海水沉积物中总汞甲基汞测定
上传者:李先涛|上传时间:2015-04-21|密次下载
海水沉积物中总汞甲基汞测定
海水汞
内容需要下载文档才能查看Baseline
Total,methylandorganicmercuryinsedimentsoftheSouthernBaltic
内容需要下载文档才能查看Sea
J.Be dowskia,M.Miotka,M.Be dowskab,J.Pempkowiaka,
ab
InstituteofOceanology,PolishAcademyofSciences,P.O.Box197,Sopot,PolandInstituteofOceanography,GdanskUniversity,Al.Pilsudskiego46,Gdynia,Poland
articleinfoabstract
DistributionofsedimentarymercuryintheSouthernBalticwasinvestigated.SedimentsampleswerecollectedfromtheSouthernBalticintheperiodfrom2009to2011,andconcentrationsofsedimentarytotalmercury(average102ng/g,range5.8–225ng/g)andmethylmercury(average261pg/g,range61–940pg/g)weremeasuredinthemannerthatthein uenceofbothpatchinessandseasonalchangeswereassessed.Moreover,sedimentarymercuryextractedwithorganicsolvent-theso-calledorganicmercurywasalsoanalyzed(average425pg/g,range100–1440pg/g).Thereisastatisticallysigni cantdependencebetweenorganicmercuryandbothmethylmercuryandtotalmercuryconcentrationsinthesediments.Methylmercurycontributiontototalmercuryvariedfrom0.12%to1.05%,whileorganicmercurycontributedto2%oftotalconcentrationonaverage.Theareastudied,althoughmercuryconcentrationsexceedthreefoldthegeochemicalbackground,canberegardedasmoderatelycontaminatedwithmercury,andmethylmercury.
Ó2014ElsevierLtd.Allrightsreserved.
Articlehistory:
Availableonline31July2014Keywords:PatchinessSpeciation
OrganicmercuryExtraction
Mercuryhasbeenasubjectofenvironmentalchemistryinterestforseveraldecades(Pacynaetal.,2006).Althoughallchemicalformsofmercuryaretoxic,publichealthconcernsarefocusedonmethylmercury(MeHg).
Nowadaysloadsofmercurydischargedtotheenvironmentfromanthropogenicsourcesexceedseveraltimesthesefromnatu-ralones(Pacynaetal.,2006).Muchofthemercuryoriginatingfrombothanthropogenicandnaturalsourcesis,eventually,broughttothemarineenvironment.There,owingtoitsaf nitytoparticulatematter,mercuryisreadilyscavengedfromthewatercolumn(Laurieretal.,2003)anddepositedtobottomsediments(CossaandGobeil,2000)inparticularinestuariesandcoastalareas(Boening,2000).
Distributionofmercuryinmarinesedimentsisin uencedbyphysicaltransport,sedimenttexture,mineralogicalcomposition,reduction/oxidationstatusofsediments,adsorptionanddesorp-tionprocessesandorganicmattercontent(Boening,2000;Frenchetal.,1999).Red-oxconditionsareofparticularinterestas,inthereducingenvironment,mercuryisreadilytransferredintoorgano-mercurialspecies(e.g.methylmercury-MeHg)thatarebothmobileandhighlybioavailable.Thus,underspeci ccondi-tionsafractionofmercurydepositedtosedimentsre-enterstheCorrespondingauthor.
E-mailaddress:pempa@iopan.gda.pl(J.Pempkowiak).
内容需要下载文档才能查看http://wendang.chazidian.com/10.1016/j.marpolbul.2014.07.0010025-326X/Ó2014ElsevierLtd.Allrightsreserved.
overlyingwaterandconstitutesthreattolivingorganisms.Asaresult,sedimentscanactasbothsinkandsourceformercuryinaquaticenvironment(Zoumisetal.,2001).
TheBalticSeaisalandlockedbasinsurroundedbyhighlyindustrializedcatchmentarea.Mercuryconcentrationsinthesur-faceBalticsedimentsexceedthegeochemicalbackgroundbyafac-torofthreeto ve(BeldowskiandPempkowiak,2009).Accordingtotherecentpollutionloadcompilation(HELCOM,2011)theinputofmercurytotheBalticSeahadef cientlydecreasedwithintheprevioustwodecades.Despitethis,nocorrespondingdecreaseisobservedinbiotamercuryconcentrations(Saniewskaetal.,2014).Oneofpossiblereasonsisthere-emissionofthepreviouslyaccumulatedmercuryfromsediments,inparticularwithinsedi-mentationbasins,duetoanoxicconditionsprevailingthere(Be dowskietal.,2009).
MercuryintheBalticsedimentshasbeenasubjectofinvestiga-tionsforseveraldecades(Saniewskaetal.,2010;BeldowskiandPempkowiak,2009;Be dowskiandPempkowiak,2007;BorgandJonsson,1996;KannanandFalandysz,1998;Pempkowiak,1991;Pempkowiaketal.,1998).Concentrationofthemetaliswellchar-acterized(Be dowskiandPempkowiak,2007;BorgandJonsson,1996),asisthemechanismofmercurytransporttothedeposi-tionalbasinsofthesea(Be dowskiandPempkowiak,2007).How-ever,MeHgintheBalticsedimentshavebeenseldomstudied.SofarjustonereportindicatedthepresenceofMeHgintheBaltic
海水汞
J.Be dowskietal./MarinePollutionBulletin87(2014)388–395389
Sediments(KannanandFalandysz,1998).TheauthorsofthereportmeasuredsubstantialcontributionofMeHgtototalmercurybas-ingonseveralresultsofmethylmercuryintheBalticsediments.ThuslittleisknownregardingbothcontemporaryconcentrationsofMeHginthesedimentsandfactorsaffectingtheconcentrations.This,atleastpartly,maybecausedbyrelativelyextensiveanalyt-icalprocedurerequiredtoquantifysedimentaryMeHg(Liangetal.,1994).RecentlythesocalledorganicmercurywassuggestedasamercuryfractioncloselyrelatedtoMeHginfresh-watersediments(BoszkeandKowalski,2008).Theauthorsusedmethylenechloridetoseparateorganicmercuryfromsediments.Otherorganicsol-ventswerealsousedforthepurpose:toluene(Milleretal.,1995),andchloroform(EguchiandTomiyasu,2002;Tomiyasuetal.,2000).TherearenoreportsregardingtheusefulnessoforganicmercuryasasubstituteforMeHginstudiesofmarinesed-imentscontamination.
Theaimofthisstudywastoinvestigateconcentrationsoftotalmercury,andselectedmercuryfractions:totalorganicmercuryandmethylmercuryinsedimentsoftheSouthernBalticSeaandtocomparetheresultswithconcentrationsmeasuredinothermarinecoastalareas.Assamplingstationscharacterizedbyvary-ingred-oxconditions,sedimenttextureandorganicmattercon-tentwerecollectedincloseproximitytooneanother,factorsaffectingsedimentarymercuryconcentrationandspeciationwereassessedtoo,aswererelationsbetweenthemeasuredmercuryfractions.
TheBalticSeaisasemi-enclosedwaterbodysurroundedbyhighlyindustrializedcountries.Twomainfeaturescharacterizehydrologyofthesea.Firstly,thesurfacewaterisbrackishasaresultofalargeriverineinputandthelimitedexchangeofwaterwiththeNorthSea.Secondly,thereisapermanenthaloclineatadepthofabout70m.Thesub-haloclinewatersinthecentralbasinsaredepletedofdissolvedoxygenorevenanoxic.GeochemicalcyclesintheBaltichavebeenstronglyin uencedbyhumanactiv-itiessincethebeginningofthe20thcentury(BorgandJonsson,1996;Pempkowiak,1991).Muchoftheanthropogenicloadiscar-riedtotheBalticSeawiththeriverrunoff.Subsurfacegroundwaterdischargeplayssubstantialroleincaseofnutrientsandorganicmatter,andaminorroleinthecaseofmercury(Szymczychaetal.,2013).ThemajorriversenteringtheBalticcanbedividedintotwobroadcategories:thoseseparatedfromtheseabyalagoon,andthoseenteringtheseadirectly.Thelagoonsactastrapsforsuspendedanddissolvedriverineloads(BorgandJonsson,1996;Pempkowiaketal.,2000).SamplesforthisstudyhavebeencollectedfromtheSouthernandcentralBaltic.Thisareais,onaverage,quiteshallow–meandepthbeing50m(Voipo,1981).SouthernandcentralBalticconsistsofseriesofdeepbasinssepa-ratedbysills.Sedimentationregimeindeepbasins(>80m)maybeconsideredasstable(Zaborskaetal.,2014).Intheintermediateareas(>50m)accumulationtypeofbedprevails,whereasinshal-lowerregionserosionorno-accumulationbottomspredominate(Feisteletal.,2008;Voipo,1981).Sedimentsconsistofsiltand
mudintheGdan
´skDeep,theBornholmDeepandtheGotlandDeep-clayintheS upskChannel,andsandwithoccasionalsilt
depositsintheBayofGdan
´sk,theS upskSillandthePomeranianBay(Feisteletal.,2008).Forthisstudy,threesedimentationbasins
oftheSouthernBalticweresampled–Bornholm,Gdan
´skandGot-landDeeps,andtwoshallowareasadjacenttorivermouths–the
Gdan
´skBay,closetotheVistulamouthandthePomeranianBay,closetotheOdramouthduringcruiseontheR/VOceaniainSpring2009and2010fromtheGdanskDeep,theGotlandDeep,thePom-eranianBayandtheGdan
´skBayandinAutumn2009fromtheGdan
´skDeepandtheGotlandDeep.Locationofthesamplingsta-tionsisshowninFig.1.
Sampleswerecollectedwithagravitycorer.Thetopthreecen-timetersofstrati edsedimentsweresampledbycuttingitawaywithaplasticspatula,mixed,transferredintopolyethylenebagsandstoredfrozen(À20°C)untilanalysesinlaboratory.
Beforemercuryanalysisallthesampleswerehomogenizedunderlaminar owhoodandaliquotsweretakenfordetermina-tionsofmoisture,organiccarbonand negrainfractioncontents.Moisturewasusedtocalculatedrymassofsample,andallresultsarereportedasmassperdryweight.Finegrainedfraction(<0.067mm)http://wendang.chazidian.comaniccarboncontentinsedimentswasdeterminedafterremovalofcarbonates(2MHCl)usinganElementalAnalyzerFlashEA1112Seriescom-binedwiththeIsotopicRatioMassSpectrometerIRMSDeltaVAdvantage(ThermoElectronCorp.,Germany)andpresentedaspercentageinthebulkofthedrysample.Qualitycontrolwascar-riedoutwithstandardmaterialssuppliedbytheThermoElectronCorp.Themethodologyusedprovedsatisfactoryaccuracyandpre-cision(averagerecovery99.1±2.0%).
Totalmercurydeterminationwasperformedviasample(500mg)pyrolysisinastreamofoxygen(LecoAMA254,CzechRepublic).TheAMA254techniqueofdirectcombustionfeaturesacombustion/catalysttubewheresedimentdecomposesinanoxygen-richenvironmentandremovesinterferingelements.BothrecoveryandprecisiongivenasRelativeStandardDeviationprovedsatisfactory(97%±3%RSD)basingonareferencematerialanalysis(NIST2584).
Extractablefractionofmercury(organicmercury)wasdeter-minedaccordingtoproceduredescribedforriversediments(Boszkeetal.,2007).Inshort,asedimentsample(5.0g)wastwiceextractedwithchloroform,reextractedbyaqueoussodiumthio-sulphatesolution(0.01M;10mL)Fromtheaqueouslayeranali-quotof5mLwascollected,placedinameasuring ask(50mL)andtreatedwith20lL65%HNO3,7.5mL33%HCland5mLofa1:1solutionof0.0033MKBrO3and0.2MKBrtooxidizeallmer-curyspeciestoHg(II).Resultingsolutionswereanalyzedbymeansofatomic uorescencespectrophotometryonautomatedTekran2600(Canada)apparatus,accordingtoEPA1631method(EPA,2002).
MethylmercuryhasbeendeterminedintheJosefStefanInsti-tutelaboratoriesinLjubljana(Slovenia),usingtheproceduredevelopedbyLiangetal.(1994)andusedsuccessfullybyothers(Logaretal.,2002;Quevauvilleretal.,1998).Methylmercuryde nedbythisprocedureincludesallmonomethylmercuryspe-ciesfoundinsediments(e.g.CH3Hg+,CH3HgCl,CH3HgOH,andCH3-HgS-R),whichareamenabletocomplexationandextractionasCH3HgBr.Inshort,300mgsampleofwetsedimentwassequen-tiallyelutedwith2.5mlof1.5MHBrsolutionand1mlof1MCuSO4.ThenMeHgwasextractedintomethylenechloride.20mlofdeionizedwaterwereadded,andtheorganicfractionwasevap-oratedafterdilutiontoaknownvolumewithreagentwater,fur-theranalysiswascarriedoutbyaqueousphaseethylation,andthenanalyzedusingtheGC/pyrolysis/CVAFStechniqueinaBrooksandRandModel1Detectorequippedwithagaschromatographycolumnandahightemperature(300°C)desorptionunit.Allsam-pleswereanalyzedintriplicate,andblanksampleswererunforeverysixsamples.Recoveryandprecisionofmeasurementswereassessedbytheuseofcerti edreferencematerial(NIST2584fortotalmercuryandBCR580fororganic/methylmercury).Thosewereequalto98%and3%RSD,fortotalmercury,whileforHgOrgandMeHgRSDsdidnotexceed7.4%whilerecoveryequaled91%.Thecommonproblemwithmercuryanalysisinmarinesedi-mentsistherandomcomponent,associatedwiththesocalled‘‘patchiness’’–mosaicpropertiesofsediments,whichvary,evenonaverylocalscale.TheBalticsedimentswerereportedtobecharacterizedwithsubstantialpatchiness(Zaborskaetal.,2014;ZalewskaandSuplinska,2013;Winterhalter,2001),whichmaycausethemeasuredconcentrationofmercurytobenon-represen-tativeforagivenarea,ifitisbasedonasinglesampleanalyses.
海水汞
Thereforeinthisstudy,coreswerecollectedintriplicate,withinaonesquarekmarea.Moreoverinordertoassesspossibleseasonalvariability,sampleswerecollectedinthreeseasons(Spring2009,
´skandGotlandAutumn2009andSpring2010)intheareaofGdan
Deeps,andintwoseasonsintheremainingstations(Bornholm
´skBay).Deep,PomeranianBayandGdan
ResultsofthesodesignedexercisearepresentedinFig.2,sep-aratelyforeachstation,errorbarsrepresentseasonaldifferences.Sincevariabilityinstationsclosetoshore,especiallyneartheVistulamouth(V)isvisiblygreaterthanintheaccumulationbasins,nearshoreareasanddeeps(accumulationbasins)willbediscussedseparately.
Seasonalvariabilityfortotalmercuryintheaccumulationbasins(GD,BO,andGO)withinthesamestationvariedintherangefrom5%to33%,exceptonecaseinBornholmDeep,whereitreached67%.Thevariabilityrelatedtopatchinessrangedfrom9%to34%.Thustheaverageuncertainty,givenasRelativeStandardDeviation,attachedtoasingulartotalmercuryresultisintherangeof20%.Fororganicmercuryseasonalvariabilityvariedfrom4%to32%,whilethespatialvariabilityrangesfrom4%to31%.Methylmercuryspatialandtemporaldistributionsweresimilar,amountingto4–36%RSDforseasonaland2–34%RSDforspatialdifferences,resultingin15%averageuncertainty.ThustheaverageconcentrationsofmercuryobtainedinthisstudycanberegardedasrepresentativeforthesedimentsoftheSouthernBalticaccumu-lationbasins.Theuncertaintyislessthan20%oftheaveragevalues(Fig.2).
Differentsituationisobservedinthecoastalareas–theresea-sonalvariabilitygivenasRSDreaches103%,115%and121%respec-tivelyfortotal,organicandmethylmercury,whilepatchinessrelateduncertaintyreaches77%,44%and45%fortherespectiveforms.Thistranslatestoanaverageuncertaintyof44%forallstud-iedmercuryspecies.Suchdifferencesmightbeattributedtoboththedynamicsofshallowsedimentsandvariableriverinemercuryinput.Thelatterdirectlycontrolscompositionofmarinesedimentsinthoseareas(Huzarska,2013).EspeciallypronounceddifferencesobservedclosetotheVistulamouthmightbecausedbythe oodinMay2010,thebiggestonesince1850.Atthetimeofthe oodexceptionallylargequantitiesofmercuryweretransportedwiththerun-off(Saniewskaetal.,2014;Wielgat-Rychertetal.,2013).Observedseasonalvariabilityandpatchinessisnotlimitedtomercuryspeciesandresultsfromheterogeneityofsedimentandenvironmentalconditions.Theformercouldbecharacterizedbyorganicmattercontent,granulometryandoxidativestate–factorsthatstronglyin uencesedimentarymercuryconcentration(Pempkowiaketal.,1998).Variabilityofthe nefractioncontribu-tion,organiccarboncontentandredoxpotentialispresentedinTable1.
Organiccarbonvariabilityinthewholedatasetwassimilarforaccumulationandcoastalareas,andvariedfrom5.56%to13.58%,while nefractioncontributionwasmarkedlymorevariableclosertothecoast.Redoxpotentialsvariedintherangefrom3.9%to309%oftheaverage.Thustheobservedheterogeneityinmercurycon-centrations(Fig.2)canbeattributedtosedimenttexturediffer-ences(incoastalareas)andcombinedeffectofbothorganiccarbonandredoxconditionsvariabilities.
Concentrationsoftotalmercury(THg),organicmercury(HgOrg)andmethylmercuryinmarinesedimentsfromtheSouth-ernBalticvariedintherange5.8–225(average:103)nggÀ1dryweight,90–1240(320)pggÀ1drywt.and60–940(230)pggÀ1
内容需要下载文档才能查看dry
海水汞
Bulletin87(2014)388–395391
Table1
Medianvaluesinthestudiedsedimentsandrangesoforganiccarbon(Corg)concentration(mg/g), nefractioncontribution(<0.063)(%)andredoxpotential(Eh)(mV).
Corg(mg/g)
<0.063(%)
Eh(mV)
GD7.9(6.2–9.1)92.61(89.65–94.87)À76(À129À+9)GO11.8(10.8–12.9)87.94(83.58–91.51)+5(À15À+15)BO7.7(6.3–9.1)62.72(59.41–66.72)+47(+30À+66)V4.4(3.6–5.2)4.23(2.54–5.99)+158(+76À+236)O
2.5(2.1–3.0)
0.93(0.49–1.31)
+234(+221À+245)
wt.,respectively(Fig.3).ThehighestlevelsofTHgandMeHgwerefoundinsedimentsfromtheGdanskDeepandthevicinityoftheVistulamouth,respectively.
ThelowestconcentrationsofbothTHgandMeHgwerefoundinsedimentscollectedclosetotheOdramouthlocatedintheBayofPomerania.ThiscanbeattributedtothemorphologyoftheOdra
riverestuary,wheretheSzczecinLagoonactsas‘ lter’fortheriverrun-offdischargedtothePomeranianBay(seeFig.1).InthecaseoftheVistulaRiverestuary,themorphologyisdifferent–theriverrun-offandtheloadsofchemicalsitcarriesaredischargeddirectly
totheGulfofGdan
´sk(Pempkowiaketal.,2000).Craig(1986)reportedconcentrationrangesof200–400nggÀ1THgforuncontaminatedmarinesediments,whereasheavilypol-lutedsedimentsinurban,industrialorminingareascancontainupto100lggÀ1oftotalmercury.SedimentarylevelsofTHgandMeHgreportedintheliteraturearepresentedinTable2.Ourresultsindicatethatthemercuryconcentrationsaveragesandranges,determinedinsedimentsfromthestudyarea,arelowerthanthosereportedinotherareas(Covellietal.,2001;Jinetal.,2012;KannanandFalandysz,1998;Mzoughietal.,2002;Spadaetal.,2012)withtheexceptionofthelevelreportedbyAsmundandNielsen(AsmundandNielsen,2000)whoindicatedback-groundmercurylevelsof24nggÀ1insedimentsfromtheGreen-landShelf.ThehighestvalueswererecordedinsedimentsfromGulfofTrieste(theAdriatic),in uencedbythecontaminatedriverSoca/Isonzo,forcenturiesdrainingthecinnabar-richdepositsoftheIdrijaminingdistrict,intheNorthwesternpartofSlovenia(Covellietal.,2001).
MeHgconcentrationsmeasuredinthestudyareaarecharacter-isticofanoxicpollutedsediments(Kwokaletal.,2002).Concentra-tionsmeasuredwithinthisstudyarelowerthanthesereportedforperiod1992–1994byKannanandFalandysz(1998)byafactoroftwoforthesameregion,afeaturedif culttoexplaintakingintoaccountthatbothseasonalandspatialvariabilityofmercurycon-centrationsdonotexceed20%oftheaverage,andthefact,thattotalmercuryconcentrationobservedinthisstudyarecomparabletothevaluesobservedin1993–1995(Pempkowiaketal.,1998).ThissuggestsachangeinmethylatingpotentialoftheBalticsedimentssince1990s,whichcouldbeattributedi.e.totheoverallimprovementofoxicconditionsonthebottom(Feisteletal.,2008).Thecontributionofmethylmercurytototalmercuryinsedi-mentsofthestudyarearangedfrom0.14%to1.05%whichfallswithintherangereportedintheliteratureformarineenviron-ments(Cossaetal.,1996;Masonetal.,1994).Thismightsuggestalowmethylationpotentialofmarinesedimentsinthestudyarea.CorrelationanalysesshowedthatTHgwasstronglycorrelatedwithMeHginsediments(SpearmanR=0.82,p<0.01).Theestablishedrelationiscalculatedforallanalyzedsamples,exceptthreesamplescollectedclosetotheVistulamouth,(Fig.4),sincethesamplesinquestionwerecollectedshortlyaftermajor oodinMay,2010.The oodhasintroducedlargeloadsofbothmercuryandorganicmattertotheBalticSea(Saniewskaetal.,2014),andmaywellexplaintheelevatedconcentrationsofbothTHgandMeHgthere.
Intheremainingareas,reducingconditionswereobservedinsediments(themeasuredred-oxpotentialwasintherangefromÀ122to66mV).Themeasuredredoxpotentialindicatesthattheconditionsinsedimentswereappropriateforthesulfatereducingbacteriatoreducesulfatetosul de.Asaresultlabilemercuryformsaretransformedtomercurysul de(Be dowskiandPempkowiak,2007)thatissparinglysolubleinaqueoussolution.OncedepositedasHgS,mercuryispresumablynotavailableformethylation(Boening,2000).However,bioturbationorphysicalmixingcanintroduceoxygentosedimentsthatleadstooxidationofHgSandthusremobilizeafractionofHgS(Steinetal.,1996).Moreover,evenwithinthesamelocation,thepercentageofmethylmercuryvariedtosomeextendsuggestingthatotherfactorssuchasorganicmatterandmicrobialactivitymayin uenceorevenplayasigni cantroleinthemethylationprocess(Be dowskietal.,2009)MostpronounceddifferenceswereobservedintheBorn-holmDeep(0.21–1.03%)andinthevicinityofrivermouths(Vistula–0.14–0.61%;Odra–
内容需要下载文档才能查看0.64–1.05%).
海水汞
392J.Be dowskietal./MarinePollutionBulletin87(2014)388–395
Table2
Totalmercuryandmethylmercurylevelsreportedforsedimentsindifferentcoastalseas.Studyarea
THgconc.(nggÀ1)Average
GulfofTriesteAdriaticsea
LagoonofBizerte
MediteraneanoffTunisiaGulfofTarantoIonianSeaJadeBayNorthSea
VistulaMouth(GulfofGdansk)Odramouth
(PomeranianBay)
´skDeepGdan
GulfofGdanskBalticSea
´skBasinGdan
´skDeepGdan
BornholmDeepBornholmDeep
524013027701087193151641761906456
Range100–23,30010–650360–773035–24317–1536–13220–42037–88028–473130–37025–84
MeHgconc.(pggÀ1)Average1690053010800–35475–645
Range200–60,100nd–32001000–40,000–68–94061–94–
35–1700
Covellietal.(2001)Mzoughietal.(2002)Spadaetal.(2012)Jinetal.(2012)ThisstudyThisstudy
Thisstudy
KannanandFalandysz(1998)Be dowskiandPempkowiak(2007)Pempkowiaketal.(1998)
Be dowskiandPempkowiak(2007)ThisstudySource
Organomercurycompoundsarethoseinwhichmercuryisbondeddirectlytothecarbonatome.g.CH3Hg(I)andC2H5Hg(I)(Hintermann,2010).Severalextractingagentswereusedforsepa-ratingorganomercurycompoundsfromsedimentssofar:toluene(Milleretal.,1995),chloroform(EguchiandTomiyasu,2002;Tomiyasuetal.,2000)anddichloromethane(RennebergandDudas,2001).However,withtheuseofthesesolventsnotonlytheorganomercurycompoundsbutalsoafractionofthemercurycomplexedbyorganicligandsisextracted(EguchiandTomiyasu,2002).Inthisstudychloroformwasusedasanextractingagenttoseparatethisoperationallyde nedfractionofmercury,calledhereorganicmercury(HgOrg).Obviouslyorganicmercurycom-prisesmethylmercuryasde nedinthisstudy.Theaveragecon-centrationofmercuryinthisfractioninthestudyareais0.42nggÀ1(range0.10–1.44nggÀ1).Concentrationsoforganicmercuryintherange:0.9–26nggÀ1weredeterminedinthemar-inebottomsedimentsfromtheYatsushiroSeainJapan(Tomiyasuetal.,2000),inthesoilsamplesfromtheareastronglypolluted
内容需要下载文档才能查看下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 诗词曲名词术语讲解
- 新课标高中生物回归教材教学练习
- 【人教版】八年级(上)思想品德全套教案
- 人教版物理八年级下全集教案
- 人教版初中物理中考复习教学学案
- 北师大版八年级生物下册全新精品教案
- 【人教版】七年级生物下全册教案(101页)
- 古典诗词抒情方式解析
- 古典诗词意境解析
- 高中生物辐射法二轮专题笔记
- 牛津小学词组复习:3A-6B的所有词组短语
- 新课标人教版九年级物理教案(全)
- 小考英语六年级总复习计划
- 高考复习化学实验知识整理
- 高中化学实验精讲讲义
- 最新政治复习答题模板(文化、哲学)
- 【人教版】八年级(下)思想品德全套教案(表格版)
- 高中英语构词法讲解+练习
- 高中化学120个易错关键知识点
- 高中物理二轮复习教学指导
- 《国学基本教材:孟子/大学/中庸卷》
- 特级教师“三大联盟”自主招生物理讲义
- 高中语文教材文言课文补充篇目
- 北师大版八年级生物上册全新精品教案
- 湖南省益阳市箴言中学2016届高考化学备考策略及复习建议
- PEP小学英语语法大全(复习题)
- 高考生物二轮名师复习讲义:实验与探究
- 高中物理第一轮复习解析教学(全)
- 人教版八年级生物下教学设计全套【54页】
- 高中生物奥赛教学辅导资料
网友关注视频
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 六年级英语下册上海牛津版教材讲解 U1单词
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 七年级英语下册 上海牛津版 Unit9
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 二年级下册数学第二课
- 河南省名校课堂七年级下册英语第一课(2020年2月10日)
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 冀教版英语三年级下册第二课
- 人教版二年级下册数学
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 二年级下册数学第三课 搭一搭⚖⚖
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
- 北师大版数学四年级下册3.4包装
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 外研版英语七年级下册module3 unit2第二课时
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理