教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> > 数学> A course in Convex Analysis

A course in Convex Analysis

上传者:曹永祥
|
上传时间:2015-04-24
|
次下载

A course in Convex Analysis

几何,凸集,凸多面体国外文献

ICM, Warsaw, June 2003

Lecture notes compiled thanks to the support of

the Interdisciplinary Centrum for Mathematical and Computational Modelling (ICM),Warsaw University

http://www.icm.edu.pl/eng/

and

the Institute of Mathematics of the Polish Academy of Sciences (IM PAN),Warsaw

http://www.impan.gov.pl/

acting as a Stefan Banach Centre of Excellence

http://www.impan.gov.pl/Excellence/

The author:

Alain Bossavit

LGEP (CNRS)

11 Rue Joliot-Curie

91192 Gif-sur-Yvette CEDEX (France)

bossavit@lgep.supelec.fr

http://wendang.chazidian.com.tut.fi/~bossavit/ [as of Nov. 2011]To G.A course in©Alain Bossavit1986-2003Convex Analysis

几何,凸集,凸多面体国外文献

Contents

First part: Basic notions

1. Functions, minima, maxima

1. Functions

1.1 Sets, relations 1.2 Functions

2. Real-valued functions

2.1 Functions of a single variable2.2 Functions of two variables.

Additional exercises HintsSolutions

2. Functional spaces

1. Affine notions2. Complete spaces

2.1 Sequences and series2.2 Compactness 2.3 Completeness

3. Some complete functional spaces

3.1 The space L2 3.2 Prolongation

3.3 Prolongation of grad, and the space H11

0 3.4 The space HHintsSolutions

3. Hilbert spaces

1. "Strong" topology

1.1 Pre-Hilbert spaces

1.2 Projection on a convex set

1.3 Consequences of the projection theorem1.4 Hilbertian "bases" and Fourier series

2. "Weak" topology

2.1 The Baire lemma, and a few consequences.2.2 Weak convergence in Hilbert space 2.3 Weak topology

2.4 Weak topology and convexity 2.5 Weak compactness

Additional exercises HintsSolutions

Second part: Convex analysis

4. Convex functions, and their minimization

11. Semi-continuity

11.1 Definitions and criteria

11.2 Minimization of an l.s.c. function

2. Convex functions.

2.1 Minimum of a convex l.s.c. function 52.2 Convexity and continuity

3. Minimization of convex functions

3.1 The Kuhn and Tucker theorem

83.2 The Arrow–Hurwicz–Uzawa algorithm

9Additional exercises 9HintsSolutions

95. Separating convex sets

910

1. Separation theorems

1.1 Separating hyperplanes1.2 Support hyperplanes1.3 Separating convex sets

14

2. Affine minorization of convex functions

2.1 Prolongation of an affine minorizer2.2 Sub-gradient

Additional exercises Hints16Solutions

166. Convex functions in duality

181. The duality relation

18

1.1 An example1.2 Second example

1.3 Definition and properties

`

2. The conjugation operator

2.1 Conjugation, or "Fenchel transform"21

2.2 Fenchel involution

2.3 Relations with the Legendre transform

Additional exercises HintsSolutions

24References24Index25

262628303233333636

384242424343

47

494949

5152

几何,凸集,凸多面体国外文献

calls section of R by x the following part of Y (Fig. 1):

Chapter 1

Functions, minima, maxima

1. Functions

The point of what follows is not to start anew with Mathematics, but to motivate andmake precise some notational conventions. One of the fields of application ofconvex analysis is optimization, meaning, the search for maxima or minima of somefunctions, and for points at which such extrema are reached. So we need a precisedefinition of these concepts, and an adequate notation, which it will be our first taskto make explicit, because it departs a little from current usage.1.1 Sets, relations

We'll take as primitive notions those of set theory: If X is a set, P(X) denotes theset of all its parts, ? is the empty set. The Cartesian product is denoted X × Y, itselements are the ordered pairs {x, y}. We shall also consider as primitive thenotion of "predicate", that is, of a statement that can assume the values true orfalse. Statements such as, for instance, x ∈ X, or x ≠ y, or A ? B, or elsex ∈ A and y ? B, etc., make as many predicates. If p is a predicate, one usesthe construct

{x ∈ X : p}

to denote the part of X composed of all elements x for which p is true. Givena predicate p, not-p is another, which by definition is true when p is false,and the other way round. Predicates can be combined at will: p and q, p or q,p and (q or r), etc., with truth values as dictated by the well known rules ofBoolean algebra. Especially important among such constructs is q or not-p,which is false when p = true and q = false, and true in all other cases.It's frequent enough to deserve a dedicated notation: p ? q.

Remark. All of this applies of course to propositions: The semantic differencebetween "proposition" and "predicate" is that the latter can incorporate variables, thevalue of which may determine that of the predicate. ?

By way of example, let X and Y be two sets, and R a part of X × Y. One

Rx = {y ∈ Y : {x, y} ∈ R},

which is therefore characterized by the x-parameterized predicate {x, y} ∈ R, aproperty of y, which may be true or false depending on the value of x. Onedefines in the same manner the sections Ry. Another example: if A ? X and B ?Y, one may define the following set, called brick generated by the parts A and B:

A × B = {{x, y} ∈ X × Y : x ∈ A and y ∈ B},

One will check that (A × B)x is either B or ?, and this property of sections (thatnon-empty ones are all the same, for both factors) characterizes bricks among allparts of X × Y. (Do not confuse the section of R by x with the projection of Ralong X, which is the set

pX(R) = {y ∈ Y : Ry ≠ ?

内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看

}.)

内容需要下载文档才能查看

Figure 1. Notions of "section" and "projection".

If {A ∈ P(X) : p} is a family of subsets of X, that is, a part of P(X),composed of all parts A of X which share a definite property p, one denotes theirunion and intersection by ∪ {A : p} and ∩ {A : p} — only a notational pattern,this, to be adapted to the context. The notion of relation, now coming, will give usa host of examples.

- 1 -

几何,凸集,凸多面体国外文献

A relation r is a triple {X, Y, R}, where X and Y are two sets and R a

内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看

part of X

内容需要下载文档才能查看

× Y. One calls R the graph of the relation, and Rx is denoted by r(x).If y ∈ r(x), one says that x and y are linked by the relation r. This is anassertion, true or false, and hence a predicate, that one may as well denote x r y. Ifs = {X, Y, S} is another relation, and if R ? S, one says that r is

内容需要下载文档才能查看

stronger thans, or that r implies s, which one may denote by r ? s.

Fx

cod(f)

Y

cod(r) = {y ∈ Y : r?1(y) ≠ ?}.

The image of a part A of X by r is the set-union ∪ {r(x) : x ∈ A}. (So thecodomain of r is the image of X by r.) The inverse image of a part B of Y byr is the image of B by r?1, that is to say the set {x ∈ dom(r) : r(x) ∈ B}.If r = {X, Y, R} and s = {X, Y, S} are two relations over the same sets, itseems natural to define the relations associated with the union and intersection oftheir respective graphs:(3)(4)

r and s = {X, Y, R ∩ S},r or s = {X, Y, R ∪ S}.

As one sees, (r and s) ? r, as well as r ? (r or s), and so forth. If now r ={X, Y, R} and s = {Y, Z, S}, the composition of r and s, denoted "r ; s", willbe the relation

r ; s = {X, Z, ∪ {r?1(y) × s(y) : y ∈ Y}}.

Composition is obviously associative. (Exercise 1: Which predicate characterizesthe graph of r ; s ?)

The case when X = Y generates other notions, all well known, which weshall work out anew for practice. One calls diagonal of X × X the set

? = ∪{{x, x} : x ∈ X} ≡ {{x, y} ∈ X × X : x = y}.

The relation id = {X, X, ?} is the identity. A relation r is reflexive if its graphcontains ?, i.e., if id ? r, symmetric if r?1 = r, antisymmetric if

(r and r?1) ? id,

and transitive if (r ; r) ? r. A reflexive and transitive relation is a preorder. Ifmoreover it is symmetric (resp. antisymmetric), it's an equivalence relation (resp.an order). An order r is total if r ∪ r?1 = {X, X, X × X}, i.e., if the predicatex ∈ r(y) or y ∈ r?1(x) always assumes the value true. If r = {X, X, R} is anorder (like, e.g., the relation ≤ over IR), one calls {X, X, R ? ?} the strictassociated relation (example: < over IR is thus associated with ≤). Be aware thatthis associated relation is not an order.

Figure 2. Domain, codomain. Right, the case of a functional graph.

The domain of a relation r is the following part of X:(1)

dom(r) = {x ∈ X : r(x) ≠ ?}.

Its codomain, denoted cod(r), also called range, is the union of all parts A of Ywhich share the property "A = r(x) for at least one x ∈ X", which authorizes us towrite(2)

cod(r) = ∪ {r(x) : x ∈ X}.

Domain and codomain are empty if and only if R is the empty set. If r ={X, Y, R} is a relation, and if one sets

R?1 = {{y, x} ∈ Y × X : {x, y} ∈ R},

then r?1 will be the relation {X, Y, R?1}, called the inverse of r. According to (1)and (2), cod(r?1) = dom(r). As one sees, an alternative to (1) is thus

dom(r) = ∪ {r?1(y) : y ∈ Y},

and (2) can also be written like this:

- 2 -

几何,凸集,凸多面体国外文献

1.2 Functions

The graph F of a relation f = {X, Y, F} is said to be functional if no section Fxcontains more than one element of Y. The relation f is then called a function "fromX to Y", or "Y-valued". Function f is surjective if cod(f) = Y, injective if f?1also is a function (the inverse of f), bijective if both f and f–1 are surjective. Theset of all functions from X to Y will be denoted X → Y, and one will refer tothem all as "functions of type X → Y". Let us stress that if f is thus of type X →Y, the equality dom(f) = X does not hold, in general. So what we call functions,here, are so-called "partial" functions, not necessarily "defined over all X". Thecomposition f ; g of two functions is again a function (of type X → Z, if f ∈ X →Y and g ∈ Y → Z). We shall prefer this notation to the more common1 g ο f.

We shall often use "map" instead of "function", with exactly the same meaning.2

The set or sets which play a role in any specific question are in general structuredby the existence of some relations, then called, most often, operations. For instance,on the real field IR, the relation ≥, or the operation +, or the multiplication ? (allfunctions of type IR × IR → IR with domain IR × IR), or the division /, withdomain IR × (IR ? {0}). Or else, on the set composed of the two elements trueand false, the operations and and or, defined by the equalities true andfalse = false, true or false = true, etc., which confer to this set the structureof Boolean algebra.

By the interplay of composition and of operations (3) and (4), one may thendefine new functions. For instance, the set {{x, y} ∈ IR × IR : y = x2 + 2x + 1}defines a relation, let's call it f, of type IR × IR, with domain IR and codomain{y ∈ IR : y ≥ 0}, which is a function. One can denote it by the construct(5)

x → x2 + 2x + 1.

repeat this, with all due generality: in such constructions as (6), of the form3 f =x → expr(x), where expr is some arithmetic expression, it's x → expr(x), notexpr(x), that denotes the function f.

Remark. On first encounter, (6) may look confusing, but this impression shoulddissipate as soon as the precedence rules about parsing such a construct, i.e.,finding its logical structure, are understood. Multiplication and exponentiation takeprecedence over addition, the arrow is weaker than all operational symbols, and =is the weakest link of all. The nested boxes below show how this applies to (6):

2

. ?

Now, the set

{{x, y} ∈ IR × IR : x ≥ 0 and x = y}

defines a relation (a functional one), say r. The composition r ; f is a new

function, say g, which can be denoted by either(7)

g = x → if x ≥ 0 then x2 + 2x + 1,

or, in a more cumbersome manner,

(8) g = x ∈ {x ∈ IR : x ≥ 0} → x2 + 2x + 1,

thus stressing the fact that dom(g) = {x ∈ IR : x ≥ 0}. It should be clear here thatf and g, though defined by the same arithmetic expression, are not equal, for theyhave different domains.

One calls constants those functions the graph of which is of the form X × {a},where a is a special element of Y. One may denote such a function by x → a.Let rA be the relation with graph RA = {{x, x} ∈ X × X : x ∈ A}. Thecomposition of rA and of the function x → 0 (of type X → IR) is denoted by χA,and called the indicatrix of A. Its domain is A, and its codomain is the part {0} ofIR. It should not be confused with the characteristic function of A, which is (pay

3

Be aware that it's (5) in its entirety, not the expression on the right side of thearrow, that denotes f. It's therefore illegitimate to write f = x2+ 2x + 1. On theother hand, one may write(6)

f = x → x2 + 2x + 1

since the expressions on both sides of the equal sign denote the same object. Let's

1

This use of the semi-colon is borrowed from programming practice. Cf. Meyer (1990), fromwhich some of the above "innovations" come.

Some insist on calling maps only those functions with maximal domain (all of X).

2

One more often meets "f : x → expr(x)" in the mathematical literature, but our use of an equalsign instead of this colon is just a matter of preference in syntactic sugar's flavors. The underyingmechanism is the same.

- 3 -

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

2015教资国考|化学学科:氧族元素
教资统考化学备考指导:化学实验基本知识(五)
2015教资国考|有机化学知识点整理(三)
教资考试|高中化学知识点解读:电化学(一)
2015教资国考|化学学科:非金属元素概论
教资国考化学备考|化学物质的检验(一)
2015教资国考:化学基础知识一【】
2015教资国考:高中化学物质的组成专项练习题(二)
教资国考化学备考|常见元素化合物的转化关系(二)
2015教资国考|化学学科:氮族元素
2015教资国考:高中化学常见物质性质归纳(三)
2015教资国考:高中化学物质颜色
教资国考化学备考|常见元素化合物的转化关系(一)
2015教资国考|化学元素化合物物质转化综合练习(1)
2015教资国考:高中化学常见物质性质归纳(一)
教资国考化学备考|化学物质的检验(二)
教资统考化学备考指导:化学实验基本知识(三)
教资国考化学备考|化学物质的检验(三)
教资统考化学备考指导:化学实验基本知识(二)
教资统考化学备考指导:化学实验基本知识(四)
2015教资国考:化学基础知识四【】
2015教资国考|有机化学知识点整理(四)
教资统考化学备考指导:化学实验基本知识(八)
教资统考化学备考指导:化学实验基本知识(七)
2015教资国考|化学学科:碳族元素
2015教资国考:基础化学知识总结【化学规律一】
2015教资国考|有机化学知识点整理(一)
2015教资国考:高中化学知识点|化学反应及其能量变化:氧化还原反应
2015教资国考:化学物质结构强化训练题
2015教资国考:化学基础知识五【】

网友关注视频

外研版英语七年级下册module1unit3名词性物主代词讲解
沪教版八年级下册数学练习册一次函数复习题B组(P11)
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
六年级英语下册上海牛津版教材讲解 U1单词
七年级英语下册 上海牛津版 Unit9
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
冀教版英语四年级下册第二课
化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
外研版英语三起6年级下册(14版)Module3 Unit2
二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
沪教版八年级下册数学练习册21.3(2)分式方程P15
第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
七年级下册外研版英语M8U2reading
北师大版小学数学四年级下册第15课小数乘小数一
3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
冀教版小学英语四年级下册Lesson2授课视频
苏科版数学七年级下册7.2《探索平行线的性质》
冀教版英语三年级下册第二课
沪教版八年级下册数学练习册21.4(1)无理方程P18
沪教版八年级下册数学练习册21.3(3)分式方程P17
第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
二年级下册数学第一课
七年级英语下册 上海牛津版 Unit3
沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
北师大版数学四年级下册第三单元第四节街心广场