生物分子辅助制备纳米铜
上传者:管彦|上传时间:2015-04-26|密次下载
生物分子辅助制备纳米铜
内容需要下载文档才能查看
Biomolecule-assistedsynthesisofhighlystabledispersionsofwater-solublecoppernanoparticles
JingXiong,Xue-dongWu ,Qun-jiXue
NingboInstituteofMaterialsTechnology&Engineering,ChineseAcademyofSciences,Ningbo315201,China
articleinfoabstract
Water-solubleandhighlystabledispersionsofcoppernanoparticleswereobtainedusingabiomolecule-assistedsyntheticmethod.Dopaminewasutilizedasbothreducingandcappingagentinaqueousmed-ium.ThesuccessfulformationofDA-stabilizedcopperparticleswasdemonstratedbyultraviolet–visiblespectroscopy(UV–Vis),transmissionelectronmicroscopy(TEM),Zetapotentialmeasurement,andFou-riertransforminfraredspectroscopy(FT-IR).Themechanismofdopamineontheeffectivereductionandexcellentstabilityofcoppernanoparticleswasalsodiscussed.Thisfacilebiomolecule-assistedtech-niquemayprovideausefultooltosynthesizeothernanoparticlesthathavepotentialapplicationinbiotechnology.
Ó2012ElsevierInc.Allrightsreserved.
Articlehistory:
Received16June2012
Accepted14September2012
Availableonline26September2012Keywords:
Biomolecule-assistedBiomoleculesDopamine
CoppernanoparticlesWater-soluble
1.Introduction
Overthepastdecade,metalnanoparticleshaveattractedmuchattentionintheemergingareasofnanoscienceandengineeringtechnologyduetotheirunusualchemicalandphysicalproperties,suchascatalyticactivity,novelelectronic,optic,andmagneticproperties[1–6].Someofthemostpromisingapplicationsformetalnanoparticlesincludecatalysts,absorbents,chemicalandbiologicalsensors,optoelectronics,informationstorage,aswellasphotonicandelectronicdevices[7–10].Variousmethods,suchaswetchemicalreduction,reversemicelles,electrochemicalandsonoelectrochemicaltechniques[11–16],weredevelopedtosyn-thesizemetalnanoparticlesbecauseofthediversityandimpor-tanceoftheseapplications.However,mostofthesemethodsreportedtodaterelyheavilyonuseoforganicsolventandtoxicreducingagents,formationofenvironmentalandbiologicalhaz-ardousby-products,andhighenergyconsumption.Thepotentialapplicationareaswerecontainedowingtotheseproblems.
Recently,thereisanincreasingattractiononthetopicofsyn-thesizingmetalnanoparticleswithbiomoleculessuchasDNA,aminoacidandproteintoreduceoreliminatetheuseandgenera-tionofhazardoussubstances[17–20].Biomolecules,whicharethebuildingblocksoflifeandperformimportantfunctionsinliving
Abbreviations:CuNPs,coppernanoparticles;DA,dopamine;UV–Vis,ultraviolet–visiblespectroscopy;HRTEM,high-resolutiontransmissionelectronmicroscopy;FT-IR,Fouriertransforminfrared.
Correspondingauthor.Fax:+8657486685159.
E-mailaddresses:xiongjing@http://wendang.chazidian.com(J.Xiong),xdwu@http://wendang.chazidian.com(X.-d.Wu).
内容需要下载文档才能查看0021-9797/$-seefrontmatterÓ2012ElsevierInc.Allrightsreserved.http://wendang.chazidian.com/10.1016/j.jcis.2012.09.030
organisms,havebeenusedtodesignandsynthesizecomplicatednanostructuresatmolecularlevel[21].Thepopularityofmetalnanoparticleshasbeenenhancedthroughextendingitsapplicabil-ity,especiallyinbiologicalapplications,bytheintroductionofbio-molecules[22,23].Therefore,severalsyntheticmethodsrelyingonbiomolecule-assistedtechniquehavesofarbeenreported,espe-ciallyfornoblemetalnanoparticlessuchasAuandAgnanoparti-cles.Dharetal.[24]synthesizedandstabilizedAunanoparticlesbyusinggellangum(alinear,anionicheteropolysaccharide)inwater.Sietal.[25]preparedAuandAgnanoparticlesusingoligo-peptidesasboththereducingandstabilizingagent.Burtetal.[26]fabricatedAunanoparticlesthroughdirectlyconjugatedtobovineserumalbuminproteinbychemicalreductioninaqueoussolution.Lietal.[27]synthesizedfolicacid(FA)-protectedAunanoparticlesbyheatinganaqueoussolutionofHAuCl4/FAinwhichFAactsasboththereducingandstabilizingagent.
Nevertheless,therearefewstudiesonpreparationofcoppernanoparticles(CuNPs)withbiomoleculesespeciallyinanaqueoussolutionmedium.CuNPsalsoplayacrucialroleinmanyapplica-tionssuchaslubricants,catalysts,thermaltransfernano uids,electronicmaterials,andopticaldevices[28–http://wendang.chazidian.comparedtonoblemetals,copperissigni cantlylowcostandlesselectromi-grationeffectwhenitisusedinmicroelectronics.Apartfromthis,stabledispersionofwater-solubleCuNPssynthesizedbybiomole-cule-assistedmethodnotonlycanbeusedas‘‘ink’’tomanufacturelow-costelectroniccomponentsbyink-jetprinting[31–33]andfabricateorderedmicro/nanostructuredarraysthroughself-assembly[34,35],butalsocanbewidelyusedforbiologicalapplications[36,37].
42J.Xiongetal./JournalofColloidandInterfaceScience390(2013)41–46
Inthiswork,afacilebiomolecule-assistedsyntheticstrategyforpreparinghighlystabledispersionsofwater-solubleCuNPsisreported.Dopamine(DA),akindofbioactiveo-hydroquinonederivativeswitheffectivereduction,isusedasbothreducingandcappingagenttoobtainaswellaspreventtheaggregationofCuNPs.Nootherintermediatestabilizingagents,whichwilladverselyaffecttheperformanceofproductsasorganicresidues,isadded.Transmissionelectronmicroscopy(TEM)wasusedtocharacterizetheshapeandsizedistributionoftheproducedCuNPs.Fouriertransforminfraredspectroscopy(FT-IR)wasemployedtocon rmtheimmobilizationofDAonCuNPs.Further-more,themechanismofdopamineonthereductionandstabiliza-tionofCuNPswasdiscussed.
2.Experimental2.1.Materials
CuCl2Á2H2O(SinopharmChemicalReagentCo.,Ltd.)actedastheprecursorfortheformationofCunanoparticles.Dopamine(AladdinReagentCo.,Ltd.)actedbothasreducingagentandcap-pingagent.Allchemicalswereusedasreceivedanddeionizedwaterwasusedinallexperiments.2.2.SynthesisofCuNPswithDA
Inatypicalpreparationprocess,dopamine
内容需要下载文档才能查看waspreparedbydissolvingdopamine(3mmol)water.A askcontainingDAaqueoussolutioninoilbathwithmagneticstirring.A10mlsolution(1mmol)wasaddeddropwiseintotheThemixturewaskeptat80°CuntiladarkThereactionprocesswaslastabout6h.Thewascentrifugedat8000rpmfor15minandthenambientconditionsfor6months.Followingthewerealsopreparedbyvariousmolarratioof(1:1,2:1)andconcentrationofcoppersaltthesamemethoddescribedabove.
Controlexperimentsrevealedthatthedistributionandstabilitywereallachievedati edabove.Thedependenceofparticlesizeoncoppersaltandconcentrationofcoppersalthasindetail.
2.3.Characterization
TheUV–VisabsorptionspectraofthewererecordedonaLambda950USA).
Samplesforhigh-resolutiontransmission(HRTEM)analysiswerepreparedbydropCuNPsdispersionsoncarboncoatedcopperdryatroomtemperature.MeasurementswereF20(USA)instrumentoperatedatan200kVwithalatticeresolutionof0.14nmandtionof0.24nm.TheparticlesizeanalysiswasNanoMeasurersoftware.
ThestabilityoftheCuNPswasdeterminedzetapotential,determinedbyusingazetaZS,BrookhavenInstrumentsCorporation,NY.
Fouriertransforminfrared(FT-IR)spectraofas-preparedCuNPswererecordedonaFourierspectrophotometer(Nicolet6700,USA)ataintherangeof400–4000cmÀ1inKBrpellets.
3.Resultsanddiscussion3.1.UV/VisstudiesonCuNPs
Nanosizedparticlesexhibituniqueopticalpropertieswithanexponential-decayMiescatteringpro lewithdecreasingphotonenergy.Sometransition-metalnanoparticlesalsoshowadistinctsurface-plasmonband[38].UV–Visabsorbancespectroscopyhasbeenprovedtobeaveryusefultechniqueformetalnanoparticlestudybecausethepeakpositionsandshapesaresensitivetoparti-clesize.TheeffectofcoppersaltandDAconcentrationontheUV–VisabsorbancespectroscopyofCuNPssynthesizedisshowninFig.1.Thesurface-plasmonresonancepeakofCuNPshasbeenreportedtobeappearedaround570nm.However,forcoppernanoparticlesbelow4nmindiameter,thisplasmonpeakdisap-pearsduetothechangeinelectronicstructurethatoccurswithquantumcon nement[39–41].
Inourwork,theUV–Visabsorptionspectrumofbiomolecules-stabilizedCuNPsonlydemonstratesafeaturelessMiescatteringpro lewithouttheappearanceofanapparentsurface-plasmonband,asshowninFig.1,whichqualitativelyindicatesthepresenceofverysmallseparatedcoppernanoparticles(averageparticlesizelessthan4nm),asthesurface-plasmonpeakisknowntobebroad-
3:1)whentheconcentrationof
内容需要下载文档才能查看presentedinFig.2.
Ingeneral,theCuNPsarehomogeneouslydistributed.waslessthan4nm.TheHRTEMlatticefringeswithd-spacinglatticeplanesofmetallictributionarealsopresentedincatehighdegreeofhistogramsclearlyrevealatheincreaseinmolarratioofwithvariousmolarratioof2.34±0.47nm,2.09±0.50nm,Anditisworthnotingthat(2.34±0.47nm)eventhrough1:1,whichrevealtheexcellentpingagent.
TheseresultsillustratethethroughreductionofCu2+whichenableextremelynumberofCu2+encapsulatedincreasingconcentrationofDA,CuNPs(whichwillbefurtherFig.3showsTEMimagesofconcentrationofcoppersalt(3:1)andcorrespondingTheparticlesbecomelargerasincreased.Atcoppersaltticlesizewas1.93±0.73nm(2.55±0.47nm(Fig.3c).Thismorenucleicouldbeformedsaltconcentrationandtheleadingtotheformationofpointingoutthatthesize(2.55±0.47nm)whenthehighas0.5M.Itdemonstratestivecappingagentevenat3.3.3.StabilityofCuNPsThestabilityofthedispersiontoresistin uentialfactorintheiragglomerationofaddedintoreactionsystem.reducingandcappingagentagent.Thewater-solublestability.Indeed,the8000rpmfor15minwassignsofsedimentationwerestorage,asprovedbythelongperiodofstorage(Fig.4theabsorbancespectrumchangesigni cantly,Moreover,thehighstabilityof rmedbythehighZetaobtainedis32mV,whichisstabilityforcolloidalDA-stabilizedCuNPsarepinganddispersioneffectofsystem.
3.4.Anti-oxidationstabilityofItisworthnotingthattheCuNPstendtobeeasilyoxidizedinairunderatmosphericconditionincomparisonwithnoblemetals
likegoldandsilver,whichwouldcontaintheirpotentialapplica-tionareas.Therefore,thesynthesisofCuNPswithanti-oxidation
44
J. Xiong et al./ Journal of Colloid and Interface Science 390 (2013) 41–46
Fig. 4. UV–Vis absorption spectra of CuNPs kept at ambient conditions over time. The inset shows the corresponding photo-graphs of samples.
(6 months), reveal clear lattice fringes with d-spacing of 2.1Å corresponding to the (1 1 1) lattice planes of metallic copper. The oxide-free and identical copper phase demonstrates that the DAstabilized CuNP
s dispersions could prevent the oxidation even after 6 months of storage. This anti-oxidation stability is likely attributed to the present of dopaminechrome capping layer at the surface of CuNPs. The steric effect arising from the ring structure of dopaminechrome on the surface of CuNPs may play an important role in prohibiting oxidation of CuNPs dispersions. 3.5. Fourier transform infrared (FT-IR) characterization FT-IR spectroscopy was used to investigate the interactions between different species and changes in chemical compositions of the mixtures. Fig. 6 shows the FT-IR spectrums for pure DA and the as-prepared CuNPs. The peak at 1290 cmÀ1 which assigned to C–O stretching vibration disappeared after the reaction and new peak was observed at 1630 cmÀ1. The peak attributed to the carbonyl groups of dopaminechrome (the oxidation product of DA), possibly because the transmission peaks toward higher energies result from the coupling of vibrations of the two-carbonyl and the conjugative effect. In addition, the peak at 3400 cmÀ1 observed for the as-prepared CuNPs assigned to N–H stretching vibration of dopaminechrome. These results evidenced the reduction process that DA converted into dopaminechrome. The presence of dopaminechrome on the surface of CuNPs provides excellent stability for colloidal dispersions (which will be discussed in detail in the mechanism section).
Fig. 3. TEM images of synthesized CuNPs with different concentrations of copper salt at molar ratio of DA to copper salt (3:1): (a) 0.1 M, d= 1.61± 0.44 nm; (b) 0.2 M, d= 1.93± 0.73 nm; (c) 0.3 M, d= 2.55± 0.47 nm. The insets show the representative HRTEM images and the size distribution of the CuNPs.
stability is an important issue that needs to be considered. The HRTEM images (Fig. 5), which took after a long period of storage
Fig. 5. HRTEM images of DA-stabilized CuNPs after 6 months storage.
内容需要下载文档才能查看
3.6.ReductionandcappingmechanismofDA
Theaboveresultsshowthatwell-dispersedwater-solubleCuN-PscanbeobtainedthroughreductionofCu2+usingDAasbothreducingandcappingagent.Thehighlywater-solubleDA,asakind
内容需要下载文档才能查看 内容需要下载文档才能查看ItisobservedthatDAservesasanelectrondonorininterac-tions,beingconvertedintodopaminequinoneandthendopamine-chrome.Inourpreviouswork[43],wehavesuccessfullysynthesizedCuNPsusingL-ascorbicacid,whoseredoxpotentialisoftensimilartothepotentialofdopamine[44,45].Therefore,dop-
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- E-cadherin、MMP-9、TIMP-1的表达与胃癌生物学特性及预后的关系
- 虚拟电路实验系统中J2EE+WEB框架的构建与研究.
- 中国信息化进程中的测绘保障机制研究
- 集成电路物理设计中布局和电源网络的设计
- 基于J2EE的企业级信息系统的研究与应用
- 基于J2EE的企业绩效考核管理系统设计与实现
- 研究生论文撰写规范
- 基于J2EE系统软件再工程方法的研究与应用
- 古代汉语网络教学平台应用现状研究以三所高校汉语言文学专业为例
- 基于J2EE架构的SSH组合框架的设计与应用
- 电信网管信息模型子系统基于J2EE地实现
- 机械手臂论文
- 企业级即时通讯软件的设计
- 拒不执行错误的判决、裁定是否构成犯罪-以刑法的价值为视角毕业论文
- 东正街旧城改造工程安全施工组织设计(可编辑)
- 大学生英语自主学习意识与自主学习能力的调查研究
- 基于J2EE的高职院校教务管理系统的设计与实现
- (最新)基于轻量级J2EE架构的法院档案管理系统的设计与实现
- mir-6a对胰腺癌生物学特性的影响及机制的研究
- 翻译不同目和策略
- 基于j2ee的电子政务应用安全设计与实现
- 三种植物化学成分の研究
- 网络语言研究 2共3部分
- 基于质量管理的公务员绩效考核研究——以山东检验检疫局为例
- 基于J2EE架构电子政务系统的研究和开发
- 基于J2EE的ERP系统研究与应用
- 基于波形松弛法的大规模电力系统暂态稳定并行仿真研究
- 硕士论文_基于J2EE的高校数字校园统一平台的设计与实现
- 基于J2EE银鸽集团ERP系统的设计与应用
- 广义加速失效时间Frailty模型
网友关注视频
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 北师大版数学四年级下册3.4包装
- 冀教版小学数学二年级下册1
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 冀教版英语四年级下册第二课
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 冀教版英语三年级下册第二课
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
- 苏教版二年级下册数学《认识东、南、西、北》
- 北师大版小学数学四年级下册第15课小数乘小数一
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 3月2日小学二年级数学下册(数一数)
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 二年级下册数学第二课
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 外研版英语七年级下册module3 unit1第二课时
- 《空中课堂》二年级下册 数学第一单元第1课时
- 七年级英语下册 上海牛津版 Unit9
- 人教版二年级下册数学
- 河南省名校课堂七年级下册英语第一课(2020年2月10日)
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 七年级英语下册 上海牛津版 Unit3
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理