教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 工程科技> 材料科学> cm062693+

cm062693+

上传者:陈为保
|
上传时间:2015-05-11
|
次下载

cm062693+

聚合物纳米复合材料的综述 Polymer Nanocomposites with Prescribed Morphology: Going beyond Nanoparticle-Filled Polymers

2736Chem.Mater.2007,19,2736-2751

ReViews

PolymerNanocompositeswithPrescribedMorphology:

GoingbeyondNanoparticle-FilledPolymers

RichardA.Vaia*andJohnF.Maguire

MaterialsandManufacturingDirectorate,AirForceResearchLaboratory,Wright-Patterson

AirForceBase,Dayton,Ohio45433-7750

ReceiVedNoVember12,2006.ReVisedManuscriptReceiVedFebruary16,2007

Polymernanocomposites(PNCs),i.e.nanoparticles(spheres,rods,andplates)dispersedinapolymermatrix,havegarneredsubstantialacademicandindustrialinterestsincetheirinception,ca.1990.Withrespecttotheneatmatrix,nanoparticledispersionhasbeenshowntoenhancephysical(e.g.,barrier,erosionresistance,andreducedflammability),thermomechanical(e.g.,heatdistortiontemperature,thermalexpansioncoefficient,andstiffness),andprocessing(e.g.,surfacefinishandmeltstrength)characteristics.Beyondmaximizationofthenanoparticledispersion,however,themorphologyofthesematerialsismanytimesuncontrolled,yieldingisotropicnanofilledsystems,notnecessarilyspatially“engineered,designedandtailored”materials.Toimpacthigh-technologyapplicationsrequiringuniqueelectrical,thermal,andopticalproperties,manufacturingtechniquesenablingcontrolofthenanoparticlearrangementanddistributionmustbedeveloped.Thispaperwillexaminethestatusofapproachesfordirectingthehierarchicalmorphologyofnanoparticledispersionsinthreedimensions,andbeyonduniaxialalignment,usingexamplesfromtheliteraturetohighlightthepotentialandissues.Ultimately,twogeneralapproachestothischallengeareemerging,namely,external-in(directedpatterningofnanoparticledispersions)andinternal-out(mesophaseassemblyofnanoparticles).

Introduction

Thelargevarietyofplasticsavailableonthemarkettodayistheresultofblending,thatis,combiningvariouspolymersoraddingmicrometer-scaleorlargerfillers,suchasminerals,ceramics,andmetals(orevenair).Overthepastdecade,theutilityofinorganicnanoparticlesasadditivestoenhancepolymerperformancehasbeenestablishedandnowprovidesadditionalopportunitiesformanydiversecommercialap-plications.Low-volumeadditions(1-10%)ofisotropicnanoparticles,suchastitania,alumina,andsilver,andaniostropicnanoparticles,suchaslayeredsilicates(nano-clays)orcarbonnanotubes,providepropertyenhancementswithrespecttotheneatresinthatarecomparabletothatachievedbyconventionalloadings(15-40%)oftraditionalmicrometer-scaleinorganicfillers.Thelowerloadingsfacilitateprocessingandreducecomponentweight.Mostimportantthoughistheuniquevalue-addedpropertiesandpropertycombinationsthatarenotnormallypossiblewithtraditionalfillers,suchasreducedpermeability,opticalclarity,self-passivation,andflammability,oxidation,andablationresistance.Beyondmaximizingnanoparticledisper-sion,however,themorphologyofthesematerialsismanytimesuncontrolled,yieldingisotropicnanofilledsystems,notnecessarilyspatially“engineered,designedandtailored”compositematerials.

*Correspondingauthor.E-mail:richard.vaia@wpafb.af.mil.

Thisreviewarticlewillendeavorto“look-over-the-horizon”atthechallengesandopportunitiesinprovidingthetoolboxtodirectpolymernanocompositemorphologyinthebulk,thatis,deliver“nanocomposites-by-design”.Amongthemanychallengesaspolymernanocomposites(PNCs)movebeyondcommodityplasticapplications,precisemorphologycontrolisparamount.Randomarrange-mentsofnanoparticleswillnotprovideoptimizedelectrical,thermal,oropticalperformanceformanypotentialhigh-technologyapplications,suchasdielectricunderfillsforelectronicpackaging,printedflexibleelectronics,engi-neeredaerospacestructuralcomponents,reconfigurableconductiveadhesives,andopticalgratingstojustmentionafew.

Specifically,wewillfocusonthemethodologiestocontrolthearrangementanddistributionofdispersed,preformednanoparticlesbeyonduniaxialalignment(D∞andC∞).AfterabriefsummaryofthecurrentstatusofPNCs(Background)andadiscussionemphasizingtheopportunitiesaffordedbytheabilitytocontrolnanoparticlehierarchy(GoingBeyondFilledSystems),twogeneralapproachestothischallengeareexplored,namely:external-in(DirectedPatterningofNanoparticleDispersions)andinternal-out(MesophaseAs-semblyofNanoParticles).Selectedexamplesfromtheliteratureareusedtohighlightthepotentialandchallenges;interestedreadersareencouragedtofurtherexploretheliteraturesurroundingtheseexamplesforadditionalinforma-

10.1021/cm062693+CCC:$37.00©2007AmericanChemicalSociety

PublishedonWeb04/21/2007

聚合物纳米复合材料的综述 Polymer Nanocomposites with Prescribed Morphology: Going beyond Nanoparticle-Filled Polymers

ReViewstion.Wewanttoemphasizethattheseexamplesarebynomeansintendedtobeinclusive.Acollectionofeffortsthatdemonstratethepotential(explicitlyorimplicitly)israpidlygrowingattheintersectionofchemistry,physics,materialsscience,andbiomaterials,includingthosehighlightedhere,aswellasothers,suchasbackfillingofsacrificialtemplatesorin-situnanoparticleformationwithinamesophase.

Background

Polymericnanocompositeshavebeenanareaofintenseindustrialandacademicresearchforthepast15years.Nomatterthemeasuresarticles,patents,orresearchanddevel-opmentfundingsworldwideeffortsinPNCshavebeengrowingexponentially.Forexample,thetotalnumberofhitsfor“polymer”and“nanocomposite”onSciFinder(ChemicalAbstractService(CAS)oftheAmericanChemicalSociety)from1988to2005is>9400,wheretheyearlynumberhasapproximatelydoubledevery2yearssince1992.1RecentmarketsurveyshaveestimatedglobalconsumptionofPNCsattensofmillionsofpounds(?$250M),withapotentialannualaveragegrowthrateof24%toalmost100millionpoundsin2011atavalueexceeding$500-800M.2-4Majorrevenuesareforecastfromlargecommercialopportunities,suchasautomobile,coatings,andpackaging,wherelowercost,higherperformanceresinswouldimprovedurabilityanddesignflexibilitywhileloweringunitprice.Inlightofglobalpolymerproduction,whichfromoilaloneexceeds200-450billonpoundsannually,nanoparticleadditionstoplasticsaffordsoneofthecommerciallylargestanddiversenear-termapplicationsofnanotechnology.

Sincethefirstreportsintheearly1990s5-10theterm“polymernanocomposite”hasevolvedtorefertoamulti-componentsystem,wherethemajorconstituentisapolymerorblendthereofandtheminorconstituentexhibitsalengthscalebelow100nm.Assuch,thetermissometimesusedasasynonymforinorganic-organichybrids,molecularcomposites,ortoencompassmaturecommercialproducts,suchasfilledpolymerswithcarbonblackorfumedsilica.Thenumerousreportsoflargepropertychangeswithverysmall(<5vol%)additionofnanoparticleshavefueledtheviewthatnanoparticleadditiontopolymersdelivershugedividends.

Giventheextensivevarietyofnanoparticlesnowcom-merciallyaccessible(clays,carbonnanotubes,quantumdots,metals,silica,titania,zirconia,andvariousoxides,etc.),thepotentialcombinationsofpolymersandnanoparticles,andthusthetailorabilityofthepropertysuite,isessentiallyendless.Thediversityinscientificinvestigation,technologyadvancement,processinginnovations,andproductdevelop-mentisstaggering.Asignificantnumberofexcellentreviewpapers(e.g.,clays11-18andcarbonnanotubes17-21)andbooks22-25areavailablethatchronicleandsummarizethestatusofvariousnanoparticle-polymercombinationsandthebroadscientificandtechnologicalchallengesstilltobeovercome.

Arguably,thegoalforthevastmajorityoftheseinvestiga-tionsistoachieveincreasedthermomechanicalperformancethroughdispersionatthesingle-particlelevel.TheresultingPNCsaretreatedmuchasanisotropic,filledpolymer.Thus,

Chem.Mater.,Vol.19,No.11,20072737

Figure1.Representativepolymernanocompositemorphologiesexhibitingrandomdispersionofspherical(0D),rodlike(1D),andplatelike(2D)nanofillers.(a)Spherical:CdSe/ZnSquantumdotswithcarboxylicacidsurfacefunctionality(EvidentTechnologies)dispersedat5×1015particles/cm3inarecombinantsilk-elastinprotein(MW,70000).26(b)Rod:5wt%carbonnanofibers(AppliedScience,Inc)dispersedinthermoplasticpolyurethane.27and(c)Plate:3wt%organicallymodifiedmontmorillonite(Cloisite30A)inEpon862/Wcuredepoxy.28

fromthehistoricperspective,nanocompositestodayarereallynanoparticle-filledplastics,Figure1.26-28Theuseofthemoniker“composites”,though,invokesstrongparallelstotraditionalcontinuousfiber-reinforcedcomposites(CFRC)andtheabilitytospatiallyengineer,design,andtailormaterialsperformanceforagivenapplication.ThepayoffofCFRCmanufacturingtechnologiesisexemplifiedbytheincrediblematerialadvancementsthatenablecurrentaero-spacesystems,bothmilitaryandcivilian.CurrentprocessingandfabricationapproachesforPNCsfallwellshortofthisfabricationanddesigncapability.

GoingbeyondFilledSystems

Performanceenhancementsofpolymernanocompositescapitalizeonadvantagesaffordedbyuptoa3ordersofmagnitudespatialrefinementofmorphologyrelativetotraditionalmicrometer-scalefilledpolymersandcomposites.Thiscontrastsnanotechnologyinelectronics,optics,anddatastorage,wherethenanoscaleprovidesaccesstonewphysicalprocessesbasedonquantumphenomenon.Many

内容需要下载文档才能查看

discussions

聚合物纳米复合材料的综述 Polymer Nanocomposites with Prescribed Morphology: Going beyond Nanoparticle-Filled Polymers

2738Chem.Mater.,Vol.19,No.11,2007consideringtheimplicationsandphysicalmanifestationofthisrefinementofPNCmorphologycanbefoundintheliterature.29-33Forpolymers,manybulkpropertiesarerelatedtothesizeofthepolymerchain,whichischaracterizedbytheradiusofgyration,Rg(?2-20nm).Thedominatelengthscaleofthemorphologybecomescriticallyimportantasthedimensionsofparticleandpolymer,aswellastheinterfacialcurvatureandinterparticledistance,becomecomparable.Atthispoint,thepropensityofinterfaceandcooperativitybetweenparticlesdominatemacroscopicproperties.Strongfundamentalparallelscanbedrawnwitheffortsonthermal-mechanicalcharacteristicsofultrathinfilmsofpolymers34,35oroffluidsconfinedwithinnanopores.36Schadlerandco-workersrecentlyprovidedstrongexperimentalevidencefortheseparallelsthroughthedepressionofglasstransitiontemperatureinsilica-filledpolystyrene.31

Forthefinalmaterialperformance,though,theextent,spatialarrangement,andorderingoftheconstituentsisasimportant,ifnotmoreso,thansimplythedegreeofrefinementofthemorphologyortheroleoftheinterfaceregiononpolymerconformationanddynamics.Forexample,morphologyhierarchyiswell-acknowledgedintheprocess-ing(injectionmolding,casting,etc.)ofsemicrystallinepolymersandpolymerblendswheremacroscopicvariations,suchasskin-coreandfountain-flowpatterns,http://wendang.chazidian.comparableprocessingissuesalsoulti-matelydeterminetheutilityofmanyhigh-performanceliquidcrystallinepolymers.Forcurrentnanoparticle-filledproducts,thehierarchyofmorphologyisevenmoreimportantthancomparablemicrometer-scalefilledpolymersduetotheextremeaspectratioofmanynanoparticles,suchasexfoliatedclaysandcarbonnanotubes.Kojimaandco-workerswereoneofthefirsttodocumentanddiscusstheimpactofprocessingconditionsonthefinestructureofPNCs.37,38Theydemonstratedthattherelativeorientationofmontmorillonitelayersandtheconcomitantimpactonnylon6crystallitesvariedwithdistancefromthesamplesurface.Figure2summarizesX-raydiffractionstudiesofaninjection-moldedbarofNylon6smontmorillonitenanocomopositeshowingthattheorientationofmontmorilloniteandpolymercrys-tallitesreflectsthefillingpatternofthemold.Similarobser-vationsarenowcommoninthePNCliterature.Morerecently,Curlissnotedthesubstantialroleofthefibermatingloballytemplatingthealignmentofmontmorillonitelayersduringvacuum-assistedresin-transfermolding(VARTM).39ComparisonofbulkPNCepoxytoreinforcedcompositewithPNCepoxymatrixindicatedthatthistemplatedlocalalignmentalongthecarbonfiberaxiswasbeneficial.Unanticipatedimprovementsoftransverseandaxialstrengthinthefinalfiber-reinforcedstructurewereattributedtothealignmentofthemontmorillonitealongthecarbon-fibersurface.Recognitionofthecriticialimportanceofquantifyingandascertainingthecontributionofcon-nectivityofNPs,theresultantstructureofthis“NPnetwork,”ifitexhibitsfractalorself-similarfeatures,andtheassociatedpropertiesofthisnetwork,suchascomplaince,relaxationtimes,junctionstrength,andspanninglinkageflexibility,areincreasing.

ReViews

Figure2.ExampleoftheimpactofprocessingonmacroscopicdistributionoflocalmorphologiesinPNCs.Small-angleandwide-angleX-rayscattering(SAXSandWAXS)patternsfrominjection-moldednylon6/montmorillonitenanocomposites,reflectingalignmentoflocalstructure.16Theneckregion(Aintheopticalpictureofthesample)containshighlyaligned,well-dispersedmontmorillonitelayers,asindicatedbytheorientedstreakinSAXS.AweakpeakonthemeridianoftheWAXSpatternsarisesfromwell-orientedγ-phasecrystallamellae(seearrows).Withinthebaseregion(regionD),themontmorillonitelayersreflectthefountainflowpatternoftheinjectionmolding.Thepolymercrystallitesarenothighlyaligned,however,asindicatedbythemoreuniformazimuthalscatteringintheWAXSpatternfromregionD.

Modelingeffortstoestablishstructure-performancecor-relationsfurthersupporttheneedformorerefinedprocessingtechniques.Reportspredicthugedividendsinmechanical,barrier,andelectricalperformanceifprocessingcouldprescribeprecisespatialarrangementofnanoparticles.Forexample,GusevandRozmanshowedthatcomparableshearmodulicouldbeobtainedatonlyhalfthevolumefractionofparticlesifaweblikemorphologycouldbegeneratedratherthanrandomorhexagonalarrangement,Figure3.40AdditionalworkbyGusevandco-workersonbarrierproperties41andthecoefficientofthermalexpansion(CTE),http://wendang.chazidian.comingcontinuummechanics,LiuandKumarexaminedtheelasticconstantsofsingle-wallcarbonnanotube(SWNT)ropesandfibersandshowedthatshearmoduliofthefiberdropsprecipitouslyasthewidthoftheuniaxialorientationfunctionoftheSWNTincreases;upwardof2ordersofmagnitudefor10-20%disorderatlargerfiberdiameters.45Thissensitivitytodeviationsfromperfectorder,anditsimplicationstofiberspinning,parallelsthatknownforhigh-performancerigid-rodpolymerfibers.Veryrecently,Forestandco-workersconsideredanisotropicgeometricpercolationofhigh-aspect-ratiorodensemblesdispersedinaviscoussolventandsubjectedtocontrolledrheologicalflows.46Resultsindicatedthatthespanningdimensionofthepercolatingclustercanbecontrolledusingacombinationofvolumefractionandshearrate.Percolationphasediagramsresult,inwhichshearrateproducestransitionsbetween3D,2D,and1Dpercolatingclusters,aswellastheloss

内容需要下载文档才能查看

of

聚合物纳米复合材料的综述 Polymer Nanocomposites with Prescribed Morphology: Going beyond Nanoparticle-Filled Polymers

ReViewsFigure3.NumericalresultsobtainedbyGusevandRozman40forhoneycombandweblikepackingarraysofsilicaparticles(E)70GPa,ν)0.2)inanelastomermatrix(K)1GPA,G)0.0005GPa),demonstratingtheimpactofcontrolledmorphologyonenhancingmechanicalpropertiesofacomposite.ThetwosolidlinesgivethepredictionsoftheHashin-Shtrikmanvariationalbounds.Theverticaldashedlinesshowthemaximumpackingdensitythatcanbeachievedassumingweblikeandhoneycombpackingarraysofidenticalcylindricalfibers.Reprintedwithpermissionfromref40.Copyright1999Elsevier.

percolationatagivenvolumefraction,Figure4.Numerousapplications,includingsmartmaterials,piezo-andpyrore-sistivesensorsandactuators,areenabledbytheproductionoffilmswithanisotropicconductivityarisingfromcontrollingthestructureofthepercolationnetwork.

Whatisthestatusthenofprocessingtechniquesthatwillprovideafeedbackto,andademonstrationof,theseinsights?Itseemsclearthatmorethanuniaxialcontrolofrodsandplatesisnecessary.

Ultimately,twogeneralapproachestothischallenge,parallelingnanofabricationconcepts,areemerging,namely,external-in(top-down)andinternal-out(bottom-up),Figure5.Forexternal-in,directedpatterningofnanoparticledisper-sions(DPND)reliesonthecreation,byanexternalmeans,ofamultidimensionalmorphologydirectingpotential,suchasaspatiallyvaryingfieldorsusceptibilitywithinthematerial.Thistransformsarandomdistributiontoapre-scribed,orderedconstruction.Forinternal-out,mesophaseassemblyofnanoparticle(MANP)reliesontheabilitytotailorinterparticleinteractions,bothparticle-particleandparticle-matrix,toresultinthermodynamicallystable(anddefined)mesophases.Thepossibilitiesforhigherorderstructuresarebolsteredbythecontinuingsuccessesinthereproducibleproductionofnanospheres,fibers,plates,andothergeometrieswithmanufacturingtolerancesthatapproachthecurrentnormofmicrometer-scalefibers,colloids,andfilms(<1%).47-52Thesewillprovidenanoscalebuildingblocksapproachingtheprecisionofmolecules,macromol-ecules,andbiomacromoleculesandthusaccesstotheassociatedcomplexphasespace.Notethattheseconceptsarenotmutuallyexclusive,butcanbecombined,e.g.,directedpatterningofmesophaseassembledNPs.

DirectedPatterningofNanoparticleDispersionsTheabilitytouniaxiallyalignnanoelements,bothplatesandtubes,usingexternalforcesandgradientshasbeenexten-

Chem.Mater.,Vol.19,No.11,20072739

sivelydemonstrated.Approachesincludesedimentation,53spincoating,54mechanicaldeformation(fiberspinning,55-58filmblowing,59injectionmolding,60andshear61,62),magneticfields,63,64andelectricalgradients.65One-dimensional,out-of-planeperiodicityhasalsobeenshownbysequentialdepositionapproachessuchaselectrostaticorhydrogenbondmediatedself-assembly.66,67

Muchlessworkhasbeendirectedtowardestablishingrobustprocessingtechniquesthatenablebroadtunabilityoftwo-orthree-dimensionalstructureswithinthebulk.Creationofmultidimensionalstructuresischallengedbyhowtocontrollablygenerateamultidimensional,morphology-direct-ingpotentialwithinthebulkmaterial.Forexample,ifthecontrolinputismechanicaldeformation,morphologyma-nipulationwilldependnotonlyonthemagnitudeandgradientofananisotropicexternaldeformation(allcompo-nentsofthestresstensor)butalsoonthelocaldistributionofthestressfieldandonthecouplingto,andinterplayof,thenanoparticle’sshapeandmechanicalresponse(buckling,fracture,etc.),surfaceenergies,andviscoelasticproperties,etc.Extensiveeffortsontherefinementoftwo-componentpolymerblendsexemplifythecomplexityofthisspecificcase.68

Thefollowingsectionshighlightfourareaswhichpro-videanoverviewofcurrentcapabilities.Theinitialthreesections(MechanicalDeformation,ElectricandMagneticFields,andOpticalFields)discussthecouplingbetweenappliedexternalfieldsandnanoparticleorientation,distribu-tionandinterparticleinteractions.Thelastsection(Multi-componentInterfacialSystems)considersthepossibilitiesaffordedbyinterfacialsegregationofnanoparticlesinanimmiscibleblend,andthustemplatingthenanoparticledistributiontotheinterfacialregionsoftheimmiscibleblend,andsubsequentmacroscopicmanipulationofthestructureviadistortionsandrefinementsoftheunderlyingmultiphasemorphology.

MechanicalDeformation.Formechanicaldeformation,uniaxialorin-planebiaxialarrangementofthenanoparticleandpolymercrystallitesiscommon,asnotedbytheaforementionedapproaches.Multidimensionalcontrolofthemorphologybycomplexstrainfieldsisrarelyreported.However,somereportsofusingcontrolledstraininputstointroducelocaldistortionsofthenanoparticlecanbefound.Forexample,beginningfromquenchedbiaxiallyextrudedfilmsofnylon6/montmorillonitenanocomposites,Parkandco-workersobservedwithinzone-drawnfilmsthatthemontmorillonitelayersbuckleperpendicularallytothedrawdirection,analogoustofailureofauniaxiallystrainedsheetofpaper.69Thefailuremodeappearedtooccurforacollectionofparallelaluminosilicatelayers(2-4)andexhibitedameanspatialfrequency,Figure6.Thisbehaviorhasanalogiestoshearbandinganddeformationofuniaxiallyalignedlamellarandcylindricalblockcopolymes.70-72

Ingeneral,nanoparticlealignment,aswellasmorphologyrefinement,dependsonthetypeofimposedflow,whetherextensional,shear,ormixed.73Thisisanalogoustoothercomplexfluidsincludingpolymers.Fundamentally,thecomplexityofthelocalresponsetoimposedstressorstrainnotonlydependsontheinterfacialstrength,particle

内容需要下载文档才能查看

size,

聚合物纳米复合材料的综述 Polymer Nanocomposites with Prescribed Morphology: Going beyond Nanoparticle-Filled Polymers

2740Chem.Mater.,Vol.19,No.11,2007ReViewsFigure4.“Percolationphasediagram”ofanisotropicpercolationthresholdsshowingtherelationbetweentheonsetvolumefractionθp(percolationthreshold)andnormalizedshearratePe,formonodisperserodsofaspectratio50.46Theorientationalprobabilitydistributionfunction(PDF)oftherodswerederivedfromDoi-Hesstheoryforflowingrigid-rodmacromoleculesinaviscoussolvent.RepresentativecriticalspanningpercolationclusteratPe)80correspondingto(top)3Dpercolation(θp)0.0134)withpercolatingpathsspanningthegradient(y),vorticity(z),andflow(x)directionand(bottom)1Dpercolation(θp)0.012)withpercolatingpathonlyspanningtheflow(x)

内容需要下载文档才能查看

direction.

Figure5.Schematicrepresentationofthetwogeneralapproachestocontrolnanoparticledistributionandarrangementbeyondrandomorder:external-in(top)andinternal-out(bottom).Forexternal-in,directedpatterningofnanoparticledispersions(DPND)reliesonthecreation,byanexternalmeans,ofamultidimensionalmorphologydirectingpotential(topcenter:gradedbackgroundcontours),suchasaspatiallyvaryingfield(depictedabove)orsusceptibilitywithinthematerial.Imposingthiscomplexfieldonthesample(topcenter)transformsarandomdistributiontoaprescribed,orderedconstructionduetomassflowofnanoparticles(arrows)tominimizethepotentialenergyofthesystemwithintheexternallyappliedfield.Forinternal-out,mesophaseassemblyofnanoparticles(MANP)reliesontheabilitytotailorinterparticleinteractions,bothparticle-particleandparticle-matrix,toresultinathermodynamicallystable(anddefined)mesophase.Thephasebehaviorofthesystemmaybemodulated(bottomcenter)byuniformchangesinthesystemsintrinsic(pressureortemperature)orextrinsic(numberdensityorentropy)thermodynamicparameters.IncontrasttotheexternallypatternedpotentialappliedforDPND,changesinparticleorganizationinMANPoccurinresponsetoauniformchangeinthesystem’senvironment.

andmechanicalcharacteristicsoftheconstituentsbutalso

onelasticinstabilities,suchasbuckling,ofthehighaspect

rationanoparticles,aswellasthecooperativeresponseof

nanoparticlescoupledthroughoverlappinglocalstrainfields.

Theextentofthelatterismanytimesreflectedinalower

volumefractionformechanicalpercolation(??f0)than

electricalpercolation.Systematicexplorationofthiscomplex

processingspacetoproducehierarchicalstructuresby

inducingparticleorientationandparticledeformation,aswellastransferringinsightsfromshearthinning(pseudo-plastic)andshearthickening(dilatant)fluids,isstillinitsinfancy.ElectricandMagneticFields.Themorphologicaloriginsofstiffeningofrheologicalfluids,suchaselectro-(ER)andmagneto-(MR),provideaperspectiveonthepossibilitiesforexternallyapplied,spatiallypatterned,electrical,andmagneticfieldsforcomplexPNCfabrication.Undertheelectricfield,particulateadditives,suchasoxidesormetals,reversiblyformfibrousstructureswithinthe

内容需要下载文档才能查看

nonconducting

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

2018宁夏区考行测题库:行测每日一练数量关系练习题09.29
2018宁夏区考行测题库:行测每日一练言语理解练习题10.16
2018宁夏区考申论案例分析模拟题:“最破办公楼”里出了贪腐者
2018宁夏区考申论每周一练:如何看待各种“称号”
2018宁夏区考行测题库:行测每日一练判断推理练习题10.11
2018宁夏区考面试题库:面试每日一练结构化面试模拟题9.26
2018宁夏区考行测题库:行测每日一练判断推理练习题答案10.11
2018宁夏区考行测题库:行测每日一练判断推理练习题10.12
2018宁夏区考面试题库:面试每日一练结构化面试模拟题9.22
2018宁夏区考行测题库:行测每日一练判断推理练习题09.27
2018宁夏区考申论案例分析模拟题:体育是培养健全人格的最好工具
2018宁夏区考面试题库:面试每日一练结构化面试模拟题10.12
2018宁夏区考面试题库:面试每日一练结构化面试模拟题答案9.27
2018宁夏区考面试题库:面试每日一练结构化面试模拟题答案9.22
2018宁夏区考行测题库:行测每日一练资料分析练习题答案09.28
2018宁夏区考行测题库:行测每日一练言语理解与表达练习题答案09.25
2018宁夏区考行测题库:行测每日一练资料分析练习题答案10.13
2018宁夏区考申论案例分析模拟题:对于不文明养犬谈谈你的解决办法
2018宁夏区考行测题库:行测每日一练资料分析练习题答案10.09
2018宁夏区考申论案例分析模拟题:谈谈如何提高大学生财商
2018宁夏区考面试题库:面试每日一练结构化面试模拟题9.25
2018宁夏区考申论每周一练答案:如何看待各种“称号”
2018宁夏区考面试题库:面试每日一练结构化面试模拟题答案9.25
2018宁夏区考行测题库:行测每日一练资料分析练习题10.09
2018宁夏区考面试模拟题:“状元”的未来
2018宁夏区考行测题库:行测每日一练常识判断练习题答案09.26
2018宁夏区考行测题库:行测每日一练判断推理练习题答案09.27
2018宁夏区考行测题库:行测每日一练资料分析练习题09.28
2018宁夏区考行测题库:行测每日一练常识判断练习题09.26
2018宁夏区考面试题库:面试每日一练结构化面试模拟题答案9.21

网友关注视频

沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
冀教版英语五年级下册第二课课程解读
苏科版八年级数学下册7.2《统计图的选用》
外研版英语三起5年级下册(14版)Module3 Unit1
第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
冀教版小学英语四年级下册Lesson2授课视频
沪教版牛津小学英语(深圳用)五年级下册 Unit 1
北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
冀教版英语四年级下册第二课
北师大版数学四年级下册3.4包装
沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
外研版英语三起6年级下册(14版)Module3 Unit1
【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
苏教版二年级下册数学《认识东、南、西、北》
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
二年级下册数学第一课
北师大版小学数学四年级下册第15课小数乘小数一
沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
六年级英语下册上海牛津版教材讲解 U1单词
外研版八年级英语下学期 Module3
冀教版小学数学二年级下册第二单元《余数和除数的关系》