reflow profile study of snagcu
上传者:陈瓅|上传时间:2015-04-22|密次下载
reflow profile study of snagcu
Re owpro lestudyoftheSn-Ag-Cusolder
B.Salam
SchoolofEngineering,UniversityofGreenwich,C.Virseda
EuropeanFuelCellH.Da
SchoolofEngineering,UniversityofGreenwich,N.N.Ekere
SchoolofEngineering,UniversityofGreenwich,R.Durairaj
SchoolofEngineering,UniversityofGreenwich,
Kent,UK
Kent,UKKent,UKKent,UK
Keywords
Soldering,Surfacetexture,Surfacetreatment
Introduction
Tinleadsoldersaretheprimarymaterialsusedfor
interconnectingelectroniccomponents.However,thesafeuseanddisposaloflead-containingelectronicproductsisanissuethatiscausingamoveintheconsumerelectronicindustrytoremoveleadfromproducts.Itiswidely
anticipatedthattheuseofleadcontainingsoldersbytheelectronicindustrywillbeseriouslyconstrainedbya
legislativebanonleaduseinsolders.AnexampleofsuchlegislationistheenvironmentallyconsciousengineeringinelectronicscommitteeinJapan,whichhasscheduledthatlead-freesoldersshouldbestandardisedfrom2003.
Furthermore,EuropeanlegislationundertheWastefromElectricalandElectronicEquipment(WEEE)and
RestrictionofHazardousSubstances(RoHS)Directivesisscheduledtoeliminatetheleadfromelectronicproductsbytheyear2006.Besidesthislegislation,someEuropeancountrieshaveconsideredimposingnewregulations
requiringthemanufacturerstotakefullresponsibilityfortherecyclingoftheirproducts.Inaddition,switchingtolead-freesolderingcanbringsomeadvantages,inparticularbyimprovingthereputationofcompanies,whoareenvironmentallyconscious.
Theindustryhasembarkedonanumberofstudiesinsearchofsuitablelead-freealternatives,butyettherearenodrop-insolutionswithrespecttore owtemperature,jointreliabilityandassemblycosts.OursurveyshowsthattheSn-Ag-Cualloyisoneofthemostpromisinglead-freealloyscurrentlybeingevaluatedbytheindustry.However,Sn-Ag-Cuisahighmeltingpointalloy(2178C).Furthermore,themaximumsolderingtemperatureofelectroniccomponents/partsisoften xed.Hence,thesafetywindowisreducedinsize.Therefore,thetemperaturepro lingforthisalloybecomesmoredif cultandchallengingthanfortheeutecticSn-Pballoy.
AstudyoftheSn-Ag-CualloyswasconductedbyHwang(2001).ThecompositionofthestudiedSn-Ag-Cualloyswas96.5-92.3percentSn,3-4.7percentAgand0.5-3percentCu.ThestudyfoundthatthemicrostructureoftheSn-Ag-CualloysconsistedofCu6Sn5andAg3SnintermetallicsinaSn-matrix.Theseintermetallics(theCu6Sn5andAg3Sn)werefoundtoeffectivelystrengthenthealloyandactasabarriertofatiguecrackpropagation.Inaddition,theyalsoactaspartitionswithintheSn-matrixgrains,therebyproducinga nermicrostructure.The nertheAg3SnandCu6Sn5intermetallicsare,themoreeffectivelytheypartitiontheSn-matrixgrains,resultinginanoverall nermicrostructurethatcanfacilitategrainboundaryslidingmechanisms,andwhichinturnwilllengthenthelifeofasolderjoint.
ThepresenceoftheseintermetallicsinthebulksolderforthetraditionalSn-Pballoyishardlyseen;hence,http://wendang.chazidian.com/researchregister
内容需要下载文档才能查看Abstract
AstudyoftheSn-Ag-Culead-freesolderre owpro lehasbeenconducted.ThepurposeoftheworkwastodeterminetheSn-Ag-Cure owpro lethatproducedsolderbumpswithathin
intermetalliccompound(IMC)layerand nemicrostructure.Twotypesofre owpro leswerestudied.Theresultsoftheexperimentindicatedthatthemostsigni cantfactorin
achievingajointwithathinIMClayerand nemicrostructurewasthepeaktemperature.Theresultssuggestthatthepeak
temperaturefortheSn-Ag-Culead-freesoldershouldbe2308C.Therecommendedtimeaboveliquidusis40sfortheRSSre owpro leand50-70sfortheRTSre owpro le.
Received:17March2003Revised:6November2003Accepted:6November2003
microstructureofaSn-Ag-Culead-freesolderjointis
differentfromthatofatraditionalSn-Pbsolderjoint.Sincemostofthecurrentlyavailablestudiesofthere owpro learebasedontheSn-Pbsolderalloy,thein uenceof
differenttypesofthere owpro leonthemicrostructureofaSn-Ag-Cusolderjointisunknown.Thus,thisisoneoftheobjectivesofthispaper.
There owpro lecouldaffectthereliabilityofasolderjoint,becauseitisoneofthefactorsthatin uencetheformationoftheintermetalliclayersinasolderjoint.Theintermetalliclayerisinfactacrucialpartofasolderjoint.Althoughhavinganadvantageinfacilitatingbonding
betweenthesolderandsubstrate,ithasadisadvantagethatitisgenerallythemostbrittlepartofthesolderjoint(Frear,1991).Thus,itmustbeasthinaspossible.Therefore,agoodre owpro lemustproducesolderbumpswithathinintermetalliclayer.
Re owpro lingwasextensivelystudied,forexample,byLee(1999),SkidmoreandWaiters(2000),SuganunaandTamanaha(2001),Suraski(2000)andYangetal.(1995).Suraski(2000)studiedtheramp-to-spike(RTS)re owpro le.SuganunaandTamanaha(2001)discussedtheavailablere owtechnologyforlead-freesoldering.Experimentswerecarriedouttodeterminewhich uxchemistries,lead-freealloysandre owpro leshadthegreatestin uenceonsolderjointqualityintermsofwettingability,solderballs,soldersplashesandvoids(SkidmoreandWaiters,2000).AstudyofeutecticSn-Agre owpro leshasalsobeenreportedbyYangetal.(1995),whostudiedtheeffectofthesolderingtemperature,solderingtimeandcoolingrate.Astudyanalysingthetypesofdefectsaffectedbythere owpro lehasalsobeenreportedbyLee(1999).Someofthesestudies,suchasYangetal.(1995),arecloselyrelatedtotheworkreportedhere.However,therehavebeennoreportsoftheeffectofthere owpro leontheintermetalliclayerthicknessandmicrostructurefortheSn-Ag-Cualloys.Therefore,thispaperpresentsastudyofthere owpro lefortheSn-Ag-Cualloys.ThegoaloftheworkwastodetermineaSn-Ag-Cure owpro lethatresultsinathinintermetalliccompound(IMC)layerand nemicrostructuresolderjoint.
Experimentaldesign
Theexperimentstudiedtwotypesofre owpro les.Theyweretheramp-soak-spike(RSS)andramp-to-spike(RTS)pro les.Examplesofthesepro lesareshowninFigure1.Eachofthesepro leswasinvestigatedusingasetof
factorialdesignexperiments.ThedesignparametersfortheRSSpro lewerethesoaktemperature,http://wendang.chazidian.com/0954-0911.htm
Soldering&SurfaceMountTechnology
16/1[2004]27–34
qEmeraldGroupPublishingLimited
[ISSN0954-0911]
[DOI:10.1108/09540910410517022]
[27]
B.Salam,C.Virseda,H.Da,N.N.EkereandR.Durairaj
Re owpro lestudyoftheSn-Ag-Cusolder
Soldering&SurfaceMountTechnology
16/1[2004]27–34
[28]
Figure1
Typesofre ow
内容需要下载文档才能查看pro les
andcoolingrate.TheparametersfortheRTSpro lewereThecombinationsoftheseparameterswereassignedtothepeaktemperature,timeaboveliquidusandcoolingrate.theL4(23)orthogonalarrayasshowninTableII.Therefore,ThepurposeofthesoaktemperatureintheRSSpro leiseachtypeofre owpro lehadfourcombinationsoffactorstoprovideheattoanassemblygraduallyanduniformly.Intobetested,asshowninTableIII.
generalapplicationswithSn-Pbsolder,thesoaktemperatureisbetween150and1708C(SkidmoreandWaiters,2000).Experimentalprocedure
However,thesoaktemperatureforthehigh-temperaturesolderalloysisbetween170and1908C(Lee,1999).ThisThetestvehiclesusedinthisstudywereFR4substrateswithsoaktemperaturesettingiscriticalbecausetheassemblythreesolderbumpson2.5mmdiametercircularCupads,astemperatureshouldberaisedsmoothlyanduniformlytotheshowninFigure2.Theproceduretomakethesolderbumpspeaktemperaturesothatthetemperaturedifferentialstartedfrommanuallyprintingthesolderpasteusingabetweenthecomponentsisminimised.ThesoakstencilafterthebareCupadsofthetestvehiclehadbeentemperaturewasthereforeinvestigated.
scrubbedandcleanedusingiso-propanol.ThesolderpasteSolderpastemanufacturersrecommendthatthepeakusedforprintingwasSn-3.8Ag-0.7Cu,withatype3particletemperatureisashighaspossibletoaidwetting,butsizedistributionand89wtpercentmetalcontent.Thecomponentmanufacturersadvisetokeepthelowestpeakstencilwas0.7mmthickandhadthreeroundaperturesoftemperaturepossibletopreventcomponentdamage
2.5mmdiameter.Toensureconsistentprinting,printing(WickhamandHunt,2001).Alow-peaktemperatureisalsotestswereconducted.TheheightofthesolderpastedepositbelievedtocreateathinnerIMClayer(Yangetal.,1995).producedbytheprintingtestshowedgoodyieldwith20mmInthisstudy,twopeaktemperatureswereinvestigated:deviationsbetweenthedeposits.Thisrepeatableandgoodhighð250^58CÞandlowð230^58CÞ:
yieldmanualprintingwaspossiblebecausethesizeoftheExtendingthetimeatpeaktemperaturepermitsanystencilaperturewaslargeandtheparticlesizedistributionofcomponentwithalargeheatcapacitytoreachtherequiredthesolderpastewas25-45mm(type3).Thevolumeofthere owtemperature.Thebestresults,intermsofgood
solderbumpsafterre owwasestimatedfromthevolumeofwettability,nosolderballsandnovoids,havebeenfoundtothesolderpasteprintedandthesolderalloyvolumefractionoccurwithaRTSpro lewithtimeaboveliquidusof
ofthepastewasfoundtobe1:66^0:1mm3:
90-120s(SkidmoreandWaiters,2000).However,toomuchThenextprocedurewasformingthesolderbumpsbyheatinputabovethesoldermeltingpointleadstoexcessivere owingthesolderpastedepositaccordingtothelistofintermetallicformation.Therefore,twodifferenttimesre owpro lesinTableIII.Aforcedconvectionre owovenaboveliquidusfortheRTSpro lewereinvestigated:short(batchtype)wasusedtore owthem.The rststepinthis(40-60s)andlong(90-120s).FortheRSScase,thetimewassetting-upthere owovensothatthetestvehiclecouldabovethemeltingpointmustbekeptaslowaspossible.Inbere owedfollowingtherequiredtemperaturepro les.There owpro lingprocedureisdividedintotwosteps:
thispro le,thetimeaboveliquidusdependsonthepeakthermocoupleattachmentprocessandovenset-up.Threetemperature,e.g.forthepeaktemperature2308C,thelowestthermocoupleswereusedtomeasurethePCBtemperatures.timeaboveliquiduswas40s,whereasforthepeakAthermocouplewasattachedoneachpadofthetestvehicletemperature2508C,itwas60s.
asshowninFigure2.Ahighmeltingpointsolder(88Pb/A nemicrostructuresolderjointcouldbeproducedby10Sn/2Ag)wasusedtoattachthethermocouplesafter
afastcoolingrate(Prasad,1989).However,electronicscrubbingandcleaningthepadswithiso-propanol.Oncethecomponentsaregenerallyvulnerabletothermalshockthermocoupleswereattachedtothespecimen,there owcausedbyafastcoolingrate;thus,itisnecessarytoovenwasset-uptocreatetherequiredthermalpro leinvestigatewhichcoolingrateshouldbeappliedandits(TableIII).Theovenparameters,adjustedtocreatetheeffecttowardsthemicrostructureoftheSn-Ag-Culead-freethermalpro le,were:zonesetpointtemperaturesandsolderalloys.Therefore,twocoolingrateswerestudied:conveyorspeed.Thepro lingisaniterativeprocessslow,28C/sandfast,48C/s.
comparingthetestboardtemperatureresultswiththe
Insummary,theexperimenthasthreefactorswithtwodesiredpro le.Iftheresultsdiffer,theovenparametersarelevels,thedetailsofwhichcanbeseeninTableI.
adjustedandthetestisrepeated.
TableI
ExperimentalparametersFactorno.Highlevel(H)Lowlevel(L)RSSre owpro le1Soaktemperature
175-1908C
150-1758C
2Peaktemperatureandtimeaboveliquidus
250^58Cand60^15s
230^58Cand40^15s
3Coolingrate
Fast
Slow
RTSre owpro le1Peaktemperature250^58C230^58C2Timeaboveliquidus
90-120s50-70s3
Coolingrate
Fast
Slow
B.Salam,C.Virseda,H.Da,TableII
N.N.EkereandR.Durairaj
TheLRe owpro lestudyoftheSn-Ag-4(23)orthogonalarrayCusolder
Factornumber
Soldering&SurfaceMountExperimentno.12
3Technology
16/1[2004]27–34
1HHH2HLL3LHL4
L
L
H
TableIII
Parametercombinationsofthere owpro leSoaktemperature
Peaktemperatureandtimeaboveliquidus
RSSpro le(8C)
(8C,s)
Coolingrate
1175-190250^5and60^15Fast2175-190230^5and40^15Slow3150-175250^5and60^15Slow4
150-175
230^5
and
40^15
FastRTSpro lePeaktemperature(8C)
Timeaboveliquidus(s)
5250^590-120Fast6250^550-70Slow7230^590-120Slow8
230^5
50-70
Fast
Figure2
Testvehicle
内容需要下载文档才能查看design
Afterre ow,thespecimenswerecross-sectionedtoobservethemicrostructureandmeasuretheintermetallicthickness.Someofthespecimenswereagedinaclimaticchamberat1508Cfor300htoaccelerategrowthoftheIMClayerandevolutionofthemicrostructure.Theagedspecimenswerealsocross-sectioned.
TheIMClayerthicknesswasmeasuredusingasoftwareattachedtothemicroscope.OntheIMCphototakenalongthebumpsata1,000magni cation,apoly-linewasdrawnalongthetwobordersoftheIMClayer,i.e.atboththesolderandthesubstrateside.Theborderatthesoldersideismostlynon-planarandtheborderatthesubstratesideisoftenplanar.Afterthelinesweredrawn,thesoftwarecalculatedthemaximumdistance,minimumdistanceandaveragedistancebetweenthetwolines.Thesestepswererepeatedthreetimesoneachbump(middlepart,leftsideandrightside)toensureconsistency.TheIMClayerthicknessesreportedinthispaperaretheaveragethickness.
Sixsolderbumpswereformedwitheachre owpro leand,oneachbump,therewerethreemeasurementsoftheIMCthicknesshencetherewere18measurements(N)foreachre owpro le.ThedeviationofthemeasuredIMClayerthicknessvaried,especiallybetweentheas-solderedandtheagedbumps.ThestandarddeviationoftheIMCthicknessfortheas-solderedbumpswasbetween0.086and0.5mmandthatoftheagedbumpswasbetween0.128and0.8mm.Thecon dencelevelofthedatacouldbe
determinedbysubstitutingthehigheststandarddeviations(s)obtainedforeachconditionofthebumpsinthefollowingequation(Ott,1988):
r zNE2
a=2¼
s2ð1ÞTheintervalwidth(E)ischosenas0.25becauseitisareasonablevalueforthefactsthatthethinnestintermetallic
thicknessisaround1mmandthehigheststandarddeviationofthedatais0.8.Furthermore,iftheintervalwidthvalueistoolow,thenumberofsamples(N)havetobeincreasedandiftheintervalwidthvalueistoohigh,itwillnotbe
reasonable,e.g.1^0:8mmðy^EÞ:Thus,thevalueofzcalculatedandconvertedtothecon dencelevelsa=2couldbeofthemeasureddata(Ott,1988)which,fortheas-solderedandagedbumps,were97and82percent,respectively.Inotherwords,weare97percent(fortheas-solderedbumps’data)and82percent(fortheagedbumps’data)surethatthemeasuredintermetallicthicknesseswillbewithinthe
intervalof^0:25mmofthevalueslistedinTablesIVandV.
Resultsanddiscussion
Theresultsofthisstudyaredividedintotwoparts:themicrostructureevaluationandtheIMClayerthicknessmeasurements.
Microstructures
MicrostructureswithintheSn-Ag-Cualloyshavebeenanalysedandidenti edearlierbyHwang(2001)andMoonetal.(2000).Hence,inthispaper,themicrostructuresoftheSn-Ag-CusolderbumpswererecognisedbasedontheirshapesandidentitiesasdescribedbyMoonetal.and
Hwang.TheresultsofthebulkmicrostructureobservationsaresummarisedinTablesIVandV.Themicrostructuresoftheas-solderedbumpsgenerallyshowedlargeareasoftin(Sn)populatedbysmallAg3SnandCu6Sn5intermetallic akes.The nestintermetallic akeswereobservedintheas-solderedbumpsformedwithre owpro le4.AnexampleofthemicrostructurescanbeseeninFigure3.The
microstructuresoftheagedbumpsweregenerallysimilartotheas-solderedbumps,exceptthattheintermetallicsweremoreuniformlydistributedcomparedwiththoseintheas-solderedbumps(Figure4).Hence,theislandsofSnintheagedbumpswerereducedinsize.Theagedbumpsformedwithre owpro le4stillhadthe nestintermetallic akes.Thepresenceofthevery neintermetallicsinthebulksolderofthebumpsformedwithre owpro le4mightbecausedbythelowpeaktemperature,shorttimeabove
liquidusandfastcoolingrate.These neintermetallicswerenotpresentinthebumpsformedwiththeRTSre owpro le,eventhough(RTS)re owpro le8hadparametersverysimilartothe(RSS)re owpro le4.ThismightbebecausetheRTSpro ledidnothaveasshortatimeaboveliquidusastheRSSpro le.Inaddition,theRTSpro lewillneverhavethatshorttimeaboveliquidus,becauseitrequiresalongertimetoachieveaneventemperaturedistributionacrosstheassembly.
TheinterfaceintermetallicsbetweenthebumpandCusubstrateareshowninFigures5-12.The guresshowthatpro les1,2,5and7producedaveryirregularIMClayermorphologyandpro les3,4,6and8formedamore
uniformIMClayer.Frear(1991)reportsthattheslowerthedissolutionratethemoreplanaristheinterfacial
intermetallics.Thisindicatesthatthosere owpro lesmadetheCudissolvefasterintothesolder.FromTableIII,thesimilaritiesbetweenthosepro lescouldbesummarized.Pro les1and2havethesamesoaktemperature(175-1908C)asdopro les3and4(150-1708C),andpro les5and7havethesametimeaboveliquidus(90-120s)asdopro les6and8(50-70s).ItseemsthatthesoaktemperatureintheRSSpro leandthetimeaboveliquidusintheRTS
pro learethefactorsmostaffectingthedissolutionrate.Furtherextensiveinvestigationisneededtocon rmthis nding.
IMClayerthickness
TheIMClayerthicknessesofthesamplesareshowninFigures5-12andTableIV.ThemeasuredIMCthicknessesinTableIVareapproximatelyinagreementwiththat
reportedbyHwang(2001).ThetotalIMCgrowthkineticfortheSn-Ag-Cualloywasparabolicandcanbeexpressedbythefollowingequation(Hwang,2001):
[29]
B.Salam,C.Virseda,H.Da,N.N.EkereandR.Durairaj
Re owpro lestudyoftheSn-Ag-Cusolder
Soldering&SurfaceMountTechnology
16/1[2004]27–34
[30]
TableIV
IMClayerthicknessandmicrostructurefortheRSSre owpro leIMCthicknessandRSSpro leno.standarddeviation(mm)
IMCshapeMicrostructures
Non-aged12.23^0.2VeryirregularLargeareaofSn+alotoflongAg3Sn+Cu6Sn5
21.65^0.1VeryirregularSmallerareaofSnthanno.1+alotoflongAg3Sn+Cu6Sn532.26^0.2IrregularLargeareaofSn+alotofsmallAg3Sn41.19^0.1Irregular
LargeareaofSnandvery neAg3SnAged14.56^0.4Smoothlayer,withLargeareaofSn+smallCu6Sn5andAg3Snseveralspikesmicrostructure23.84^0.5Smoothlayer,withLargeareaofSn+ neCu6Sn5andAg3Snseveralspikesmicrostructure34.20^0.3SmoothlayerLargeareaofSn+smallCu6Sn5andAg3Snmicrostructure4
3.09^0.8
Smoothlayer
LargeareaofSn+very neCu6Sn5andAg3Sn
microstructure
TableV
IMCthicknessandmicrostructurefortheRTSre owpro leIMCthicknessandRTSpro leno.standarddeviation(mm)
IMCshapeMicrostructures
Non-aged52.25^0.4VeryirregularLargeCu6Sn5andAg3Sn62.49^0.5Irregular
LargeCu6Sn5andAg3Sn
71.66^0.2VeryirregularLargeareaofSnandsmallsizeofAg3Sn81.37^0.1Irregular
Large
areaofSnandsmallsizeofAg3Sn
Aged54.65^0.4Smoothlayer,withLargeareaofSn+smallCu6Sn5andAg3Snseveralspikes64.34^0.8Smoothlayer,withLargeareaofSn+smallCu6Sn5andAg3Snseveralspikes73.26^0.1Smoothlayer,withLargeareaofSn+ neCu6Sn5andAg3Snseveralspikes8
3.55^0.5
Smoothlayer
LargeareaofSn+very neCu6Sn5andAg3Sn
Figure3
Microstructuresofnon-agedsolderjointsfordifferentre ow
内容需要下载文档才能查看pro les
effect,varianceanalysiswasconducted,asshownin
X¼X0þ1:78£1022t
0:52
exp
257;700 ð2Þ
TableVI.Theeffect guresinTableVIarethedifferencebetweentheaverageIMCthicknessesforthelowandhighwhereXisthetotalIMClayerthickness(m)afterageingforvalueforeachvariableandthepercentage guresarethetimet(s);XratiooftheseindividualdifferencestothesumoftheeffectsRisthe0istheinitiallayerthicknessattimeequaltozero;universalgasconstant(8.314J/molK);andTisforallthreevariables.
thetemperature(K).ThisparabolicgrowthkineticimpliesAccordingtothevarianceanalysisinTableVI,thethattheIMCgrowthintheSn-Ag-Cualloyiscontrolledbymostsigni cantfactorintheRSSpro lewasthepeakbulkdiffusionofelementstothereactioninterface.
temperature.Beforeageing,thecoolingrategaveaFromthedatashowninTableV,itcanbeseenthatthebiggercontributionthanthepreheattemperature,butre owpro lethatgavethethinnestIMClayerwasre owafterageing,itwasopposite.Theresultssuggestthatthepro le4fortheRSSpro leandre owpro le8fortheRTSpeaktemperatureforathinIMClayerand ne
pro le.Inordertodeterminewhichfactorshadthebiggest
microstructureis2308Cfor40s.Thesuggestedsoak
B.Salam,C.Virseda,H.Da,N.N.EkereandR.Durairaj
Re owpro lestudyoftheSn-Ag-Cusolder
Soldering&SurfaceMountTechnology
16/1[2004]27–34
Figure4
Microstructuresofas-solderedandagedsolderjointsforre owpro le
内容需要下载文档才能查看1
Figure5
TheIMClayerforre owpro le
内容需要下载文档才能查看1
Figure6
TheIMClayerforre owpro le
内容需要下载文档才能查看2
Figure7
TheIMClayerforre owpro le
内容需要下载文档才能查看3
[31]
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 股票技术分析理论
- 三大法则十项铁律 华尔街T3团队投资技巧揭秘
- [整理版]钢材期货套期保值计谋剖析
- 技术指标分析及风险控制
- 怎样炒股
- 股票猖獗下跌中稳定心态的六大技巧
- 第六章_再保险
- 外汇黄金短线趋势法
- 股指期货交易技巧
- 第10章 再保险
- 炒股技巧:捕捉黑马股的系统方法
- 说金论赢:全球股市飙升提振风险偏好 金银与美指同跌
- 满仓布局!大牛形态“三角整理”
- 世界史A
- 2014年一级建造师《机电工程》考试大纲
- 证券知识
- 第五章保险的基本原则
- 炒股大赛股王的操作秘密技巧
- 益盟经验分析
- 宁波高手股票操作内部资料
- 炒股技术精华
- 我的收藏书籍串联
- 2009年二级建造师施工管理模拟试题
- 股票日线与分时买点技术共震
- 宁波涨停板敢死队操作技巧
- 三大法则十项铁律 华尔街T3团队投资技巧揭秘
- 证券公司风险
- 股票十字星战法
- 美联储
- 股票技术指标CCI实战使用技巧
网友关注视频
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 七年级英语下册 上海牛津版 Unit5
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 苏科版八年级数学下册7.2《统计图的选用》
- 二年级下册数学第二课
- 苏教版二年级下册数学《认识东、南、西、北》
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 北师大版数学四年级下册3.4包装
- 北师大版小学数学四年级下册第15课小数乘小数一
- 《空中课堂》二年级下册 数学第一单元第1课时
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 人教版历史八年级下册第一课《中华人民共和国成立》
- 外研版英语七年级下册module3 unit1第二课时
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 二年级下册数学第一课
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 冀教版英语五年级下册第二课课程解读
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 冀教版英语四年级下册第二课
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理