凹四面体
内容需要下载文档才能查看 内容需要下载文档才能查看
GModel
MRB-5933;No.ofPages7
MaterialsResearchBulletinxxx(2012)xxx–xxx
ContentslistsavailableatSciVerseScienceDirect
MaterialsResearchBulletin
journalhomepage:http://wendang.chazidian.com/locate/matresbu
ControlledsynthesisofconcavetetrahedralpalladiumnanocrystalsbyreducingPd(acac)2withcarbonmonoxide
HaiZhua,QuanChia,YanxiZhaoa,ChunyaLia,HeqingTanga,JinlinLia,TaoHuanga,*,HanfanLiua,b
KeyLaboratoryofCatalysisandMaterialsScienceoftheStateEthnicAffairsCommission&MinistryofEducation,HubeiProvince,CollegeofChemistryandMaterialsScience,South-CentralUniversityforNationalities,Wuhan430074,Chinab
InstituteofChemistry,ChineseAcademyofScience,Beijing100080,China
a
ARTICLEINFO
ABSTRACT
Articlehistory:
Received15February2012
Receivedinrevisedform17May2012Accepted14June2012Availableonlinexxx
Keywords:A.Metals
A.NanostructuresB.Chemicalsynthesis
C.Electrochemicalmeasurements
COreducingstrategytocontrolthemorphologiesofpalladiumnanocrystalswasinvestigated.ByusingCOasareducingagent,uniformandwell-de?nedconcavetetrahedralPdnanocrystalswithameansizeofabout55Æ2nmwerereadilysynthesizedwithPd(acac)2asaprecursorandPVPasastabilizer.Thestructuresoftheas-preparedPdnanocrystalswerecharacterizedbytransmissionelectronmicroscopy(TEM),X-raypowderdiffraction(XRD),ultraviolet–visible(UV–vis)absorptionspectroscopyandelectrochemicalmeasurements.TheresultsdemonstratedthatCOwasthemostessentialfortheformationoftheconcavetetrahedralPdnanostructures.Themorphologiesandsizesofthe?nalproductscanbewellcontrolledbyadjustingthe?owrateofCO.ThemostappropriateCO?owrate,temperatureandtimefortheformationoftheidealconcavetetrahedralPdnanocrystalswas0.033mLsÀ1,1008Cand3h,respectively.
ß2012ElsevierLtd.Allrightsreserved.
1.Introduction
Shape-controlledsynthesisofnoblemetalnanostructureshasbeenpaidmuchattentionfordecadeowingtotheirpotentialapplicationsinmany?eldssuchascatalysis[1–4],photonics[5,6],optoelectronics[7,8],plasmonics[9,10],microelectronics[11,12],informationstorage[13],sensing[14–17],biologicallabeling[18],andamongothers.Theuniquepropertiesofmetallicnanoparticlesarestronglydependentontheirsizesandshapes,aswellastheircompositions,crystallinitiesandstructures.So,specialnanos-tructureswithuniformsizesandwell-de?nedshapesarerequiredtotunetheirpropertieswithagreaterversatilityforvariousapplications.Uptonow,differenttechniquessuchastemplate-directed[19,20],solventthermal[21],microwavedielectricheating[22,23],chemicalandelectrochemicalmethods[24,25]havebeendevelopedforthepreparationofmetallicnanoparticles,andmanyreducingagentswereemployedtocontrolparticlesizesandmorphologies.
IncaseofPd,ithasattractedmuchinterestduetoitsextraordinaryproperties.Ithasbeenwidelyusedascatalystsforsomeorganicreactions[26–28]andlowtemperaturereductionofpollutantsexhaustedfromautomobiles[29,30]becauseofits
*Correspondingauthorat:CollegeofChemistryandMaterialsScience,South-CentralUniversityforNationalities,Wuhan430074,China.Tel.:+862767843521;fax:+862767842752.
E-mailaddress:huangt6628@http://wendang.chazidian.com(T.Huang).
exceptionalsensitivityandremarkableadsorbingcapacitytowardhydrogen[31].Pdnanoparticleswerealsousedaselectrocatalystsfordirectalcoholoxidation[24,25,32,33].Sincethecatalyticef?ciencyofPdnanoparticleshighlydependsonbothitssizeanditsshape,alotofeffortshavebeendevotedtothefabricationofuniformPdnanostructureswithcontrollablesizesandwell-de?nedmorphologies.Sofar,variousmorphologicalPdnanopar-ticleshavebeenpreparedbyusingdifferentmethods.ThemostrepresentativePdnanostructuresarerods[34–38],wires[21],sheets[39],cubes/bars[40,41],tetrahedral[42,43],octahedral[44],andmultipod[45]aswellasicosahedra[23,46,47]andtetrahexahedra[24,25].Inthepreparingprocess,polyols(suchasethyleneglycol,tetraethyleneglycol)[23,36,47],citricacid[46],ascorbicacid[48,49],vitaminB1[50],alkylamine[51,52],formaldehyde[53]aswellasCOgas[39]weregenerallyusedasreducingagents.Meanwhile,polyvinylpyrrolidone(PVP),alkylammoniumionsorothersurfactantswerethemostwidelyusedmediatingmaterialstoserveassurface-regulatingagentsorstabilizers.However,theformingmechanismsforsomenanos-tructureshavenotyetbeenrevealed.
Moreover,mostoftheas-obtainednanocrystalsweregenerally?atorconvexshapes.Recently,thoughconcavepolyhedralPdnanocrystals[53]weresynthesizedinthepresenceofformalde-hyde,itisonlyalimitedsuccessforthemtodate.Thereportindicatedthattheformationoftheconcavetetrahedral/trigonalbipyramidalPdnanocrystalswasdependentonthealdehydegroup[53].However,theformationmechanismhasbeenstillunclear.Infact,decompositionofformaldehydemayproduceCO
0025-5408/$–seefrontmatterß2012ElsevierLtd.Allrightsreserved.http://wendang.chazidian.com/10.1016/j.materresbull.2012.06.048
Pleasecitethisarticleinpressas:H.Zhu,etal.,Mater.Res.Bull.(2012),http://wendang.chazidian.com/10.1016/j.materresbull.2012.06.048
GModel
MRB-5933;No.ofPages7
2H.Zhuetal./MaterialsResearchBulletinxxx(2012)xxx–xxx
andH2.Therefore,itcanbeassumedthattheformationoftheconcavePdnanostructureswouldberelatedtoCOmolecules.Ifso,concavepolyhedralPdnanocrystalsshouldbeobtainedinthepresenceofCO.Indeed,ourrecentexperimentcon?rmedthisidea.Herein,thesynthesisofconcavetetrahedralPdnanocrystalswasdemonstratedbyusingCOasareducingagent,Pd(acac)2asaprecursorandPVPasastabilizer.Theformationmechanismwasalsoexploredpreliminarily.
AdvanceX-rayDiffractometeremployingCuKaradiationwith40kVand50mA.Ultraviolet–visible(UV–vis)absorptionspectraweremeasuredonaLambdaBIO35spectrophotometer.
2.3.Electrochemicalmeasurements
2.Experimental
2.1.Materials
Pd(acac)2(99%)waspurchasedfromAcrosChemicals.PVP(averagemolecularweight,Mw=30,000)andN,N-Dimethylfor-mamide(DMF)werepurchasedfromSinopharmChemicalReagentCo.,Ltd.(Shanghai,China).Allreagentswereofanalyticalgradeandusedasreceivedwithoutfurtherpuri?cation.HighpurityCO(99.999%)andH2(99.999%)wereused.
Pd-modi?edworkingelectrodeswerefabricatedbydepositingethanolicdispersionofpuri?edconcavetetrahedralPdnanocrys-talsontoaglassycarbonelectrodefollowedbynaturaldrying.Asaturatedcalomelelectrode(SCE)andaplatinumfoilwereusedasthereferenceandcounterelectrode,respectively.Firstly,toinvestigatetheCOadsorptiononthefreshly-preparedconcavetetrahedralPdnanocrystals,theCOstrippingvoltammetrywasrecordedin0.1MH2SO4atasweeprateof2mV/swithoutintroducinganyadditionalCO.Thenasecondpotentialscanningwasfollowedatthesamesweeprate.Afterthat,COgas(99.999%)wasbubbledfor15minthroughthe0.1MH2SO4solutioninwhichthemodi?edelectrodewasimmersedbeforemeasurements.Themodi?edelectrodewasquicklytransferredintoafresh0.1MH2SO4solutionandtheCOstrippingvoltammetrywasrecordedonceagain.
2.2.Methods
Inatypicalsynthesis,160mgPVPand25mgPd(acac)2weredissolvedin10mLDMF.Afterthoroughmixing,theresultinghomogeneousyellowsolutionwastransferredtoaglassthree-necked?ask.The?nalconcentrationofPd(acac)2was8.2mMandthemolarratioofPVP/Pd(acac)2was17/1.Undervigorouslystirring,COgaswasbubbledcontinuouslyintothesolutionata?owrateof0.033mLsÀ1.The?owrateofCOwascontrolledbyusingmass?owcontroller.Followingtheexclusionofair,the?askwasheatedat1008Cfor3hunderatmosphericpressure.Afterbeingcooledtoroomtemperature,theresultingblackhomoge-neousPdcolloidswereprecipitatedbyacetone,separatedbycentrifugationandfurtherpuri?edbyethanol.Underthesameconditions,thereactionwasalsoconductedbyusingpureH2orthemixedCO–H2gasinsteadofCO.
Transmissionelectronmicroscopy(TEM)imagesweretakenonaFEITecnaiG220transmissionelectronmicroscopyoperatedat200kV.ThesampleforTEMobservationwaspreparedbyplacingadropofthecolloidaldispersionontoacoppergridcoatedwithaperforatedcarbon?lm,followedbyevaporatingthesolventatambienttemperature.Theaverageparticlesizeandthedistribu-tionweredeterminedfromtheenlargedmicrographsonthebasisofthemeasurementofabout300particles.X-raypowderdiffraction(XRD)measurementwasrecordedonaBrukerD8
3.Resultsanddiscussion
Fig.1showsTEMimagesofthetypicalPdnanocrystalspreparedusingCOasareducingagentwitha?owrateof0.033mLsÀ1at1008Cfor3h.Ascanbeseen,uniformandwell-de?nedconcavetetrahedralPdnanocrystalswerethepreferentialnanostructure,thoughfollowedbyafewtrigonalbipyramidalshapes.TheaveragesidelengthoftheconcavetetrahedralPdnanocrystalswas55Æ2nm.Theas-obtainedmorphologicalfea-tureswerethesameasthosereportedbyZhengandco-workers[53].Itwasclearlyobservedthateachfaceofthetetrahedronwasexcavatedwithatrigonalpyramidatthecenter.AccordingtoZheng’sstudiesonthismorphology[53],eachcut-outpyramidatthecenterofthetetrahedralPdholdsa{111}facetandthree{110}facetsexposed.Andtheconcavetetrahedralaresinglecrystalline,whiletheconcavetrigonalbipyramidsaresingletwinnedwithastackingfaultalongthe{111}planes.TheconcavetetrahedralPdnanocrystalsobtainedbyZhengwasrelatedtothealdehydegroup[http://wendang.chazidian.combinedwithourresultsherein,theformationoftheconcavetetrahedralPdwasessentiallydependentuponCOmolecules.
Fig.2showstheXRDpatternoftheconcavetetrahedralPdnanocrystalsobtainedinthetypicalexperimentabove.FivecharacteristicpeaksofPdat2u=40.58,46.88,68.48,82.48,86.98
内容需要下载文档才能查看,
Fig.1.TypicalTEMimage(a)andhighmagni?cationTEM(b)oftheconcavetetrahedralPdnanocrystalspreparedwithaCO?owrateof0.033mLsÀ1at1008Cfor3h.
Pleasecitethisarticleinpressas:H.Zhu,etal.,Mater.Res.Bull.(2012),http://wendang.chazidian.com/10.1016/j.materresbull.2012.06.048
GModel
MRB-5933;No.ofPages7
H.Zhuetal./MaterialsResearchBulletinxxx(2012)xxx–xxx
3
{111}
{200}
{220}
{311}
{222}
30405060708090
2θ(degree)
Fig.2.XRDpatternsofthetypicalconcavetetrahedralPdnanocrystals.
内容需要下载文档才能查看correspondingtothe{111},{200},{220},{311}and{222}latticeplanes,wereobserved.Allthediffractionpeakscanbewell-indexedtoface-centeredcubic(fcc)PdaccordingtotheJCPDScardNo.00-001-1201,indicatingthattheas-preparedconcavetetrahe-dralPdhadahighpurityandhighcrystallinity.
ToverifythecriticaleffectofCOonconcavetetrahedralstructure,themixedCO–H2gas(1:1byvolume)wasusedasareducingagentinsteadofpureCOandbubbledintothereactionsystemata?owrateof0.033mLsÀ1underthesameotherconditions.TheresultwasshowninFig.3a.Itcanbeseenthatthedominantproductsweretetrahedralnanocrystalswithanaveragesizeof35Æ2nmaswellastrigonalbipyramids.ThereductionpotentialinvolvingCOisÀ0.12V,sotheCOreductionwasdominantforthemixedCO–H2gas.ThoughtheexistenceofH2interferedwiththereductionbyCOanditsadsorptiononPdsurfacesandresultedintheunobviousconcavityoftheas-obtainednanocrystals,itstillcon?rmedthattheformationoftetrahedralaswellastrigonalbipyramidalnanostructureswithvagueconcavitieswasreallydependentontheuseofCO.SimilarexperimentwasconductedbyusingpureH2instead.AsshowninFig.3b,bycontrast,pompon-likeself-assemblies[54]ofPdnanoparticleswereobtained,andnopolyhedralnanocrystalswereobserved.TheseresultsshowedthatconcavetetrahedralorotherpolyhedralnanostructurescouldnotgenerateintheabsenceofCO.Accordingly,thisalsoprovedourassumptionthatconcavepolyhedralPdnanocrystalsshouldbeobtainedbyusingCOasareducingagentinsteadofformaldehyde.
Sofar,however,itwasreportedthatonlywell-de?nedultrathinhexagonalnanosheetswereproducedbyusingCOasareducing
agent[39].Toexplaintheconcavetetrahedralfeatureobtainedhere,CO?owratewasconsideredespecially.Fig.4showsTEMimagesofPdnanocrystalspreparedatdifferent?owratesofCOgas.Ascanbeseen,withtheincreaseoftheCObubblingratefrom0.033to0.05,0.1,0.3mLsÀ1,theamountofconcavetetrahedradecreased,whileothervariousmorphologiesincreased.WhentheCO?owrateincreasedto0.05mLsÀ1,particleswithuncertainmorphologiesandnonuniformsizeswereobtained,thoughconcavetetrahedralparticleswerestillinthemajority(Fig.4b).Itisnoteworthythatafewnanosheets,accompanyingwithtetrahedralandothermorphologicalparticles,weregeneratedataCO?owrateof0.1mLsÀ1(Fig.4c)andapparenthollownanosheetswereproducedat0.3mLsÀ1(Fig.4d).Moreover,theparticlesizesshrankgraduallyandthedegreeofconcavitydecreased.TheaveragesidelengthoftheconcavetetrahedralPdnanocrystalswas55Æ2,51Æ5,31Æ2nmfrom(a),(b)to(c),respectively.Theseresultsindicatedthatthe?owrateofCOhadagreateffectonmorphologiesandsizesofthe?nalproducts.ArelativelyslowerrateofCOgasinlet,whichmayleadtoaslowerreducingrateandaloweradsorptionofCOonthePdnucleuscrystallite,wasfavorablefortheformationofuniformandwell-de?nedconcavetetrahedralPdnanocrystals(Fig.4a).WhileCOgaswasinletwithafasterrate,ononehand,thereducingratewasincreased,ontheotherhand,theadsorptionofCOonthenucleuscrystallitewasenhancedandtheadsorbingselectivitydecreased.Asaresult,variedmorphologiesofPdnanocrystalswereproducedandtheaverageparticlesizesdecreased.Inaddition,thiseffectofCO?owrateindicatedthatconcavetetrahedralPdnanocrystalsrequiredgrowthunderkineticcontrol.ItisadvantageoustotheformationofconcavetetrahedralPdnanocrystalsataslow?owrateofCOduetokineticcontrol.WiththeincreaseofCO?owrate,irregularsmallernanoparticlesappearedduetoafasterrateofatomicaddition,andevenapparenthollownanosheetsweregeneratedbecauseofthegrowthcon?nementeffectofCOwithafaster?owrate.
Furthermore,http://wendang.chazidian.comparedwiththoseobtainedat1008C,nearlynoconcavetetrahedralPdnanoparticleswereobtainedat808C,asshowninFig.5a,whilemanyirregularapparenthollowhexagonalnanosheetsaccompaniedwithafewsmallerconcavetetrahedralandothermorphologicalparticleswereproducedat1208C,asshowninFig.5c.Thisisbecauseatalowertemperatureboththeformationandgrowthofnucleuscrystallitesloweddowndueto
Fig.3.TEMimagesofPdnanoparticlespreparedusingmixedCO-H2gas(a)andpureH2(b)asareducingagent,respectively,insteadofCOunderthesameotherconditions.
Pleasecitethisarticleinpressas:H.Zhu,etal.,Mater.Res.Bull.(2012),http://wendang.chazidian.com/10.1016/j.materresbull.2012.06.048
Intensity(a.u)
GModelMRB-5933;No.ofPages74H.Zhuetal./MaterialsResearchBulletinxxx(2012)xxx–xxxFig.4.TEMimagesofPdnanocrystalspreparedatdifferent?owratesofCO.(a)0.033mLsÀ1;(b)0.05mLsÀ1;(c)0.1mLsÀ1;(d)0.3mLsÀ1
内容需要下载文档才能查看.
Fig.5.TheeffectsofreactiontemperatureonthemorphologiesofPdnanocrystals.(a)808C;(b)1008C;(c)1208C.Theinsetof(c)showsalocallymagni?edTEMimageofanapparenthollownanosheet.
slowerrateofatomicadditionwithslowreducingrateofPd(acac)2,
whereastheadsorbingrateaswellasthenonselectiveadsorption
ofCOonPdfacetsenhanced.Asaresult,shaped-nanoparticles
werehardtoformbeyondkineticcontrol.Atahighertemperature,
however,theadsorbingrateofCOdecreasedwhiletheselective
adsorptionofCOonPd{111}planesenhanced,andconsequently
afewnanosheetswhicharethermodynamicallyfavorablewere
producedduetoafastergrowingrate.Theapparenthollow
hexagonalnanosheetswereactuallysheet-likeporousstructureswiththickeredges,asshownintheinsetmagni?edTEMofFig.5c.So,anappropriatetemperatureinfavorofkineticcontrolwasrequiredfortheformationofconcavetetrahedralnanostructures.TEMimageofPdnanocrystalsproducedina6hreactionisshowninFig.6.Obviously,notonlydidthenumberofconcavetetrahedralPddecreasesigni?cantly,butalsothedegreeofconcavityfadedout.Ontheotherhand,manydifferentconcavepolyhedralnanocrystalstwinnedwithastackingfaultalongthe{111}wereobtained.Inaddition,thesidelengthofthePd
内容需要下载文档才能查看Pleasecitethisarticleinpressas:H.Zhu,etal.,Mater.Res.Bull.(2012),http://wendang.chazidian.com/10.1016/j.materresbull.2012.06.048
GModel
MRB-5933;No.ofPages7
H.Zhuetal./MaterialsResearchBulletinxxx(2012)xxx–xxx
5
Fig.6.TEMimagesoftheas-preparedPdnanocrystalsina6hreaction.
内容需要下载文档才能查看nanocrystalswas44Æ3nm,smallerthanthatobtainedina3hreaction.TheseresultssuggestedthattheoptimumreactiontimeforproducingconcavetetrahedralPdwas3h.Thusitcanbeseenthatalongertimewasunfavorablefortheformationofuniformandwell-de?nedconcavetetrahedralmorphologiesbeyondkineticcontrol.
Interestingly,twinnednanocrystalsproducedwithincreasingthereactiontimeimpliedthataripeningprocesswasunfavorabletothegrowthofconcavetetrahedralPd.Thisabnormalbehavingwascon?rmedbyUV–visabsorptionmeasurement.Fig.7showsthetime-dependentUV–visabsorptionspectraforthereactionprocess.Ascanbeseen,atthebeginningthereactionsolutionshowedtwostrongcharacteristicabsorptionpeaksat268and326nm,correspondingtothatofPd(II)ions.Withthereactionproceeding,thepeakat326nmreducedgradually.Whenthereactionproceededfor3h,whichcorrespondedtothetimeinfavorofconcavetetrahedralPdnanostructures,thepeakat326nmstillremainedobviouslythoughitwasweakenedsigni?cantly,indicatingtheexistenceofPd(II)ions.Anotherpeakwithanenhancementwasobservedat269nm.ThismeantthatPd(II)ionswasnotreducedcompletelyundertheoptimumconditionsfortheidealconcavetetrahedralnanostructure.Accordingtothepeakintensitiesat326nm,theyieldofconcavetetrahedralPdrelatedtotheamountofPdprecursorsat3hwasabout81%.Furthermore,increasingthereactiontimecontinu-ouslyfrom4hto8h,thepeakat326nmdisappearedcompletely,whilethepeakat268nmshiftedto273nm.Theredshiftwasindependentonthetimein4–6hreaction,buttheabsorbanceincreasedgraduallyduetotheenhancementofsurfaceplasmon
1.61.4
1.21.00.80.60.40.20.0Wavelenth/nm
Fig.7.UV–visabsorptionspectraofthereactionsystematdifferentstages.
scattering,implyingthechangesofmorphologies.Thiswasconsistentwiththeobservationonthe6hreaction,asshowninFig.6.Withthereactiontimewasprolongedfrom3h,theconcavetetrahedralnanocrystalsweretransformedintotwinnednanos-tructuresduetoripeningprocessafterthedepletionofmetalprecursor.Consideringtheconcavetetrahedralnanocrystalsarenotthermodynamicallyfavorable,thetwinnednanocrystalswouldberipenedwithastackingalongthe{111}planes,accompanyingwiththedisappearanceofconcavity.Theseresultsdemonstratedthattheformationofthesolidpolyhedraat6hmaybeevolvedfromtheconcaveonesby?llingthecavitiesaswellasripeningduetotheincompletereactionat3h.
Inaddition,PVPalsoplaysanimportantroleincontrollingthemorphologiesof?nalnanoparticles.ThoughPVPcanalsoserveasareducingagentinthesynthesesofmetalnanomaterials[21],noproductwasobservedinthepresenceofPVPwithoutusingCOandanobviousagglomerationwasobservedwithouttheadditionofPVPwhentheotherconditionswerekeptthesameasthoseintheabovetypicalexperiment.So,webelievethatPVPservesonlyasstabilizertoeliminaterandomagglomerationduringthesynthesisthoughitisfoundthattheformationofconcavetetrahedralPdisdependentonthePVP/Pd(acac)2ratio.
Fromtheaboveexperimentalevidences,COwasessentialfortheformationofconcavetetrahedralPdnanocrystals.COplayedanimportantdualroleasabothreducingagentandsurfaceadsorbent.COwasadsorbedonPdsurfacesatthesametimeitreducedPd(II)ion,whilethereactioncouldnotoccurwithoutCO.TheconcavefacesweredevelopedattheverybeginningoftheformationofPdnucleuscrystallite.DuetotheadsorptionofCO,eitheratomicadditionoradatomdiffusionwasrestricted,sothatthemorphologieswouldbecon?http://wendang.chazidian.comoleculeswereadsorbedonsomespecialfacetsassoonasPdnucleuscrystalliteswithdifferentcrystallographicfacetsweregenerated.Tocon?rmthepreferentialadsorptionofCOonspecialfacets,COstrippingvoltammetrymeasurementswereperformed.AsshowninFig.8a,onlyoneCOelectro-oxidation(COox)peakat0.927V(versusRHE)wasobservedforthefreshly-preparedconcavetetrahedralPdnanocrystalsin0.1MH2SO4withoutintroducinganyadditionalCO,whichcanbeassignedtotheCOstrippingonPd(110)facets[55].ThenCOelectro-oxidationpeakdisap-pearedinthefollowedsecondpotentialscanning,asshowninFig.8b.Theseresultscon?rmednotonlythepresenceof{110}facetbutalsothepreferentialadsorptionofCOon{110}facetevenintheproducts.Subsequently,twopeakswereobservedinCOstrippingcurvefortheCO-strippedPd-modi?edelectrodeafterCOdosing,asshowninFig.8c.OnepeakforCOelectro-oxidationappearedat0.925V(versusRHE)againisattributedtoCOstrippingon{110}facets,whileanotherpeakat1.026V(versusRHE)canbewellassignedtotheCOstrippingon{111}facets[55].ThisshowsthatCOcanbeadsorbedontoboth{110}and{111}facetsofconcavePdnanocrystalsafterCOstripping.Thisveri?edthatCOwasadsorbedonlyon{110}facetsforfreshly-preparedconcavePdnanocrystals.AfterCOstripping,COcanbejustadsorbedon{111}besides{110}facetsifdosedwithCO.
Accordingly,theformationoftheconcavePdnanocrystalswasgreatlydependentuponaselectiveadsorptionofCOon{110}facetsinthesynthesisprocess.TheCOadsorptionrelatestoCO?owrateandtemperature.WithalowCO?owrate,COwasadsorbedselectivelyon{110}facetsbyanon-toppattern.Asaresult,thenucleuscrystallitepreferredtogrowalongtheexposed{111}facetsandthecorners,andapyramidwiththreeexposed{110}facetsatthecenterofeach{111}facetofthetetrahedralPdwasgenerated.WithafastCO?owrate,the{110}and{111}facetswerecon?nedandthegrowthpreferredalongtheedgesduetotheadsorptionofCOonboth{110}and{111}facets,andthis
内容需要下载文档才能查看Pleasecitethisarticleinpressas:H.Zhu,etal.,Mater.Res.Bull.(2012),http://wendang.chazidian.com/10.1016/j.materresbull.2012.06.048
Absorbance
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 记叙文写作456[整理版]
- 小反刍兽疫间接elisa检测方法的优化及其应用
- jh制药集团营销人员绩效管理研究
- 山西省实验中学09届高三第一次月考
- 枣庄地区民俗美术形式研究
- 最新人教版九年级物理(17-22章)实用教案
- 2008年中考满分作文及名师点评
- 污泥的化学 组成、土壤利用风险和复合污染土壤修复分析
- 阿维森纳《医典》与孙思邈《千金方》养生思想的比较研究
- 反冲运动 火箭
- 试论杜郎口中学教授教化套路改革的多视角解读与反思[指南]
- 研究性学习课题——英文中的广告课题研究
- 湖南少数民族民俗旅游深度开发研究
- 友谊中学高二物理电场专用
- 衔接连贯理论在高中英语写作教学中的应用
- 高中物理基本知识点总结
- 2010年高考英语精品语法辅导课件-名词
- 浅谈初中音乐教育对学生思想品德教育的作用
- 对我国民间资本投资银行业的思考
- 文章非天成,妙手巧指引.doc
- 中小企业薪酬管理的研究
- 文学视域中民俗的审美价值探讨——以“津味儿小说”为例
- 国内民俗旅游市场细分研究
- 高考英语写作技巧
- 2012高考英语核心考点解析单项选择
- 黑龙江省养生旅游市场研究
- 浅谈初中数学课堂提问的有效性——参加胜利教育管理中心“初中数学教师专业成长”高级研修班学习有感
- 作文审题技巧课件(徐永生)
- 摩擦力练习
- 样本讨论作文批改方式研究论文
网友关注视频
- 外研版英语七年级下册module3 unit1第二课时
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 冀教版小学数学二年级下册1
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 外研版八年级英语下学期 Module3
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 七年级英语下册 上海牛津版 Unit9
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 《小学数学二年级下册》第二单元测试题讲解
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 外研版英语三起6年级下册(14版)Module3 Unit1
- 3月2日小学二年级数学下册(数一数)
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
- 二年级下册数学第三课 搭一搭⚖⚖
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 外研版英语七年级下册module1unit3名词性物主代词讲解
- 外研版英语七年级下册module3 unit2第一课时
- 苏科版数学七年级下册7.2《探索平行线的性质》
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理