公务员面试真题(7月15日)
2018云南公务员面试模拟题:如何看待“随手拍”
2017云南公务员考试行测试题—(常识判断之一)
云南公务员考试行测每日一练判断推理练习题答案11.16
云南公务员考试行测每日一练数量关系练习题11.17
云南公务员考试行测每日一练言语理解练习题答案11.22
2018云南公务员面试模拟题:“打伞哥”火爆朋友圈
云南公务员考试行测每日一练资料分析练习题答案11.15
云南公务员考试行测每日一练言语理解练习题11.22
2016年云南昆明公务员面试真题(7月18日)
云南公务员考试行测每日一练判断推理练习题答案11.14

网友关注视频

七年级下册外研版英语M8U2reading
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
人教版二年级下册数学
苏教版二年级下册数学《认识东、南、西、北》
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
苏科版数学八年级下册9.2《中心对称和中心对称图形》
沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
沪教版八年级下次数学练习册21.4(2)无理方程P19
外研版英语三起6年级下册(14版)Module3 Unit2
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
3月2日小学二年级数学下册(数一数)
北师大版数学四年级下册3.4包装
苏科版八年级数学下册7.2《统计图的选用》
外研版英语七年级下册module3 unit2第一课时
沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
沪教版八年级下册数学练习册一次函数复习题B组(P11)
沪教版牛津小学英语(深圳用)五年级下册 Unit 1
精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
六年级英语下册上海牛津版教材讲解 U1单词
冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
外研版英语七年级下册module3 unit2第二课时
沪教版八年级下册数学练习册21.3(2)分式方程P15
外研版八年级英语下学期 Module3
小学英语单词