教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 高等教育> 农学> From mountain to bedside understanding the clinical

From mountain to bedside understanding the clinical

上传者:刘鸿猷
|
上传时间:2015-04-15
|
次下载

From mountain to bedside understanding the clinical

内容需要下载文档才能查看

Downloaded from http://wendang.chazidian.com on October 9, 2011 - Published by http://wendang.chazidian.com

Review

Frommountaintobedside:understandingtheclinicalrelevanceofhumanacclimatisationtohigh-altitudehypoxia

DMartin,JWindsor

CentreforAltitude,SpaceandABSTRACT

ExtremeEnvironmentMedicine(CASEMedicine),UniversityForcenturiesmanhasstrivedtoreachthegreatestCollegeLondon,Instituteofheightsonearth.InordertoexplainthephysiologicalHumanHealthandPerformance,changesthatareneededtoachievethis,physiologistsLondonN195LW,UKhavetendedtofocusontheimprovementsmadeinCorrespondenceto:

oxygendeliverytothebody’stissues.AlthoughthisDrDMartin,CentreforAltitude,explainsmuchoftheacclimatisationprocess,ithasnotSpaceandExtremeEnvironmentbeenabletoaddressthelargeinterindividualvariationsMedicine(CASEMedicine),seeninhumanperformanceataltitude.Inrecentyears,UniversityCollegeLondon,InstituteofHumanHealthandattentionhasshiftedandnowfocusesonmicrovascularPerformance,FirstFloor,

andcellularresponsesinanattempttoexplaintheseCharterhouseBuilding,Archwaydifferences.InvestigatingtheseprocessesnotonlyhelpsCampus,HighgateHill,LondonN195LW,UK;dan.s.martin@tounraveltheprocessofacclimatisingtoaltitude,http://wendang.chazidian.com

mayalsoimproveourunderstandingofthebody’sresponsetohypoxiainthosewithcriticalillness.

Received8July2008

Accepted26September2008

Lackofoxygendullsthemindandjudgement,slowsthereflexes,weakensthemuscles,andtakesawayourhigherfaculties.Thehigheronegoes,themoreseriousaretheseeffects.Toomanypeopleforgetthisexactlyatatimewhentheyshouldbemostresponsivetothedanger.1

TheWorldHealthOrganizationestimatesthatapproximately

内容需要下载文档才能查看

35millionpeopletraveltoaltitudesabove3000m

内容需要下载文档才能查看

eachyear.2Althoughthispresentsavarietyofphysicalhardships,thesinglegreatestchallengefacedisthefallinbarometricpressureandtheresultingdeclineinthepartialpressureofoxygen.Withtime,humanscanadapttothisharshenvironmentviaaprocessknownasacclimatisa-tion.Thisreviewaimstosummariseourunder-standingoftheacclimatisationprocesstodatebyfocusingonwell-recognisedmechanismsbeforegoingontodiscussnewconceptsinthisfield.Bystudyingthewaythehumanbodyrespondstohighaltitude,wemayalsoimproveourunder-standingofthewayhypoxiaaffectspatients.

ACCLIMATISATIONTOALTITUDE

Hypobarichypoxialeadstoafallintheinspiredpartialpressureofoxygen(PIO2),which,intheabsenceofadaptivemechanisms,lowersalveolarpartialpressureofoxygen(PAO2),andresultsinareductioninthedrivingpressureneededforthediffusionofoxygenacrossthealveolar–capillarybarrier.Theresultofthesechangesisafallinboththearterialpartialpressureofoxygen(PaO2)andthearterialoxygensaturation(SaO2),leadingtoareductioninoxygendeliveredtothetissuesandthepotentialforcellularhypoxiaandorgandysfunction.Asuccessfulperiodofacclimatisationathighaltitudeensuresthathumansareabletofunction

622

inasimilarwaytothatseenatsealevel.Historically,wehaveunderstoodthistoinvolverestoringsea-levelvaluesofoxygendeliveredtothebody’stissues.Oxygendelivery(DO2)isdefinedastheproductofcardiacoutput(Q)andarterialoxygencontent(CaO2)(table1).Here,QistheproductofheartrateandstrokevolumeandCaO2isthesumoftheoxygenboundtohaemoglobinandthatdissolvedintheplasma.Onascenttoaltitude,CaO2fallsandDO2isthereforereduced.Inordertocounteractthis,threeprincipalphysiolo-gicalchangesoccuraspartoftheacclimatisationprocess:(1)Qisincreased;(2)SaO2isrestored;(3)haemoglobinconcentrationisincreased.

(1)IncreasedQ

Withinminutesofascendingtoaltitude,Qincreasesduringbothrestandsubmaximalexer-cise.ThiswasfirstobservedinrestingvolunteersbythephysiologistsCGDouglasandJSHaldaneduringtheirground-breakingexperimentsonPike’sPeak(4300m)in1911.3Onthesamemountain,some60yearslater,http://wendang.chazidian.comingthreedifferentworksettingsonacycleergometer,theteamshoweda10–15%increaseinQduringexerciseinthefirst4daysataltitude.4However,subsequentstudieshaveshownthatthisincreaseisshortlived,andQduringrestandsubmaximalexercisereturnstosea-levelvalueswithinafewweeks.5Interestingly,thecontributionsmadebytheheartrateandstrokevolumedifferdramaticallyduringthistime.Inareviewof11studieslookingattheeffectofaltitudeonthecardiovascularsystem,WolfelandLevine6identifieda14–25%increaseinheartrateandan8–32%fallinstrokevolumeduringthefirst4weeksat3800morhigher.Althoughanincreaseinsympatheticactivitycanlargelyexplainthepersis-tentriseinheartrate,thereasonsforadeclineinstrokevolumearepoorlyunderstood.Thisisparticularlyconfusingbecausestrokevolumedoesnotreturntonormalvalueswhenthecirculatingvolumeisartificiallyrestoredtonormalsea-levelvalues.7However,aswewillseelater,theprocessofacclimatisationisadynamicone,andthecontributionmadebythecardiovascularsystemmayonlyberequiredduringinitialexposuretoaltitude.

(2)RestorationofSaO2

Onceoxygenmoleculesenterthebody,theyencounteranumberofobstaclesbeforetheyfinallyreachthemitochondriaforwhichtheyaredestined.

PostgradMedJ2008;84:622–627.doi:10.1136/pgmj.2008.068296

Ateachoftheseobstacles,thereisastep-likereductioninthepartialpressureoftheoxygen.Thisiscommonlyreferredtoasthe‘‘oxygencascade’’andwasfirstdescribedataltitudebythepioneeringphysiologistJosephBarcroftmorethan80years

内容需要下载文档才能查看

ago.8

内容需要下载文档才能查看

Theprofoundeffect

内容需要下载文档才能查看

thataltitudehasontheoxygencascadecanbeseenin

内容需要下载文档才能查看

fig1usingdata

内容需要下载文档才能查看

fromasimulatedhigh-altitudeascentofMountEverest.9Althoughmostofthestepsintheoxygencascadearebeyondhumancontrol,thebodycanlimitthefallinPO2inonekeyarea.Asoxygenentersthealveoli,thePO2fallsasaresultoftheadditionoftheuptakeofoxygenbytheincomingmixedvenousblood.PAO2canbecalculatedfromthealveolargasequation:PAO2=PIO2–(PACO2/R)

whereRistherespiratoryexchangeratio(theratioofthevolumeofcarbondioxideproducedbythetissuestothevolumeofoxygenconsumedperunittime,whichvarieswiththesubstratebeingused,eg,0.7forfatand1.0forglucose).Accordingtothisequation,ifRremainsunchanged,anyreductioninPACO2leadstoanincreaseinPAO2.AsventilationandPACO2areinverselyproportional,anyincreaseintherateordepthofbreathingwillthereforeresultinafallinPACO2andanincreaseinPAO2.

Overthecourseofseveraldaysataltitude,ventilationincreasesinvoluntarilyandresultsinareductioninPACO2.Thisislargelyduetothecombinedeffectsoftwophysiologicalresponses:thehypoxicventilatoryresponseandthehypercapnicventilatoryresponse.10AsPAO2falls,peripheralchemoreceptorsinthecarotidandaorticbodiesarestimulated,causingventilationtoincrease.Thisisknownasthehypoxicventilatoryresponse,andthemagnitudeoftheresponsevarieswidelybetweenindividuals.11Atsealevel,anyriseinventilationlowersPACO2andresultsintheslowingofbreathingandanincreaseinPACO2.However,ataltitude,theresponsefromthecentralmedullarychemoreceptorsincreases,triggeringhighlevelsofventilationandariseinPAO2.12Thisresponse,commonlyreferredtoasthehypercapnicventilatoryresponse,isthoughttobeduelargelytothereductioninbicarbonateions(HCO32)thatiscommonlyseeninthecerebrospinalfluidonascenttoaltitude.13ThefallinHCO32istheresultofrenaltubularcellsfailingtoreabsorbHCO32andresultsinacidiccerebrospinalfluid,whichencourageshigherlevelsofventilation.14

ThesechangesresultinanincreaseinPaO2andasubstantialriseinSaO2duetothesteepslopeoftheoxygen–haemoglobindissociationcurveovertherangeofPaO2valuesseenataltitude.Therapidnatureofventilatoryacclimatisationallowstimeforslowerchangesinthehaematologicalsystemtooccur.

(3)Increasedhaemoglobinconcentration

AlongsidethechangesseeninQandSaO2,theacclimatisationprocessalsoresultsinanincreaseintheconcentrationofcirculatinghaemoglobin.Thisisaresultoftwoprocesses.Table1Formulaeforthecalculationofsystemicoxygendelivery

Calculationofoxygendelivery(DO2)

Exampleina70kgman

DO2=Q6CaO2

DO2=4.96194=950.6ml/minQ=HR6SVQ=70670=4.9l/min

CaO2=([Hb]6SaO26H)+(PaO26S)CaO2=(14.06.9861.39)+(13.360.0225)

=19.1+0.3

=19.4mlO2/100mlblood=194mlO2/lCaO2,arterialoxygencontent;H,Hufnersconstant(1.39);[Hb],haemoglobinconcentration;HR,heartrate;PaO2,arterialpartialpressureofoxygen;Q,cardiacoutput;S,solubilitycoefficientofoxygen(0.0225);SaO2,arterialoxygensaturationofhaemoglobin;SV,strokevolume.

PostgradMedJ2008;84:622–627.doi:10.1136/pgmj.2008.068296

Review

a.

Arrivalataltitudecoincideswitharapidfallinplasmavolume.Overseveraldays,healthyindividualsexperienceafallbyupto20%intheirplasmavolumebecausewaterisexcretedasurineorinsteadshiftsintoeithertheinter-stitiumorcells.ThisresultsinarapidincreaseintheconcentrationofcirculatinghaemoglobinandsubsequentrisesinCaO2andDO2.15Althoughthisprocesscanpersistforseveralweeks,overaprolongedstayataltitude,plasmavolumeslowlyreturnstonormal.After18weeksabove4000m,Pugh16foundthatplasmavolumehadfallenby21%;however,3monthslaterthedifferencewasonly10%.b.Withinminutesofarrivalataltitude,increasedcellular

concentrationsoftheprotein,hypoxiainduciblefactor1a(HIF1a),stimulatethereleaseoferythropoietinfromtheliverandkidney.17Erythropoietinsubsequentlybindstoerythroidcelllinesinthebonemarrow,triggeringthereleaseofimmaturenucleatedredbloodcells(reticulocytes)intothecirculation.Insomecases,thiscanleadtoadoublinginthenumberofcirculatingreticulocyteswithin7daysofarrivalataltitude.18Althoughtheplasmaconcen-trationoferythropoietintendstofalloverthecourseof3weeksataltitude,redcellproductionremainsraisedforupto8monthsinthosenewtoaltitudeandcanresultina50%increaseinredcellmass.19

Changesincapillarydensityandmitochondrialvolumeandfunctionataltitude

Therewasarevelationinourunderstandingofhumanadaptationtohypoxiawhentheacceptedhypothesesofchangesinskeletalmusclecapillaryandmitochondrialdensityafterchronicexposuretohypoxiawerequestioned.

Historically,itwasbelievedthatasustainedreductioninoxygenavailabilitywouldleadtoincreasesincapillarydensityandaerobicmetabolicactivityinordertorestorecellularenergyrequirements.20However,earlystudiesofcapillarydensity,onwhichtheseideasweregrounded,failedtotakeintoaccountthedramaticdecreaseinmusclefibrecross-sectionalareaandskeletalmusclemass.2122Althoughoverallcapillarydensityappearedtoincrease,thecapillarytofibreratioremainedunchanged.Thustheapparentriseincapillarydensitysimplyrepresentedthereductioninmusclecross-sectionalarea.23

TraditionalideaswerequestionedfurtherwhenskeletalmusclebiopsyspecimenstakenfromclimbersreturningfromtheHimalayasrevealeda30%reductioninmitochondrialvolumedensity.21Inthesamegroupofsubjects,theactivityofcitratesynthaseandcytochromeoxidaseenzymeslocatedwithinthemitochondriawerereducedby,20%.24Asthesetwoenzymesareinvolvedinthecitricacidcycleandoxidativephosphorylation,respectively,thiswouldresultinreducedoxidativecapacityafterprolongedexposuretohypoxia,whichhasbeenfurtherconfirmedinotherstudies.2225Thiscombinedbodyofevidenceopposesprecedingtheoriesandsuggeststhatmusclecapillarityisincreased,whereascellularaerobiccapacityandmitochondrialvolumedensityarebothreducedataltitude.

SHORTCOMINGSOFTHECLASSICALACCLIMATISATIONEXPLANATION

Theclassicalexplanationofacclimatisationtomoderatealtitudehasevolvedovermanyyearsthroughdescriptionofphysiologicalprocessesoperatingsynergisticallytoincreaseoxygenfluxtocellswhenfacedwithenvironmentalhypobarichypoxia.SoeffectiveisthisadaptationthatCaO2tendstosurpasssea-levelvaluesinmostlowlandpeopleafteranadequateperiodofacclimatisation(fig2).2627However,ithas

623

Review

Figure1Theoxygencascadeduringrestatsealevelandatanaltitudeof8100m.DatatakenfromasimulatedascentofMountEverest,OperationEverestII.9

becomeclearthat,despitethisremarkableadaptivephenom-enon,exerciseperformanceataltitudeandsusceptibilitytoaltitude-relatedillnesses,suchasacutemountainsickness,highaltitudepulmonaryoedema,andhighaltitudecerebraloedema,differsmarkedlybetweenindividuals.Ourpreviousunder-standingofacclimatisationfailstoexplainthesesignificant

内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看

interindividualdifferences.

High-altitudeheroesarerarelyathletesatsealevel

Interindividualvariabilityinexerciseperformanceataltitudeisconsiderable.Accomplishedhigh-altitudemountaineersareanexampleofthosewhoadaptwelltoextremedegreesofhypoxia.ShortlyafterthefirstsuccessfulsummitofMountEverestbyReinholdMessnerandPeterHabelerwithouttheaidofsupplementaloxygen,aninvestigationwasperformedwiththeaimofelucidatingthetraitsthatpermithumansurvivalatsuchheights.28Atsealevel,Messner,Habelerandanumberoftheirclimbingcolleagueswerestudiedalongsideagroupofsedentarycontrolsubjects.Measuresofaerobicperformance,includingstaticanddynamiclungvolumes,echocardiography,skeletalmusclemitochondrialvolumedensityandmaximaloxygenconsumption,wereperformed.Withnosignificantdifferencesnotedbetweenthetwogroupsofsubjects,theauthorswereforcedtoconcludethatatsealevel‘‘elitehigh-altitudeclimbersdonothavephysiologicaladaptationstohighaltitudethatjustifytheiruniqueperformance’’.28

Sea-levelperformancefailstopredictaltitudeperformance

Exceptionalhigh-altitudeathletesfailtodisplayanyremarkablephysiologicalfeaturesatsealevel,butthosewhocopepoorlywithhypobarichypoxiaareequallydifficulttoidentify.29Nosingletesthastheabilitytodifferentiatethosewhofarewellataltitudefromthosewhodonot.Earlyhypobaricchamberstudiessuggestedanassociationbetweenabluntedhypoxicventilatoryresponseandthedevelopmentofacutemountainsickness.3031However,thesefindingshavenotbeenconfirmedinthefield.3233

Despitemanydecadesofinvestigation,theonlyreliableindicatorofwell-beingataltitudeisaprevioushistoryofsuccessfulascenttoasimilarelevation.Thisdifficultyinpredictingindividualsuccessorfailureonexposuretohypoxia

624

Figure2Changeinarterialoxygencontentafteracclimatisationto5260m.ArterialoxygencontentataltitudecalculatedwithfigurestakenfromCalbetetal.26

isseeninclinicalpracticewhenmanaginghypoxicpatients,particularlythosecategorisedascriticallyill.Despiteadvance-mentsinmedicaltechnologyandaclearerunderstandingofthepathophysiologicalprocessesunderlyingcriticalillness,clin-iciansstillstruggletoaccuratelydifferentiatesurvivorsfromnon-survivorsamongapopulationofprofoundlyhypoxicpatients.

Exercisecapacityremainslimitedafteracclimatisationtohighaltitude

Anyonewhohastravelledtohighaltitudewillreportthatexerciseisseverelylimited,andthishasbeenwelldocumentedinreportsovermanycenturies.34Asacclimatisationresultsinareturntosea-levelvaluesforsystemicDO2,itisunclearwhyexercisecapacity,measuredbyareductioninmaximumoxygenuptake(VO2max),remainssignificantlylimitedataltitudeafteradequateacclimatisation.93536AcuteexposuretohypoxialeadstoapredictablereductioninVO2max,whichisproportionaltothereductioninCaO2.37ThisdirectrelationshipbetweenCaO2andVO2maxislostafteracclimatisation,suggestingthatotherprocessesarecontributingtotheexercisedecrement.Debateovertheunderlyingmechanismofthisphenomenonhasbeenongoingforanumberofdecades.Ithasbeensuggestedthattheperipheral‘‘microcirculation’’mayplayanimportantroleinthepersistentlimitationofexercisecapacityataltitude.35However,thisdistalcomponentoftheoxygen-transportationsystemhasnotbeendirectlystudiedinlowlandsubjectsascendingtoaltitude.

Arecentstudyhascomparedtherestingforearmbloodflowofhigh-altitude-dwelling(4200m)Tibetansandagroupoflowlandcontrolsubjectsatsealevel(206m).38TheforearmbloodflowoftheTibetanswasdoublethatoftheAmerican

PostgradMedJ2008;84:622–627.doi:10.1136/pgmj.2008.068296

comparisongroupandwasassociatedwitha.10-foldincreaseincirculatingconcentrationsofbioactivenitricoxideproducts.38DespitehavinglowersystemicCaO2thantheAmericanlowlanders,theTibetanshadhigherregionallevelsofforearmDO2,perhapsbecauseofincreasedperipheralgenerationofnitricoxide.Thisfindingisbeginningtodrawattentionawayfromcentralcardiorespiratoryprocesses,andinvestigatorsarenowstartingtostudytheperipheralcirculationtogainabetterunderstandingofhypoxicadaptation.

PROPOSEDHYPOXIASURVIVALSTRATEGIES

Facedwithareducedavailabilityofoxygen,humansmustredressthesupply-and-demandbalancetoavoidcellulardysfunctionanddeath.Theclassicdescriptionofacclimatisa-tiondependsonastrategyofimprovingsystemicDO2;othermethodsofrestoringoxygenbalanceincludereducedcellularoxygenconsumptionandimprovedefficiencyofenergygenera-tion.

Reducedcellularoxygenconsumption

Inmammalianspecies,itispossibletoreduceglobaloxygenconsumptionbyloweringmetabolicactivity,asiscommonlyseeninhibernatinganimalsandthedevelopingfetus.Atthecellularlevel,cellsfromanoxia-tolerantanimalssuchasturtlesshowareductioninmetabolicrateof,25%afterexposureto30minofanoxia.3940Afterthereintroductionofoxygen,thisprocessisrapidlyreversed.Thisanoxia-inducedhypometabolicstateismainlybroughtaboutbydownregulationofATP-consumingmembraneionchannels41andpermitsneutralcellularenergybalanceduringoxygendeprivation.

Improvedefficiencyofenergyproduction

Analternativestrategyforsurvivingprolongedandextremehypoxiaisamoreefficientuseofoxygenduringtheprocessofaerobicenergyproduction.42Althoughhardtoimagine,thelatterhypothesishasbeendemonstratedinisolatedmitochon-driainwhichoxidativephosphorylationbecamemoreefficientduringexposuretohypoxia.43Thismayexplainthereductioninoxidativecapacitydescribedinclimbersreturningfromaprolongedperiodataltitude.Alterationofuncouplingproteinfunctionmaybeonemechanismthatfacilitatesimprovedefficiencyofoxygenuseduringaerobicmetabolism.Uncouplingproteinsallowprotonstore-enterthemitochondriainthefinalstagesofoxidativephosphorylation,therebybypassingATPsynthaseandeffectivelygeneratinganenergy‘‘leak’’.44Fine-tuningofthisenergyleakinthecell’sfavourmaypermitimprovedmetabolicefficiency.

THERELEVANCEOFHIGH-ALTITUDEPHYSIOLOGYTOCLINICALMEDICINE

Thestudyofhealthyvolunteersascendingtoaltitudemayhelptodefineandimproveourunderstandingofthelimitsofhumantolerancetohypoxia.Hypoxaemiaandcellularhypoxiaarecommonincriticallyillpatients,butitisunclearwhetherthesepatientsareabletoadapttohypoxiainasimilarmannertothosehealthyindividualswhoacclimatisetoaltitude.Underlyingpathology,infectionandthedevelopmentofcriticalillnessinthesepatientsmaypreventacomparableacclimatisa-tionprocess.Cellularmechanismsthatdeterminesystemicresponsetohypoxiaarebeingunravelledatanincrediblerate.PerhapsthemostimportantoftheseinrecentyearshasbeenthediscoveryofHIF1aanditsroleinoxygenhomoeostasisbyregulationofmultiplegeneloci.4546Inthefuture,theroleof

PostgradMedJ2008;84:622–627.doi:10.1136/pgmj.2008.068296

Review

HIF1ainthepathophysiologyofcancer,mycocardialischaemiaandcerebralhypoxiamaybemanipulatedbeneficially.TheroleofHIF1ainapoptosisandischaemicpreconditioningholdparticularlyexcitingpotential.47–49

High-altitudestudiesmaysuggestnoveladaptivemechan-ismsinpeoplewhodemonstratetolerancetoenvironmentalhypoxia,leadingtotranslationalresearchinhypoxicpatients.Climbersmakingabrieftriptogreataltitudemountanimpressivepolycythaemiainordertoincreasesystemicoxygenflux.Tibetans,whohavelivedataltitudeforcountlessgenerations,donotshowthispossiblycounterproductiveadaptation,butdemonstratemarkedchangesintheperipheralcirculation.38Inthelattersituation,changesinthemicrocircu-latory–mitochondrialunitmayaccountforlong-termhypoxictolerance.Changessuchasthismaybemirroredincriticalillness.50Evidencesuggeststhat,earlyincriticalillness,restorationofnormallevelsofoxygendeliveryisbeneficialtooutcome,51whereasfollowingthesamelineofmanagementinestablishedcriticalillnesscanbeharmfultopatients.5253ThesestudiesreliedonmeasurementsofsystemicDO2,andtheirresultsmaybeexplainedbythefactthatpersistentdisruptionofthemicrocirculationisassociatedwithpooroutcomeinsepticcriticallyillpatients.5455Furthermore,excessiveuseofoxygenmayleadtoinflammatorychangesfollowedbyirreversibledamageinthepulmonarytractthroughthereleaseofoxygenfreeradicals.5657

Commonthemesbetweenhypoxiccriticalillnessandadaptationtothehigh-altitudeenvironmentareinspiringresearchintothisfield.Investigatorsarenowlookingbeyondtheoxygenfluxprocesstoexplorethehypothesisthatrelativechangesinoxygenconsumptionmayexplaindifferencesinaerobicperformanceataltitude.58

CONCLUSIONS

Ourunderstandingofhowhumansadapttohypoxiaathighaltitudecontinuestodevelop.Overthelastcentury,researchhasrevealedchangesinthecardiorespiratoryandhaematologi-calsystemsthatallowexcursionstoaltitudethroughaugmen-tationofsystemicoxygendelivery.Morerecently,focushasturnedtotheperipheralmicrocirculationandtheprocessofATPproductionthatoccurswithinthemitochondria.Althoughdifferentarenas,high-altitudephysiologyandcriticalillnesshaveinterestingparallelswhichcouldbeexploitedinordertobenefithypoxicpatients.Continuingworkinthefieldofhigh-altitudemedicineandphysiologymayhelptounravelthecomplexmechanismsthatunderliethereasonsforsurvivalinahypoxicenvironment.Theassociationofgeneticmarkerswith

Keylearningpoints

c

Theclassicalexplanationofacclimatisationtomoderatealtitudeisrestorationofsystemicoxygendelivery.

c

Thereducedexercisecapacityandmarkedinterindividualvariationinperformanceataltitudearedifficulttoexplaininthefaceofnormalsystemicoxygendelivery.

c

Changesintheperipheralmicrocirculationandmitochondrialenzymaticpathwaysmayprofoundlyalterthebalancebetweenoxygensupplyanddemandatacellularlevelonascenttoaltitude.

c

Lessonslearntfromhealthyvolunteersexposedtothehypobarichypoxiaencounteredataltitudemaybenefitpatientswithhypoxiaresultingfromdisease.

625

Review

Currentresearchquestions

c

Dochangesintheperipheralcirculationaffectthediffusionofoxygenintotissuesataltitude?

c

Dohumanspossesscellularstrategiesforcopingwithprolongedhypoxia?

c

Willmechanismsthatidentifyperformanceathighaltitudetranslateintotoolsforpredictingsurvivalofhypoxiaintheclinicalsetting?

beneficialadaptationsinthemicrocirculatory–mitochondrialunitmayonedayprovideclinicianswiththetoolsthattheyrequiretoaccuratelypredicttolerancetohypoxiaandthereforeincreaseapatient’slikelihoodofsurvival.

MULTIPLECHOICEQUESTIONS(TRUE(T)/FALSE(F);ANSWERSAFTERTHEREFERENCES)

1.After1weekataltitude,thefollowingphysiologicalparametershavereturnedtonormal:

(A)Heartrate(B)Strokevolume(C)Cardiacoutput

(D)Amountofbicarbonateexcretedintheurine(E)

Plasmavolume

2.OnreturnfromanexpeditiontotheHimalayas:

(A)Mitochondrialvolumedensityinskeletalmuscleisdecreased

(B)Cellularaerobiccapacityisincreased

(C)Capillarydensityisincreasedinskeletalmuscle

(D)Haemoglobinconcentrationremainsraisedforseveralmonths

(E)

Heartrateandstrokevolumerapidlyreturntonormal

3.Thefollowingincreasewithinhoursofascendingtoaltitude:

(A)Serumconcentrationsofhypoxia-induciblefactoranderythropoietin

(B)Sympatheticoutflow(C)Plasmavolume

(D)Heartrateandcardiacoutput(E)

Redcellproduction

4.Onascenttoaltitude,thefollowingincrease:

(A)Barometricpressure

(B)Fractionofinspiredoxygen

(C)Partialpressureofinspiredoxygen(D)Saturatedvapourpressureofwater

(E)

Partialpressureofalveolarcarbondioxide

5.Thefollowingphysiologicalprocessesincreasethepartialpressureofalveolaroxygen:

(A)Anincreaseinrespiratoryrateandtidalvolume(B)Ahigh-carbohydratediet

(C)Theuseofsupplementaloxygen(D)Adecreaseinplasmavolume

(E)

Anincreaseintheconcentrationofcirculatinghaemoglobin

Competinginterests:None.626

REFERENCES

1.HoustonCS.Whatpriceasummit?WildernessEnvironMed1996;7:287–8.

2.DumontL,LysakowskiC,TramerMR,etal.Controversiesinaltitudemedicine.TravelMedInfectDis2005;3:183–8.

3.DouglasCG,HaldaneJS.Theregulationofthegeneralcirculationrateinman.JPhysiol1922;56:69–100.

4.VogelJA,HansenJE,HarrisCW.Cardiovascularresponsesinmanduringexhaustiveworkatsealevelandhighaltitude.JApplPhysiol1967;23:531–9.

5.VogelJA,HarrisCW.Cardiopulmonaryresponsesofrestingmanduringearlyexposuretohighaltitude.JApplPhysiol1967;22:1124–8.

6.WolfelEE,LevineBD.Thecardiovascularsystemathighaltitude.In:HornbeinTF,SchoeneRB,eds.Highaltitude:anexplorationofhumanadaptation.NewYork:MarcelDekker,2001.

7.

CalbetJA,RadegranG,BoushelR,etal.PlasmavolumeexpansiondoesnotincreasemaximalcardiacoutputorVO2maxinlowlandersacclimatizedtoaltitude.AmJPhysiolHeartCircPhysiol2004;287:H1214–24.

8.BarcroftJ.Therespiratoryfunctionofblood:lessonsfromhighaltitude.Cambridge:CambridgeUniversityPress,1925.

9.SuttonJR,ReevesJT,WagnerPD,etal.OperationEverestII:oxygentransportduringexerciseatextremesimulatedaltitude.JApplPhysiol1988;64:1309–21.10.

WestJB,SchoeneB,MilledgeJS.Highaltitudemedicineandphysiology.London:Arnold,2007

11.WeilJV,Byrne-QuinnE,SodalIE,etal.Hypoxicventilatorydriveinnormalman.JClinInvest1970;49:1061–72.

12.ForsterHV,DempseyJA,ChosyLW.IncompletecompensationofCSF[H+]inmanduringacclimatizationtohighaltitude(4800m).JApplPhysiol1975;38:1067–72.13.PappenheimerJR,FenclV,SRH,etal.Roleofcerebralfluidsincontrolofrespirationasstudiedinunanethetizedgoats.AmJPhysiol1965;208:436–50.14.SeveringhausJW,MitchellRA,RichardsonBW,etal.RespiratorycontrolathighaltitudesuggestingactivetransportregulationofCSFpH.JApplPhysiol1963;18:1155–66.

15.GroverRF,BartschP.Blood.In:HornbeinTFSchoeneRB,eds.Highaltitude:anexplorationofhumanadaptation.NewYork:MarcelDekker,2001.

16.PughLGCE.Bloodvolmeandhaemoglobinconcentrationataltitdesabove18,000ft.(5500m).JPhysiol1964;170:344–54.

17.WindsorJS,RodwayGW.Heightsandhaematology:thestoryofhaemoglobinataltitude.PostgradMedJ2007;83:148–51.

18.HuffRL,LawrenceJH,SiriWE,etal.Effectsofchangesinaltitudeonhematopoieticactivity.Medicine(Baltimore)1951;30:197–217.

19.ReynafarjeC,LozonoR,ValdiviesoJ.Thepolycythemiaofhighaltitudes:ironmetabolismandrelatedaspects.Blood1959;14:433–55.

20.HochachkaPW,StanleyC,MerktJ,etal.Metabolicmeaningofelevatedlevelsofoxidativeenzymesinhighaltitudeadaptedanimals:aninterpretivehypothesis.RespirPhysiol1983;52:303–13.

21.HoppelerH,KleinertE,SchlegelC,etal.Morphologicaladaptationsofhumanskeletalmuscletochronichypoxia.IntJSportsMed1990;11(Suppl1):S3–9.22.MacDougallJD,GreenHJ,SuttonJR,etal.OperationEverestII:structural

adaptationsinskeletalmuscleinresponsetoextremesimulatedaltitude.ActaPhysiolScand1991;142:421–7.

23.HoppelerH,VogtM.Muscletissueadaptationstohypoxia.JExpBiol2001;204:3133–9.

24.HowaldH,PetteD,SimoneauJA,etal.Effectofchronichypoxiaonmuscleenzymeactivities.IntJSportsMed1990;11(Suppl1):S10–4.

25.GreenHJ,SuttonJR,CymermanA,etal.OperationEverestII:adaptationsinhumanskeletalmuscle.JApplPhysiol1989;66:2454–61.

26.CalbetJA,BoushelR,RadegranG,etal.WhyisVO2maxafteraltitude

acclimatizationstillreduceddespitenormalizationofarterialO2content?AmJPhysiolRegulIntegrCompPhysiol2003;284:R304–16.

27.

HannonJP,VogelJA.Oxygentransportduringearlyaltitudeacclimatization:aperspectivestudy.EurJApplPhysiolOccupPhysiol1977;36:285–97.

28.OelzO,HowaldH,DiPPE,etal.Physiologicalprofileofworld-classhigh-altitudeclimbers.JApplPhysiol1986;60:1734–42.

29.BartschP,GrunigE,HohenhausE,etal.Assessmentofhighaltitudetoleranceinhealthyindividuals.HighAltMedBiol2001;2:287–96.

30.KingAB,RobinsonSM.Ventilationresponsetohypoxiaandacutemountainsickness.AerospMed1972;43:419–21.

31.MooreLG,HarrisonGL,McCulloughRE,etal.Lowacutehypoxicventilatoryresponseandhypoxicdepressioninacutealtitudesickness.JApplPhysiol1986;60:1407–12.

32.MilledgeJS,BeeleyJM,BroomeJ,etal.Acutemountainsicknesssusceptibility,fitnessandhypoxicventilatoryresponse.EurRespirJ1991;4:1000–3.

33.MilledgeJS,ThomasPS,BeeleyJM,etal.Hypoxicventilatoryresponseandacutemountainsickness.EurRespirJ1988;1:948–51.

34.WestJB.Highlife:ahistoryofhigh-altitudephysiologyandmedicine.NewYork:OxfordUniversityPress,1998

35.CerretelliP.LimitingfactorstooxygentransportonMountEverest.JApplPhysiol1976;40:658–67.

36.PughLGCE,GillMB,LahiriS,etal.Muscularexerciseatgreataltitudes.JApplPhysiol1964;19:431–40.

37.

AdamsRP,WelchHG.Oxygenuptake,acid-basestatus,andperformancewithvariedinspiredoxygenfractions.JApplPhysiol1980;49:863–8.

PostgradMedJ2008;84:622–627.doi:10.1136/pgmj.2008.068296

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

2018宁夏区考行测题库:行测每日一练资料分析练习题答案08.10
2018宁夏区考行测题库:行测每日一练资料分析练习题08.17
2018宁夏区考面试题库:面试每日一练结构化面试模拟题8.10
2018宁夏区考行测题库:行测每日一练资料分析练习题08.10
2018宁夏区考面试题库:面试每日一练结构化面试模拟题8.22
2018宁夏区考面试题库:面试每日一练结构化面试模拟题8.17
2018宁夏区考面试题库:面试每日一练结构化面试模拟题8.9
2018宁夏区考面试题库:面试每日一练结构化面试模拟题8.16
2018宁夏区考面试题库:面试每日一练结构化面试模拟题答案8.14
2018宁夏区考面试题库:面试每日一练结构化面试模拟题8.14
2018宁夏区考面试题库:面试每日一练结构化面试模拟题答案8.21
2018宁夏区考行测题库:行测每日一练言语理解与表达练习题答案08.21
2018宁夏区考面试题库:面试每日一练结构化面试模拟题8.18
2018宁夏区考面试题库:面试每日一练结构化面试模拟题答案8.17
2018宁夏区考行测题库:行测每日一练资料分析练习题08.24
2018宁夏区考行测题库:行测每日一练判断推理练习题答案08.23
2018宁夏区考面试题库:面试每日一练结构化面试模拟题答案8.22
2018宁夏区考行测题库:行测每日一练常识判断练习题08.15
2018宁夏区考面试题库:面试每日一练结构化面试模拟题8.15
2018宁夏区考行测题库:行测每日一练常识判断练习题答案08.15
2018宁夏区考面试题库:面试每日一练结构化面试模拟题8.21
2018宁夏区考申论每周一练答案:品牌建设
2018宁夏区考行测题库:行测每日一练数量关系练习题答案08.11
2018宁夏区考面试题库:面试每日一练结构化面试模拟题答案8.9
2018宁夏区考行测题库:行测每日一练数量关系练习题08.11
2018宁夏区考面试题库:面试每日一练结构化面试模拟题答案8.10
2018宁夏区考行测题库:行测每日一练常识判断练习题答案08.22
2018宁夏区考面试题库:面试每日一练结构化面试模拟题答案8.8
2018宁夏区考行测题库:行测每日一练数量关系练习题08.18
2018宁夏区考行测题库:行测每日一练判断推理练习题08.16

网友关注视频

3月2日小学二年级数学下册(数一数)
30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
冀教版小学英语四年级下册Lesson2授课视频
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
三年级英语单词记忆下册(沪教版)第一二单元复习
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
《空中课堂》二年级下册 数学第一单元第1课时
苏科版八年级数学下册7.2《统计图的选用》
二年级下册数学第三课 搭一搭⚖⚖
人教版二年级下册数学
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
六年级英语下册上海牛津版教材讲解 U1单词
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
七年级英语下册 上海牛津版 Unit3
化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
《小学数学二年级下册》第二单元测试题讲解
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
冀教版英语三年级下册第二课
外研版八年级英语下学期 Module3
第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
外研版英语七年级下册module1unit3名词性物主代词讲解
沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
七年级英语下册 上海牛津版 Unit5
8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
外研版英语三起5年级下册(14版)Module3 Unit1