教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 工程科技> 信息与通信> Automatic 3D City Modeling Using a Digital Map and Panoramic Images from a Mobile Mapping System

Automatic 3D City Modeling Using a Digital Map and Panoramic Images from a Mobile Mapping System

Hindawi Publishing Corporation

Mathematical Problems in EngineeringVolume 2014, Article ID 383270, 10 pageshttp://wendang.chazidian.com/10.1155/2014/383270

ResearchArticle

Automatic3DCityModelingUsingaDigitalMapandPanoramicImagesfromaMobileMappingSystem

HyungkiKim,1YunaKang,2andSoonhungHan1

12

KoreaAdvancedInstituteofScienceandTechnology,291Daehak-ro,Yuseong-gu,Daejeon305-701,RepublicofKorea

1stR&DInstitute,AgencyforDefenseDevelopment,488Bugyuseong-daero,Yuseong-gu,Daejeon305-152,RepublicofKorea

CorrespondenceshouldbeaddressedtoSoonhungHan;shhan@kaist.ac.kr

Received20May2014;Revised16July2014;Accepted16July2014;Published13August2014AcademicEditor:Jong-HyukPark

Copyright©2014HyungkiKimetal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.Three-dimensionalcitymodelsarebecomingavaluableresourcebecauseoftheirclosegeospatial,geometrical,andvisualrelationshipwiththephysicalworld.However,ground-orientedapplicationsinvirtualreality,3Dnavigation,andcivilengineeringrequireanovelmodelingapproach,becausetheexistinglarge-scale3Dcitymodelingmethodsdonotproviderichvisualinformationatgroundlevel.Thispaperproposesanewframeworkforgenerating3Dcitymodelsthatsatisfyboththevisualandthephysicalrequirementsforground-orientedvirtualrealityapplications.Toensureitsusability,theframeworkmustbecost-effectiveandallowforautomatedcreation.Toachievethesegoals,weleverageamobilemappingsystemthatautomaticallygathershigh-resolutionimagesandsupplementssensorinformationsuchasthepositionanddirectionofthecapturedimages.Toresolveproblemsstemmingfromsensornoiseandocclusions,wedevelopafusiontechniquetoincorporatedigitalmapdata.Thispaperdescribesthemajorprocessesoftheoverallframeworkandtheproposedtechniquesforeachstepandpresentsexperimentalresultsfromacomparisonwithanexisting3Dcitymodel.

1.Introduction

Three-dimensionalcitymodelsarewidelyusedinapplica-tionsinvariousfields.Suchmodelsrepresenteitherrealorvirtualcities.Virtual3Dcitymodelsarefrequentlyusedinmoviesorvideogames,whereageospatialcontextisnotnecessary.Real3Dcitymodelscanbeusedinvirtualreality,navigationsystems,orcivilengineering,astheyarecloselyrelatedtoourphysicalworld.GoogleEarth[1]isawell-known3Drepresentationofrealcities.Itillustratestheentireearthusingsatellite/aerialimagesandmapssuperimposedonanellipsoid,providinghigh-resolution3Dcitymodels.

Intheprocessof3Dcitymodeling,boththecostandthequalityrequirementsmustbeconsidered.Thecostcanbeestimatedasthetimeandresourceconsumptionofmodelingthetargetarea.Thequalityfactorconsidersbothvisualqual-ityandphysicalreliability.Thevisualqualityisproportionaltothedegreeofvisualsatisfaction,whichaffectsthelevelofpresenceandreality.Thephysicalreliabilityisthegeospa-tialandgeometricalsimilaritybetweentheobjects—inourcase,mainlybuildings—inthemodeledandphysicalworlds.

Generally,accomplishingasatisfactorylevelforbothrequire-mentsisdifficult.

Numeroustechniquescanbeusedfor3Dcitymodeling.Forinstance,colorandgeometrydatafromLiDARaremainlyusediftheapplicationrequiresdetailedbuildingmodelsforasmallarea.Ifthecitymodelcoversalargeareaanddoesnotneeddetailedfeatures,reconstructionfromsatellite/aerialimagesismoreefficient[2].Thismeansthattheeffectiveapproachcandifferaccordingtothetargetapplicationusingthe3Dcitymodel.Thegoalofourresearchistoproposea3Dcitymodelingmethodthatcanbeappliedinground-orientedandinteractivevirtualrealityapplications,includingdrivingsimulatorsand3Dnavigationsystems,whichrequireeffective3Dcitymodelingmethodsfordiverseareas.

2.RelatedWork

Existing3Dcitymodelingmethodscanbedividedintoman-ualmodelingmethods,BIM(BuildingInformationModel)data-basedmethods,LiDARdata-basedmethods,andimage-basedmethods.

2

Themanualmodelingmethodishighlydependentonthemodelingexperts.OlderversionsofGoogleEarthandTerraVistaemployedthismethodintheirmodelingsystems.Althoughcurrentapplicationsemploymanualmodelingbecauseofitshighquality,themethodisalsoahigh-cost,labor-intensiveprocess.Hence,itisnotefficientforurbanenvironmentsthatincludenumerousbuildings.TheBIMdata-basedmethodfacilitatestheuseofbuildingdesigndatafromtheconstructionstageandisappliedincityplanning[3]andfireandrescuescenario[4].However,thismethodisonlyefficientforapplicationsinwhichtheactivityareasarestrictlyconstrained,asgatheringBIMdataisproblematicorevenimpossiblegiventhelargesizeofurbanenvironments.More-over,theBIMdatashouldbepostprocessedfortheuseofvirtualrealityapplications.ThisisbecausetheinformationinBIMdoesnotcontaintheas-built3Dmodel;sothepropertiesforthevisualvariablesshouldbemapped.

Toaddresstheseproblems,remotesensingtechniquesarebeingaggressivelyadoptedandstudiesofLiDARdata-basedmethodsandimage-basedmethodsareincreasinglycommon[5].LiDARisadevicethatsamplesprecisedatafromthesur-roundingenvironmentusinglaserscanningtechnology.Inseveralstudies(e.g.,[6,7]),high-quality3DcitymodelshavebeenreconstructedusingLiDARdata.However,asnotedinotherwork[6],ground-levelscanninghasalimiteddatagath-eringrange,meaningthatredundantdatacollectionisunavoidableinthemodelingofdiverseareas,whereasair-borneLiDAR[8]islimitedintermsofitscostandcolordatacollectionmethods.

Image-basedmethodsincludethosebasedonstereomatchingandinverseproceduralmodelingapproaches.Inearlierresearch[7,9],amethodbasedonstereomatchingwasusedtorecover3Ddatafromthefeaturepointmatchingbetweenaseriesofimages.Thisapproachusuallyrequiresnumerousimagestosatisfytheaccuracyandrobustnessrequirementsoffeaturepointmatching.Severalrecentinverseproceduralmodelingapproaches[10–12]havemod-eledbuildingsusingrelativelyfew(mainlyone)images.Thiscanovercomethedifficultiesofdata-collectioninstereomatching.Thisapproachemploysaplausibleassumption;thatis,thattheshapeofabuildingconsistsofasetofplanesinthreedimensions,toreconstructindividual3Dbuild-ingswithoutpixel-wise,3Dinformation.However,becauseimage-basedmethodsarenotrobustagainstinstancesofocclusion,userinputorstrongconstraintsarefrequentlynec-essary.Thisreducestheircosteffectivenessand/orphysicalreliability.

Inourresearch,theapproachwhichpreservesthecost-efficiencybyusingtheexistingimagedatabasewhileincreas-ingphysicalreliabilitywillbeproposed.TheimagedatabaseisrelativelyeasytoaccessthanLiDARdatabasesocostonthedatacollectioncanbedecreased.Ontheotherhandthemethodbasedonthestereomatchingrequiresnumerousimagesonthelarge-scalemodelingthatdecreasestheuni-versalapplicabilityofmethod.Thereforeinverseproceduralmodelingapproachispreferredonourobjective,whilethephysicalreliabilitycanbeincreasedbycombiningaccuratereferencedata[13].

MathematicalProblemsinEngineering

3.ProposedMethod

3.1.MobileMappingSystemandDigitalMap.Inthisstudy,weproposeaframeworkthatusesamassivenumberofimagesgatheredfromamobilemappingsystem(MMS).Thisaddressesmanyproblemsinexistingmethods,whichcannotsimultaneouslyprovidefeasiblelevelsofcosteffectiveness,visualquality,orphysicalreliability.AnMMScollectsandprocessesdatafromsensordevicesmountedonavehicle.ServicessuchasGoogleStreetView[14],NaverMaps[15],andBaiduMaps[16]presentinformationintheformofhigh-resolutionpanoramicimagesthatincludethegeospatialpositionanddirectionofeachimagetaken.Themainfocusoftheseservicesistooffervisualinformationaboutthesur-roundingenvironmentatagivenlocation.TheadvantagesofdatacollectedfromMMSareasfollows.

(1)Nationwideorevenworldwidecoveragefollowingthedevelopmentofremotesensingtechnologiesandmapservices.(2)Rich,visual,andomnidirectionalinformation.(3)http://wendang.chazidian.comingtheseadvantages,wecanmodeladiversecityareaforground-orientedinteractivesystemsinacost-effectivewaywiththeexistingimagedatabase.Moreover,highvisualqualityatgroundlevelcanbeprovidedbyhigh-resolutionpanoramicimages[17].However,therearecurrentlyseveraldisadvantagesinthedatacollectedfromMMS.

(1)Sensordataincludesnoise,whichlowersitsphysicalreliability.(2)Thenumberofimagesinagivenareaislimitedandisinsufficientforstereomatching-basedreconstruc-tion.(3)Inclusionofanenormousamountofunnecessaryvisualinformation,includingocclusions,cars,andpedestrians.Noiseisunavoidableinthesensingprocess.Theamountoferrorthisintroducesdiffersaccordingtothesurroundingenvironment;a±5mpositionalerrorand±6?directionalerrorhavebeenreportedinGoogleStreetViewdata[18].Sucherrorlevelscanbeproblematicintheanalysisrequiredfor3Dmodeling.Moreover,thecurrentservicehasaninter-valof?10mbetweenimages,whichlowersthepossibilityofsuccessfulreconstructionusingstereomatching.Addi-tionally,theuncontrolledcollectionenvironmentresultsinaseveredisadvantageforinverseproceduralmodeling.MMSdataalsorequiresanadditionalprocesstoclassifyindi-vidualbuildings,unliketheinverseproceduralmodelingapproaches.

ToaddresstheseproblemswithMMSdata,weproposeamethodthatincorporates2Ddigitalmapdata.Digitalmapshaveaccurategeospatialinformationaboutvariousfeaturesinthephysicalworld.Forinstance,the1:5000digitalmapsappliedinourframeworkhaveahorizontalaccuracyof1m,whichisfivetimesbetterthanthatoftheMMSpositiondata.

MathematicalProblemsinEngineering

Individual building region

3

内容需要下载文档才能查看

Building texture

Textured 3D model

Figure1:Overviewoftheproposed3Dcitymodelingframework.

Therefore,bycombiningdata,theproblemsofsensorerrorscanbeovercomeandtheselectiveuseofvisualinformationispossible.Ontheotherhand,thegeometricalcharacteristicofthebuildingisrestrictedtoaquasi-Manhattanworldmodel.Thequasi-Manhattanworldmodelistheassumptionthatstructuresconsistofverticalandhorizontalplanes,andisanextensionoftheManhattanworldmodelthatassumesstruc-turesconsistofverticalandhorizontalplanesorthogonaltoeachother.

3.2.ProcessOverview.TheproposedframeworkisillustratedinFigure1.Theinputdataaretheaforementioneddigitalmaps,whichcontainbuildingfootprintinformationandpanoramicimagesfromtheMMSsystemwithsensordata.Thebase3Dmodelisgeneratedfromthefootprintinforma-tionofthebuildings;theindividualbuildingregionsareseg-mentedandreprojectedaccordingtothecombinedGPS/INS(InertialNavigationsystem)information.Thereprojectedregionisfurthersegmentedandrectifiedtoproducethetextureimage.Heightestimationispossiblebycombiningthebuildingcontourinformationfromthetextureimageandthereprojectedimage.Wecanthenobtainthetextured3Dmodelbyapplyingtheheightinformationtomodifytheheightofthebase3Dmodels.

ThedetailedprocessisillustratedinFigure2.Theentiremodelingprocedurecanbedividedintothefollowingfourstages.

(1)Image/buildinganalysis.(2)Errorcorrection/compensation.

(3)Segmentationandvalidation.(4)Texturemapping.

Theerrorcorrection/compensationandsegmentationandvalidationprocessesincludeafeedbacklooptosequen-tiallyobtainthetextureofindividualbuildings.

3.3.Image/BuildingAnalysis.Thisstageanalyzesthecorrela-tionbetweeneachimageandthedigitalmap.Todothis,abase3Dmodelisgeneratedfromthefootprintofthebuild-ingsbyextendingthemodelintheverticaldirection.Thefootprintdataconsistsofthegeospatialcoordinatesofthebuildingcontourprojectedtothegroundsurface.Thisdatashouldretainacertainlevelofaccuracyandthereforecon-tainspreciseinformationaboutthebuildings.

Theinputimagecanthenbepositionedinthe3DenvironmentaccordingtotheGPS/INSsensorinformation.Next,buildingsareclassifiedaccordingtothethreecriterialistedbelow.Theobjectiveofthisclassificationistoseparatethebuildingsintotexture-acquirableexamplesandothersatahighresolution.Theproposedcriteriaareasfollows.

(1)ThedistancebetweenthelocationfromtheGPSsensorcorrespondingtotheimageandthebuilding.(2)Theocclusionbetweenthebuildings.

(3)Theregionoccupiedbythebuildingintheimage.Thedistancecriterionisquitestraightforward:moredistantbuildingsarelesslikelytoappearintheimage.Theocclusioncriterionisalsoreasonable,asanoccludedbuilding

4MathematicalProblemsinEngineering

Image-building analysis

1

Error correction

2

ROI setting

Validation

Segmentation

Remapping

3

Model refinementTexture mapping

4

Figure2:Detailedprocessoftheproposedapproach.

cannotappearintheimage.Thethirdcriterionconsidersinformationaboutthebrieftextureresolutionofeachimagebycalculatingthefac¸adeangleandwidthoftheimage,andthenestimatingtheresolutionofthetexture.Assuming??isthewidthofthepanoramicimagethathasa360-degreefieldofview(FOV),andthenthepixelperradianinthehorizontaldirectioncanbecalculatedas??/??.Thelocationofthecapturedimagecanbeexpressedas??∈R2inthe2Ddigitalmapandbothendsofthefac¸adefootprintscanbe

2

expressedas????,????∈R.Thenthepixelpermeter,whichisthetextureresolutionforeachfac¸ade,canbecalculatedusingthelawofcosinesTextureResolution=where

??2????2????2??

)+(??)?(???????????????????????????????(??????????????)).??=arccos(????????????????????

(1)ThesecriteriaareillustratedinFigure3.

3.4.ErrorCorrection/Compensation.Thecorrection/compen-sationprocessturnstheomnidirectionalbuildingdetectionproblemintothesimpleproblemofsegmentingasingleimage.NoiseintheGPS/INSsensoristheprimarysourceofthemismatchbetweentheimage/buildinganalysisresultsandthegroundtruth.

?????

,First,correctionoftheGPS/INSsensorerrorisper-formedusingimage-basedlocalizationmethods.Image-basedlocalizationisamajorresearchissueinrobotvisionandlocation-basedservices.Thelocalizationofapanoramicimagecanbeconductedbyapplyingsemanticsegmentation[18].However,theauthorsassumedtheexistenceofadetailed3Dcadastralmodel,butthesearenotoftenavailableincityareas.Otherresearch[19]hasproposedalocalizationmethodthatusesimagesanddigitalmaps,butthisisstronglydepen-dentonuserinput.Hence,theirmethodisnotappropriateforourframework,whichdealswithalargenumberofimages.Instead,ourframeworkutilizesamethodthatlocalizesthepanoramicimagebasedontheorientationdescriptor[20].Thefootprintorientation(FPO)descriptorencodestherel-ativeanglebetweenthelinesemittedradiallyfromacertainlocationonthemapandthefootprintsofthebuildings.Inthesameway,theFPOdescriptorcanbecalculatedfromthepanoramicimagebecausethepanoramicimagehasomnidi-rectionalinformationsothatbyvanishingpointestimationwecancalculatetheanglebetweenthelocationoftheimageandthefootprintsofthevisiblebuildings.Byfindingthemin-imumdistancebetweentheFPOdescriptorcalculatedfromtheimageandthesampledlocationsonthemap,wecanestimatewherethepanoramicimagehasbeentaken.Experi-mentsshowedthattheerrorafterestimationislessthan2m,whichissufficientforourframework,andtoproceedtotheprocessingstage.Meanwhile,the360-degreeFOVpanoramicimageispreferredbecauseofthiserrorcorrection.Ascanbeseeninearlierresearch,asingleimagefromanormallenscontainsalimitedamountofvisualinformationaboutthe

MathematicalProblemsinEngineering5

50m

内容需要下载文档才能查看

(a)(b)

?100(c)

Figure3:Criteriaoftheimage/buildinganalysis.(a)Distancebetweentheimageandbuildings;(b)occlusionbetweenbuildings;and(c)facingviewingangleofthebuildingfac¸ade,thatisusedtocalculatethetextureresolution.

surroundingenvironment[21],souser-inputshouldbecon-sideredinordertomoreaccuratelyestimatethelocationwheretheimagewastaken[22].

Theerrorcompensationutilizesthiserrorboundtosettheregionofinterest(ROI).Ourobjectiveinerrorcompen-sationistoprocessthesingle360-degreepanoramicimageintoseveralnormal-lensimagestobuildeachtarget,bypar-titioningandreprojecting.Aswementionedbefore,theerrorcorrectionreducesthepositionandorientationerrorbuttherestillexistmismatches,upto2minposition,betweenthebase3Dmodelfromthedigitalmapandthepanoramicimage.SowecalculatetheFOVforeachtargetedbuilding,whichisROI,witha2-mmargin.Afterthat,thepanoramicimageisreprojectedusingrectilinearprojectiontogenerateanimagewhichpreservesthestraightlinesin3Dspaceintheprojectedimage.ThentheROIcontainsthecompleteimageofthetargetbuildingandthecomplexityoftheimage-segmentationprocessisreduced.

3.5.SegmentationandValidation.Thisstepinvolvestheseg-mentationandvalidationofindividualbuildings.Asnotedinearlierstudies[23,24],http://wendang.chazidian.comually,themethodproposedin[23]givesrobustresults,becausehorizontallinesegmentsarelessaffectedbyocclusions,whereas[24],whichreliesontheverticalvanishingpoint,suffersfromocclusionscausedbypedestrians,trees,andcars.

Theouterboundarycanbeobtainedbyminimizingthe1DMarkovrandomfieldenergy,whichisdefinedas

??(L)

=∑????(????)+∑????,??+1(????,????+1)

??=1

??=1

??

???1

(see[18])

(2)

[??(????)>??]???if????=0

????(????)={

100???????(????)otherwise????,??(????,????)=[????=????]???(??????(????)+??????(????)),

(3)(4)

whereL=(??1,??2,...,????)isthelabelingoftheentirecolumn

intheimagesothatnisthepixelwidthoftheimageand????∈{1,2,...,??}isthelabelforeachcolumn????wheremisthenumberofdetectedhorizontallineorientations(e.g.,??=2inFigure4(a)).??????(????)isthenumberoflinesegmentswiththespecifichorizontallineorientationinthecolumn????,andthetotalnumberoflinesegmentsofanyorientationin????is??(????)=∑??????(????).Therefore????(????)istheunarypotential,whichhasalowerenergywhentherearemorehorizontallinesegmentscrossing????where??isthethresholdand??controlsthecostforno-fac¸aderegion.????,??+1(????,????+1)isthepairwisepotentialforthelinesegmentscorrespondingtothevanish-ingpointsofthe????and????+1,where??istheweightfactor.Thisdescribesthesmoothnessfactorwhenlabelingthedifferentpixelvaluesbyprovidinghigherenergywhenthelabelsdifferbetweenthosepixels.TheresultisillustratedinFigure4.

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

2018辽宁公务员考试:面试每日一练结构化面试模拟题答案5.14
2018辽宁公务员考试申论模拟题:创意农业无止境
2018辽宁公务员考试申论模拟题:下放的权力
2018辽宁公务员考试:行测每日一练言语理解练习题04.27
2018辽宁公务员考试:行测言语理解模拟题6
2018辽宁公务员考试:面试每日一练结构化面试模拟题5.4
2018辽宁公务员考试:面试每日一练结构化面试模拟题答案5.2
2018辽宁公务员考试:行测每日一练言语理解练习题答案04.28
2018辽宁公务员考试:行测每日一练资料分析练习题05.14
2018辽宁公务员考试面试热点模拟题:如何开展敬老爱老活动
2018辽宁公务员考试申论模拟题:为何频现大学生安全问题?
2018辽宁公务员考试:面试每日一练结构化面试模拟题5.10
2018辽宁公务员考试:行测每日一练常识判断练习题05.03
2018辽宁公务员考试:行测每日一练数量关系练习题05.10
2018辽宁公务员考试:面试每日一练结构化面试模拟题答案5.7
2018辽宁公务员考试申论每周一练:恶搞历史和经典现象
2018辽宁公务员考试:行测每日一练判断推理练习题05.04
2018辽宁公务员考试:行测每日一练资料分析练习题05.07
2018辽宁公务员考试:行测言语理解模拟题08
2018辽宁公务员考试:行测每日一练资料分析练习题答案05.07
2018辽宁公务员考试:面试每日一练结构化面试模拟题答案5.10
2018辽宁公务员考试:行测每日一练判断推理练习题05.11
2018辽宁公务员考试:面试每日一练结构化面试模拟题答案5.4
2018辽宁公务员考试:行测每日一练常识判断练习题答案05.08
2018辽宁公务员考试:行测每日一练数量关系练习题05.02
2018辽宁公务员考试:行测每日一练言语理解练习题04.28
2018辽宁公务员考试面试热点模拟题:“星巴克致癌” 食品安全警钟长鸣
2018辽宁公务员考试:行测言语理解模拟题07
2018辽宁公务员考试申论每周一练答案:恶搞历史和经典现象
2018辽宁公务员考试:行测每日一练言语理解练习题答案05.09

网友关注视频

冀教版小学英语五年级下册lesson2教学视频(2)
外研版英语七年级下册module3 unit2第一课时
小学英语单词
人教版历史八年级下册第一课《中华人民共和国成立》
化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
冀教版英语四年级下册第二课
沪教版八年级下次数学练习册21.4(2)无理方程P19
8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
《空中课堂》二年级下册 数学第一单元第1课时
外研版英语三起5年级下册(14版)Module3 Unit1
沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
外研版英语七年级下册module3 unit2第二课时
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
三年级英语单词记忆下册(沪教版)第一二单元复习
冀教版小学数学二年级下册1
飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
七年级英语下册 上海牛津版 Unit9
精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
外研版英语三起5年级下册(14版)Module3 Unit2
沪教版八年级下册数学练习册21.3(2)分式方程P15
北师大版小学数学四年级下册第15课小数乘小数一
第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
沪教版牛津小学英语(深圳用)五年级下册 Unit 1
沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
苏科版数学七年级下册7.2《探索平行线的性质》
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175