荧光材料
荧光材料IEEE论文
DevelopmentofUltrasound-SwitchableFluorescenceImagingContrastAgentsBasedonThermosensitive
PolymersandNanoparticles
BingbingCheng,Ming-YuanWei,YuanLiu,HarishPitta,ZhiweiXie,YiHong,KytaiT.Nguyen,andBaohongYuan
(InvitedPaper)
Abstract—Inthispaper,we rstintroducedarecentlydevel-opedhigh-resolution,deep-tissueimagingtechnique,ultrasound-switchable uorescence(USF).TheimagingprinciplesbasedontwotypesofUSFcontrastagentswerereviewed.Toim-proveUSFimagingtechniquesfurther,excellentUSFcon-trastagentsweredevelopedbasedonhigh-performancether-moresponsivepolymersandenvironment-sensitive uorophores.Herein,suchcontrastagentsweresynthesizedandcharacter-izedwith vekeyparameters:1)peakexcitationandemis-sionwavelengths(λexandλem);2)the uorescenceinten-sityratiobetweenon-andoff-states(IOn/IO );3)the uo-rescencelifetimeratiobetweenon-andoff-states(τOn/τO );4)thetemperaturethresholdtoswitchon uorophores(Tth);and5)thetemperaturetransitionbandwidth(TBW).Wemainlyinvestigated uorescenceintensityandlifetimechangesoffourenvironment-sensitivedyes[7-(2-Aminoethylamino)-N,N-dimethyl-4-benzofurazansulfonamide(DBD-ED),St633,Sq660,andSt700]asafunctionoftemperature,whilethedyewasattachedtopoly(N-isopropylacrylamide)linearpolymersorencapsulatedinnanoparticles.Six uorescenceresonanceenergytransfersystemswereinventedinwhichboththedonor(DBD-EDorST425)andtheacceptor(Sq660)wereadopted.OurresultsindicatethatthreeF¨orsterresonanceenergytransfersystems,wherebothIOn/IO andτOn/τO arelargerthan2.5,arepromisingforapplicationinfuturesurfacetissuebioimagingbytheUSFtechnique.
IndexTerms—Bioimaging,nanomaterials,F¨orsterresonanceenergytransfer(FRET),environment-sensitive,thermosensitive.
I.INTRODUCTION
I
ManuscriptreceivedAugust1,2013;revisedSeptember1,2013;acceptedSeptember3,2013.DateofpublicationSeptember24,2013;dateofcurrentversionOctober25,2013.ThisworkwassupportedinpartbyfundingfromtheNIH/NIBIB7R15EB012312-02(B.Yuan),theCPRITRP120052(B.Yuan),andtheNSFCBET-1253199(B.Yuan).B.ChengandM.-Y.Weicontributeequallytothiswork.Correspondingauthor:B.Yuan,baohong@uta.edu.
B.Cheng,M.-Y.Wei,Y.Liu,andB.YuanarewiththeUltrasoundandOpticalImagingLaboratory,DepartmentofBioengineering,TheUniversityofTexasatArlington,Arlington,TX76010,USA,andalsowiththeJointBiomedicalEngineeringProgram,TheUniversityofTexasatArlingtonandTheUniversityofTexasSouthwesternMedicalCenteratDallas,TX75390,USA(e-mail:bingbing.cheng@mavs.uta.edu;mywei@uta.edu;yuan.liu@mavs.uta.edu;baohong@uta.edu).
H.Pitta,Y.Hong,andK.T.NguyenarewiththeDepartmentofBioengi-neering,TheUniversityofTexasatArlington,Arlington,TX76010,USA,andalsowiththeJointBiomedicalEngineeringProgram,TheUniversityofTexasatArlingtonandTheUniversityofTexasSouthwesternMedicalCenteratDallas,TX75390USA(e-mail:harish.pitta@mavs.uta.edu;yihong@uta.edu;knguyen@uta.edu).
Z.XiewaswiththeDepartmentofBioengineering,TheUniversityofTexasatArlington,Arlington,TX76010,USA,andwiththeJointBiomedicalEngineeringProgram,TheUniversityofTexasatArlingtonandTheUniversityofTexasSouthwesternMedicalCenteratDallas,TX75390USA.HeisnowwiththeDepartmentofBioengineering,ThePennsylvaniaStateUniversity,UniversityPark,PA16802USA(e-mail:zackxie@http://wendang.chazidian.com).
Colorversionsofoneormoreofthe guresinthispaperareavailableonlineathttp://wendang.chazidian.com.
DigitalObjectIdenti er10.1109/JSTQE.2013.2280997
TISalwaysintriguingtorevealinformationindeeptissuebynoninvasivelyimagingtechniques,whichiscriticalforstudyingtissuestructures,functions,anddysfunctions[1],[2].However,mostbiologicaltissuesareopticallyopaquetohumaneyes.Therefore,animagingtechniqueisindispensable[2].Op-ticalmicroscopy,suchasconventionalwide- eldmicroscopyandconfocalormultiphotonmicroscopy,isexcellentinspatialresolution(<1μm)andcanprovidesubcellularimages[3],[4].However,itsimagingdepthissigni cantlylimitedinopaquebiologicaltissues(<1mm)duetostronglightscattering[4].Besidescellularorsubcellularinformationatverysuper cialtissue,deeptissueinformationisalsoveryattractivebutisex-tremelydif culttodetectusingcurrentmicroscopicimagingtechniques[3].Therefore,deep-tissue( 1mm)high-resolutionimagingisdesirableforbothtissuebiologystudiesandpreclin-ical/clinicalapplications[1]–[3],[4].
Opticalandultrasonictechniquesarecommonlyusedfornoninvasivetissueimaging[5]–[7].Theysharemanyfeatures,suchascostef ciency,safety,and exibilityintheselectionofthewell-developedandinexpensiveimagingcontrastagents[8].Theyarealsocomplementary.Forexample,imagingdeeptissue(30–50mm)opticaltechniqueshaveverylowspatialresolution(3–5mm)duetostronglightscattering[8];however,ultra-soundismuchlessscatteredbytissueandhasrelativelyhigherspatialresolution(belowafewhundredmicrometers)[5],[6],[9].Microbubblesarecommonlyusedasultrasoundcontrastagentsandusuallyrestrictedinsideatissuevascularsystembe-causeoftheirmicrometersize[5].However,opticalcontrastagentscansimultaneouslyimagebothvascularandextravascu-larmoleculartargetsviaspectroscopictechniques,becauseoftheirrelativelysmallsize( 1micron)[1]–[3],[6],[8]–[10].Therefore,ultrasoundandopticalhybridimagingtechniques,suchasphotoacousticimagingandultrasound-medicatedopti-calimaging,havebeenintensivelydevelopedduringthepastyears[5],[6],[11],[12].Thesehybridtechniquestakeadvan-tageofbothtechniquesandachieveuniquefeaturesthatareunabletobeachievedbyindividualones[6],[12].
Toquantitativelycomparethesetechniques,depth-to-resolutionratio(DRR)isusuallyadoptedandhighDRRispreferred[6],[13].Fig.1schematicallysummarizedthemajoroptical-andultrasonic-relatedimagingtechniques.Notethat
1077-260X©2013IEEE.Personaluseispermitted,butrepublication/redistributionrequiresIEEEpermission.
Seehttp://wendang.chazidian.com/publicationsstandards/publications/rights/index.htmlformoreinformation.
荧光材料IEEE论文
内容需要下载文档才能查看Fig.1.
Majorrelatedopticalandultrasonicimagingtechniques.
thevaluesofDRRlistedinFig.1areforageneralcompari-sonamongdifferenttechniquesandthespeci cvalueforeachtechniquemayvaryfordifferentapplications.Diffuseopticaltomography(DOT)andlaminaropticaltomography(LOT)aretwopureimagingtechniques(meaningonlyopticaltechniquesareused)andcanimageseveralmillimetertocentimeterdeeptissuewithlowresolution(submillimetertomillimeters)[7],[10],[14].TheyareroughlylocatedonthelineofDRR=10.ThisDRRisfundamentallylimitedbytissuelightscatter-ing[8].Low-frequencyultrasound,high-frequencyultrasound,photoacoutictomography,photoacousticmicroscopy,andopti-calcoherencetomography(OCT)haveimprovedtheDRRupto~100[6],[13].ThisDRRisfundamentallylimitedbyacous-ticdiffraction(exceptOCT)[6],[13].Opticalmicroscopy,suchasopticalcoherencemicroscopy,two-photonmicroscopy,andconfocallaserscanningmicroscope,maytheoreticallylocatearoundthelineofDRR=1000,butwithalimitedimagingdepth(<1mm,seethehorizontaldashedline)[4],[15],[16].ThisDRRisfundamentallylimitedbytheopticaldiffractionandscattering[4],[15].Tobreakthelightdiffractionlimit,super-resolutionopticalmicroscopyhasbeenintensivelydevelopedrecently[17]–[20],suchasstimulatedemissiondepletionmi-croscopy,photoactivationlocalizationmicroscopy,andstochas-ticopticalreconstructionmicroscopy[21],[22].Whilethesesuperresolutiontechniquescanprovidemuchhigherspatialres-olution(tensofnanometers)thanconventionalopticalmicro-scopes,theirimagingdepthsareusuallylimited(tensofmicrom-eters)[21],[22].Therefore,theDRRmayremain~1000[23](notshowninFig.1).
InFig.1,thehorizontalaxisrepresentsthespatialresolutioninmicrometers(μm)andtheverticalaxisindicatestheimagingdepthinmillimeter(mm).Thefour45 -tilteddashedlinesrepre-sentDRR=10,100,500,and1000,respectively.Theoretically,theyellowareahasbeencoveredbytheaforementionedimag-ingtechniques.Thelightgreenareahasnotbeencoveredduetovariousfundamentalphysicslimits.Thethirdarea,showninred,hasaDRRbetween100and1000.Currently,opticaltech-niquesbasedonthedetectionofscatteredlight(suchasDOTandLOT)havedif cultiesinreachingthisareaduetostrongtissuelightscattering[7],[8],[10],[12],[14].Ultrasoundandphotoacoustictechniquesaredif culttoreachbeyondtheareaofDRR>200(forimagingdepth>1mm)becauseofthefundamentalphysicslimitoftheacousticdiffraction[6],[13].Accordingly,afundamentalquestioniswhetheritisfeasible
内容需要下载文档才能查看to
Fig.2.SchematicdiagramsshowthebasicprinciplesofUSFimaging.Theleftpanelshowsthecasewhenultrasoundtransducer(UST)isOFFandthe uorophoresareOFF.TherightpanelrepresentsthattheUSTisONandsome uorophoresinthefocalvolumeareswitchedON.OC:opticalcondenser;AC:acousticcoupling.
developanewimagingmethodthatislocatedinsidetheredareawithaDRR>200(breakingtheacousticdiffractionlimitinultrasoundandPAtechniques)andanimagingdepth>>1mm(breakingtheimagingdepthlimitinopticalmicroscopy).Toaddressthisquestion,onemayneedtothinkoutsidetheboxtodevelopsometechniquesthatarefundamentallydifferentfromcurrentlyexistingimagingtechniques.Recently,weproposedanddevelopedafundamentallydifferenttechnique,ultrasound-switchable uorescence(USF)imaging[17]–[19].IthasbeendemonstratedthattheUSF-basedimagingtechniquehaspoten-tialtobreaktheacousticdiffractionlimitandtoreacharelativelyhigherspatialresolutioncomparedwithsimilarultrasoundandphotoacoustictechniques[17],[18].Inthispaper,ageneralin-troductiontotheUSFimagingprincipleisgiveninSectionII.InSectionIII,ourrecentprogressinthedevelopmentoftheUSFcontrastagents,oneoftheUSFimagingkeys,ispresented.TheconclusionsaregiveninSectionIV.
II.PRINCIPLEOFUSFIMAGING
A.BasicUSFImagingPrinciples
Thebasicmechanismshavebeendiscussedinourrecentpublicationsin[17],[19],[20],and[24].Brie y,USFimag-ingrequirestwobasicelements:1)imagingcontrastagentsand2)anacoustic-opticalimagingsystem.Theimagingprincipleistouseafocusedultrasoundbeamtoexternallyandlocallycontrol uorophoreemissionfromasmallvolume(closetoorevensmallerthantheultrasoundfocalvolume)[17],[19],[20],[24].TheimagingprincipleisschematicallyshowninFig.2.Ideally,withoutapplyingultrasonicenergy,thecontrastagentsshouldbedark(OFF,no uorescenceemission).Anydetected uorescencesignalshouldbeconsideredasnoiseandmaybegeneratedfromtissueauto uorescenceand/orimper-fectUSFcontrastagents,whichshouldbeextremelyweakinUSFimaging.WhentheultrasonicenergyisturnedONandfocusedinsidethesample,USFcontrastagentsinasmallvol-ume(usuallywithintheultrasoundfocalvolume)areswitchedONand uoresce.Byscanningtheultrasoundfocus,thedistri-butionoftheUSFcontrastagentscanbeimaged[17],[19].Currently,twotypesofUSFcontrastagentshavebeende-veloped:1) uorophore-quencher-labeledmicrobubbles(F–Qmicrobubbles)[19],[25]–[27]and2) uorophore-labeledther-mosensitivepolymersor uorophore-encapsulatednanoparti-cles(NPs)[17],[20].
荧光材料IEEE论文
CHENGetal.:DEVELOPMENTOFULTRASOUND-SWITCHABLEFLUORESCENCEIMAGINGCONTRASTAGENTS
内容需要下载文档才能查看6801214
Fig.3.SchematicdiagramshowstheconceptofUSFbasedon uorophore-quencher-labeledmicrobubbles;F, uorophores;andQ,quenchers.Anultra-soundpressurepulseswitches“ON”the uorophores.ThedottedcylinderrepresentsultrasoundfocalzoneinwhichtheultrasoundinteractswithF–Qmicrobubbles.Thegreen-dottedarrowsindicatetheexcitationlight.Thedottedorangecirclesandarrowsrepresentthe uorescenceemissionfromtheexpanded(switchedON)microbubbles.
Inthe rsttype, uorophoresandquenchersareattachedonthemicrobubblesurfaceviavarioustypesoflabelingtech-niques.Initially,the uorophoresaresigni cantlyquenchedbyquenchers(orviaself-quenching)sothatnoorveryweak uo-rescencecanbedetected.ToswitchONthe uorescencesignal,ashortandfocusedultrasound(mechanical)pressurepulseisusedtosigni cantlyexpandmicrobubbles.Therefore,theaver-agemoleculardistancebetweenthe uorophoresandquenchersonthemicrobubblesurfacecanbesigni cantlyincreaseddur-ingtheexpansioncycles(orthesurfaceconcentrationofthe uorophoresonthebubblesurfacecanbesigni cantlyreducedifonlyonetypeof uorophoresislabeled).Thus,thequenchingef ciencyisdramaticallyreduced,whichcanswitchONthe u-orescencefromthe uorophores[19],[25]–[27].Fig.3displaysaschematicdiagramtoshowthisconcept.ThelargeF–Qmi-crobubblesrepresentthatanegativeultrasoundpressurecyclesigni cantlyincreasesthebubblesizeandreducesthequench-ingef ciencysothatthe uorophorescanemit uorescencesignal.ThesmallF–Qmicrobubblesarelocatedoutsideoftheultrasoundfocalvolumesothe uorophoresremainquenched(OFF)[19],[24].
Inthesecondtype,polarity-sensitive uorophores(high-quantumyieldsinlowpolarityenvironment)areeithercon-jugatedonthechainofthermosensitivepolymers[seeFig.4(a)][17]orencapsulatedintoNPsthataremadeofthermosensitivepolymers[seeFig.4(b)][20].Tocontrolthe uorescencesignal,arelativelylongandfocusedultrasoundpulse(rangingfromafewtohundredsofmilliseconds)withhighintensityisadoptedtoheatthesampleuptoafewdegreesCelsiusinthefocalvolume[17].WhenthetemperatureToftheUSFcontrastagentsisheatedupabovethelowercriticalsolutiontemper-ature(LCST)ofthethermosensitivepolymersorNPs,thesepolymersorNPsexperienceareversiblephasetransition.Thisphasetransition(betweenthetwostatesofT<LCSTandT>LCST)leadstoasigni cantchangeinthepolaritymicroen-vironmentofthepolymerorNP.Thus,the
内容需要下载文档才能查看polarity-sensitive
Fig.4.SchematicdiagramsshowingtheUSFprinciplebasedon(a)apolymerchainstructureand(b)anNPstructure.Adoptedfrom[20].
uorophoresare“OFF”whenT<LCSTand“ON”whenT>LCST,whichshowsaswitch-like uorescenceemissionprop-erty[17],[20],[28].Speci cally,whenT<LCST,thepolymerchainiselongated,whichiscalledacoilstate.WhenT>LCST,thepolymerchainshrivelsintoaninsolubleglob,whichiscalledaglobulestate.Becausethepolarityofthemicroenvironmentissigni cantlychangedbetweenthetwostates,thepolarity-sensitive uorophoresshowaswitch-like uorescenceemissionproperty[28].AsimilarmechanismappliestotheNPs.WhenT<LCST,NPsarein atedwithpolarizedsolventmoleculesthatquenchthe uorophores.WhenT>LCST,theNPsaredra-maticallyshrunkandthepolarizedsolventmolecules(usuallywithmuchlowermolecularweightthanthe uorophores)aresqueezedout[29],[30].Thus,the uorophores uorescesignif-icantly.ThisconceptisschematicallydisplayedinFig.4[20].Ahigh-intensityfocusedultrasoundtransducercanbeusedtoexternallyandrapidlyincreasethetemperatureofthetissueabovethethresholdtemperaturetoswitchONthe uorophores(duetotissueabsorptionofacousticenergy)[17],[18].Afterultrasoundexposure,thethermalenergyisdiffusedquicklyandthetemperaturerecoverstobackgroundtemperature.Thus, u-orophoresareswitchedOFF.The uorophoresoutsidethefocalzonealwaysremainOFFduetoT<LCST[17].B.MechanismsofBreakingAcousticDiffractionLimitWhenadopting uorophore-labeledthermosensitivepoly-mersorNPs,thespatialresolutioncanbefurtherimprovedbasedontwouniquemechanisms,ashasbeendemonstratedrecently[17],[18].1)Whenanonlinearacousticeffectoccurs,bothlateralandaxialacousticandthermalfocalsizesaredra-maticallyreducedbelowthediffraction-limitedsize.ThismeansthespatialresolutionoftheUSFtechniquecanbehigherthantheultrasoundandPAtechniqueswhenusingthesameultra-soundfrequency[18].2)UnlikeultrasoundandPAtechniques,thespatialresolutionoftheUSFtechniquedependsonthesizeoftheregionwherethe uorophorescanbeswitchedON[17].Becauseoftheexistenceofathresholdofultrasound-induced
荧光材料IEEE论文
6801214IEEEJOURNALOFSELECTEDTOPICSINQUANTUMELECTRONICS,VOL.20,NO.3,MAY/JUNE2014
temperaturetoswitchON uorophores,USF uorophorescanbeswitchedONonlyinavolumewhereultrasoundenergyisabovethethreshold.Thus,thesizeoftheregionwhere uo-rophorescanbeswitchedONisusuallysmallerthantheactualfocalsizeoftheultrasound[17].Withappropriateselectionofthethresholdandultrasoundpower,thespatialresolutionofUSFtechniquecanbefurtherimprovedincomparisonwiththespatialresolutiondeterminedbythenonlinear-effect-producedfocalsize.
III.THERMOSENSITIVEPOLYMER-ORNP-BASED
USFCONTRASTAGENTS
A.WhatisanIdealUSFContrastAgent?
TocomparedifferentUSFcontrastagentsquantitatively, veparametershavebeende nedinourpreviouswork[20]:1)peakexcitationandemissionwavelengths(λexandλem);2)the u-orescenceintensityratiobetweenon-andoff-states(IOn/IO );3)the uorescencelifetimeratiobetweenon-andoff-states(τOn/τO );4)thetemperaturethresholdtoswitchON uo-rophore(Tth);and5)thetemperaturetransitionbandwidth(TBW).Toachievethebestsignal-to-noiseratio(SNR),anidealUSFλcontrastagentshouldhavethefollowingproperties:1)bothexandλemarelocatedatredornear-infrared(NIR)regionstoavoidsigni canttissueabsorption(thereforelargepenetra-tiondepth)andauto uorescence(thereforesmallbackground uorescencenoise);2)anIOn/IO ,aslargeaspossible,andτOn/τO reducebackground uorescencegeneratedfrom u-orophoresattheoff-stateandincreasetheon-to-offratio(orSNR);3)fordifferentfutureapplications,Tthshouldbead-justableroughlyinarangeof25–42 Cforbothphantom(atroomtemperature)andinvivostudies(>physiologicalbodytemperature,~37 C);4)TBWshouldbeasnarrowaspossible(typicallyafewdegreeCelsius)toavoidtissuethermaldam-age,and5)ifpossible,the uorescenceintensityaton-stateitself(IOn)andthe uorescencelifetimeaton-stateitself(τOn)shouldbeaslargeaspossibletoincreasesignalstrengthand uorescenceemissiondecaytime,whichcanhelptoimproveSNR.Inpractice,ifsimultaneouslyachievingallthebestval-uesoftheaboveparametersisdif cult,parameteroptimizationbasedonspeci capplicationsshouldbeconsidered.
ThepromisingresultsoftheUSFimagingtechniqueheav-ilyrelyonexcellentanduniqueUSFcontrastagents.There-fore,synthesisofnewUSFcontrastagentsiscriticalforthefurtherdevelopmentofthisnewimagingtechnique.Inthefol-lowingsectionsofthispaper,newlysynthesized uorophore-labeledthermosensitivepolymersandNPsforUSFimagingarepresented.B.Materials
N-isopropylacrylamide(NIPAM),N-tert-butylacrylamide(TBAm),acrylamide(AAm),acrylicacid(AAc),allylamine(AH),N,N,N’,N’-tetramethylethylenediamine(TEMED),ammoniumpersulfate(APS),N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimidehydrochloride(EDC),sodiumdodecylsulfate(SDS),N,N’-methylenebisacrylamide(BIS),and7-(2-Aminoethylamino)-N,N-dimethyl-4-benzofurazansulfonamide(DBD-ED)werepurchasedfromSigma-AldrichCorporate(St.
Louis,MO,USA).SeTau425mono-N-hydroxysuccinimide(NHS),Square660mono-NHS,Seta700mono-NHS,Seta633mono-NHS,andSquare660mono-NH2werepurchasedfromSETABioMedicals(Urbana,IL,USA),anddenotedasST425,Sq660,St700,Sq633,andSq660arespectively(notethatSq660andSq660ahavethesameabsorbanceand uorescencespectra/lifetime).Allchemicalswereuseddirectlywithoutfurtherpuri cation.
C.Methods
Inthisstudy,poly(N-isopropylacrylamide)(PNIPAM)http://wendang.chazidian.comparedwithotherthermoresponsivepolymers,(i.e.,Pluronic[31]andpoly-N-vinylcaprolactam,[32]),thisisbecause1)ithasbetterperfor-manceofstructurechangefromacoilstatetoaglobulestate,2)ithasrelativenarrowertemperaturetransitionbandwidth(TBW),3)themethodsofadjustLCSTofaPNIPAMpolymerhavebeenwelldeveloped[29],[30];andtheLCSTcanbeadjustedfrom20to49 C[29],[30],[33],whichisbene cialforbothinvitroandinvivostudies,4)itcanbecopolymerizedwithothermaterials,includingamine-containingorcarboxyl-containingmonomers,whichenablesconjugationbetweenthermosensitivepolymersandenvironment-sensitive uorophoreswithfunctionalgroups.Fourpolarity-sensitive uorophores(DBD-ED,St633,Sq660,andSt700)areeitherattachedtoPNIPAMlinearpoly-merorencapsulatedinPNIPAMNPsforinvestigatingtheir uorescenceintensityandlifetimeasafunctionoftempera-ture.Inaddition,sixF¨orsterresonanceenergytransfer(FRET)systems(includingbothpolymerchainandNPstructures)aredesigned,synthesized,andcharacterizedinwhichDBD-EDorST425isusedasthedonorandtheSq660(a)astheacceptor.Allthesedyeswiththedesiredfunctiongroupsarecommerciallyavailableandarefoundpolaritysensitiveinboth uorescenceintensityandlifetime.
1)USFContrastAgentsBasedonLinearThermosensitivePolymersasFluorophoreCarriers:Fig.5showsthestructuresofthethreetypesof uorophore-labeledlinearpolymerstruc-tures,whichincludedonoronly,acceptoronly,andFRETsys-tems.Ingeneral,thethermosensitivelinearpolymeris rstsyn-thesized,andthen, uorophoresaregraftedintothepolymerbycovalentbinding(conjugation).Thedonorhasshortexcita-tion/emissionwavelengthsinvisiblelight,whiletheacceptorhasared/NIRemission(longwavelength).Ashortwavelengthexcitationlight(fordonor)isusedtoexcitethesystem,sothatthereisasmallamountofacceptor uoresced.Whenthepoly-mer( uorophorescarrier)shrivelsintotheglobulestate,donorsandacceptorsgetclosertoeachother,leadingtoFRETfromthedonortotheacceptor.Therefore,theemissionoftheacceptor(inlongwavelength)canbeobserved.
a)SynthesisofThermosensitiveLinearPolymers:AsshowninFig.6,threecomponentsofthepolymerareneces-sarilyincluded:1)mainthermosensitiveunit,i.e.,NIPAM;2)LCST-controllingunit,i.e.,TBAmorAAm;and3)functionalunit,i.e.,AAcorAH.AAmmonomerhasaminegroup,theactivityofwhich,however,isquiteinertintheamideform.Wewilldiscussthefunctionsofthesethreecomponentsinthefollowingsections.
荧光材料IEEE论文
CHENGetal.:DEVELOPMENTOFULTRASOUND-SWITCHABLEFLUORESCENCEIMAGINGCONTRASTAGENTS
内容需要下载文档才能查看6801214
Fig.5.Schematicdiagramsofthe uorophore-labeledlinearpolymersystems.Fromtoptobottom:donoronly,acceptoronly,andFRET
内容需要下载文档才能查看system.
Fig.6.Schematicdiagramofthecompositionofpolymersinthisstudy.NI-PAM,TBAm,AAm,AAc,H.Dyesareattachedtothepolymerviapostlabelingconjugation.
Linearpolymersweresynthesizedthroughfreeradicalpoly-merization.Allreactionswerecarriedoutina250-mLSchlenktube.Thethreemainstepsare:1)Purgingprocedure:theso-lutionwas rstpurgedwithnitrogenfor10min.Whenaddinginitiator(APS)/accelerator(TEMED)intothesolution,oxygenwaspurgedoutbyvacuuming(1min)and llingwithnitrogen
(5s),whichwasrepeatedthreetimes;2)reactionconditions:4hwithstirringatroomtemperature;3)puri cationprocedure:thesamplewasdialyzedwithappropriatemolecularweightcut-off(MWCO)membraneforthreedaystoremovetheunreactedmonomers,initiator,andothersmallmolecules.ThesethreestepsarealsousedinthesynthesisofpolymerNPsinthefol-lowingsections.
UsingP(NIPAM-AAc200:1)asoneexample,ageneralprocedureisdescribedhere.Samplesof1.3644-gNIPAM(monomer)and4-μLAAc(monomer)atamolarratioof200:1weredissolvedwith50-mLdeionized(DI)waterinthetube.Alongwiththepurgingprocedure,0.067-gAPS(initiator)and51-μLTEMED(accelerator)wereaddedintothetube.Afterthereaction,thesamplewasdialyzedwitha3.5KMWCOmembrane.Theresultingsolutionwascollectedandfreeze-dried,whichthenwasreadyforfurtherconjugationwithamine- uorophores.FortheconjugationwithNHS- uorophores,theamine-functionalizedpolymerofP(NIPAM-AH)wassynthe-sizedbyfollowingthesameprotocolexceptusingAHinsteadofAAc.
Ourhypothesisisthatallofthepolarity-sensitive uo-rophoresgraftedintothepolymershouldbeembeddedwhenthepolymershrinks(formingahydrophobiccore,low-polarityenvironment),bywhichtheir uorescenceintensityandlife-timewouldbeincreasedtothemaximum.Ifany uorophoresareoutsideoftheglobule,i.e.,inahigh-polarityenvironment(exposedtothesolvent),nosigni cantincreasein uorescenceintensityorlifetimewouldbeobserved.Anextraamountofdyeisnotnecessaryalongthepolymerchain,andasare-sult,theratioofdye/polymerneedstobeoptimized.AsshowninFig.6,thepercentageofthefunctionalunitinthepoly-mercompositiondeterminedtheratioofdye/polymerintheconjugates.ToinvestigatetheeffectoftheamountofAAc,forinstance,anothertwopolymerswithdifferentratiosofNI-PAMtoAAcweresynthesizedbyfollowingthesameprotocol:P(NIPAM-AAc100:1)andP(NIPAM-AAc600:1).Sincetheratioofthemonomer(s)totheinitiatorremainedthesameinallthethreebatchesofP(NIPAM-AAc)polymers,thelengthofthethreepolymerswaslikelyincloserange.Therefore,thelowermolarratioofNIPAMtoAAcindicatedtheincreasedconjugatingsites(carboxylfromAAc)availableforamine-functionalized uorophores.The uorescenceintensityandlife-timeasafunctionoftemperatureweremeasuredforallthepolymers,andotherUSFparametersmentionedabovewerealsomeasured.
Tocontrolthetemperaturethreshold(LCST)ofthepolymers,theLCST-controllingunitAAmorTBAmwascopolymerizedwithNIPAM.Itwasfoundthataddinghydrophilicmonomers(suchasAAm)couldincreasetheLCST[29],[30],[33]andaddinghydrophobicmonomers(suchasTBAm)coulddecreasetheLCST.Moreimportant,theintroductionofTBAmmightfurtherimprovethehydrophobicityinsidetheglobulewhenthetemperature>LCST,whichcouldpotentiallyincreasethevaluesofIOn/IO andτOn/τO .Therefore,thefollowingpolymersweresynthesized:P(NIPAM-TBAm-AAc85:15:1),P(NIPAM-TBAm-AAc185:15:1),P(NIPAM-TBAm-AAc585:15:1),andP(NIPAM-AAm-AAc200:32:1).TheTBAmremainedat15%moleinthesecopolymersbecausewefoundthatTBAmcouldbewelldissolvedinDIwateratthisratio.
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- JIT精益生产Word
- 行政办公室-车辆管理制度
- 2015年1月九年级语文上册期末试卷(人教版带答案)
- 神探夏洛克Word
- 基于蚁群算法的公共自行车站间调度优化_柳祖鹏
- 财税体制改革三大重点如何推进Word
- 汉语作为第二语言教学法4 第四章 功能法Word
- 分豆教育云智能教育全面开花Word
- 《管理会计》01章复习题答案
- 2016年北京广告有关单位如何申请办理广告经营资格登记?Word
- 多模态视域下翻转课堂教学模式研究
- 建构主义视域下的_翻转课堂_教师角色探析
- 2017美国塔尔萨大学杰出校友
- 2015中考历史中华文明的起源二轮复习题(有答案)
- 陈王街道中心幼儿园周计划安排
- 新世纪中国共产党在新疆的媒体形象_省略_造研究_以_新疆日报_为考察对象_李冬英
- 2017美国塔尔萨大学工程管理
- 青海省2016年下半年注册会计师考试《会计》:实收资本模拟试题答案
- 餐厅餐具清洗消毒制度
- 2017美国塔尔萨大学申请研究生须知
- 投资成本经营性收费和行政事业收费分类
- 大学生对同性恋的态度研究
- 乌鸦喝水(郭)Word
- 三年级下册数学教学计划档
- 2017美国塔尔萨大学法学院
- 生物技术152Word
- 童年——游戏与学习Word
- 青海省2016年下半年注册会计师《会计》:经营活动的现金流量考试试卷答案
- 2014年高二历史上册期中试卷(有答案)
- 当代中国政府与行政
网友关注视频
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
- 二年级下册数学第三课 搭一搭⚖⚖
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
- 3月2日小学二年级数学下册(数一数)
- 小学英语单词
- 冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 北师大版小学数学四年级下册第15课小数乘小数一
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 外研版英语七年级下册module3 unit2第一课时
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
- 冀教版小学英语四年级下册Lesson2授课视频
- 《空中课堂》二年级下册 数学第一单元第1课时
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 七年级英语下册 上海牛津版 Unit3
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理