Fatigue crack nucleation assisted by thermal activation
上传者:陈明|上传时间:2015-04-28|密次下载
Fatigue crack nucleation assisted by thermal activation
疲劳裂纹
内容需要下载文档才能查看 内容需要下载文档才能查看MaterialsScienceandEngineeringA272(1999)5–9
http://wendang.chazidian.com/locate/msea
Fatiguecracknucleationassistedbythermalactivation??
M.E.Fine*,V.Stolkarts,L.M.Keer
NorthwesternUni6ersity,2145SheridanRoad,E6anston,IL60208-3109,USA
Abstract
ExperimentalevidenceispresentedthatveryearlyinthefatiguelifetimeofSn–Pbeutecticsolderthefatiguedamageisgovernedbymicrocracknucleation.Amodelforthermallyassistedfatiguecrackinitiationispresentedusingstandardequationsfornucleationinphasetransformations.Predictionsofthemodelareingoodagreementwithnucleationdataforthissolder.©1999ElsevierScienceS.A.Allrightsreserved.
Keywords:Fatigue;Crack;Nucleation;Activation;Thermal;Solder
1.Introduction
PhasetransformationshavebeenamajorelementinHerbHerman’steachingandresearchfromthebeginninggoingbacktohisPhDThesisandhissub-sequentpapersonGuinier–PrestonzoneformationinAlbasealloys[1–5].Muraandcoworkers[6,7]showedthatinitialfatiguecrackformationisanucle-ationprocessinthatthereisanenergybarriertotheformationofafatiguecrack.Thepredictedinitialsizeisinthenanometerrangeandthusverydif?culttoinvestigate.Whenfatiguecracksare?rstseenevenwiththehighestresolutiontechniqueavailable,muchcrackgrowthbeyondtheinitiationstagehasalreadyoccurred.Kwonetal.[8,9]observedfatiguecracksassmallas100nmindepthalongslipbandsinCubytransmissionelectronmicroscopeexaminationofshadowedreplicasoffatiguedspecimensurfaces.Thekineticsofnucleation,however,canbestudiedwith-outknowingthejustnucleatedcracksizeifthefa-tiguecracksinitiatedarenoninteracting.Somemeasuresofthecrackdensitiesforgivenfatiguecon-ditions(cyclenumber,frequency,amplitude,meanstress,waveform,temperature)areneeded.Thesitua-tionissimilartonucleationofcrystalsinglassceram-
ThispaperisdedicatedtoProfessorHerbertHermanontheoccasionofhis65thbirthday.
*Correspondingauthor.Tel.:+1-847-491-4322;fax:+1-847-491-7820.
E-mailaddress:m-?ne@nwu.edu(M.E.Fine)
??
icsbecausethemaximumnucleationratetemperatureismuchbelowthemaximumcrystalgrowthratetem-perature[10].Specimensmaybenucleatedatalowtemperatureandthengrownatahighertemperatureuntilthecrystalsareobservable.Excellentnucleationkineticdatahavebeenobtainedinthisway[10].
IneutecticSn–Pbsolderthefatiguecracksinitiateatinterfacesandgrowtotheextremitiesoftheindi-vidualfacetsinitiallywithminimalinteractionbe-tweenneighboringcracks[11].ThefatiguedamageinSn–Pbeutecticsolderischaracterizedbyadecreaseinmaximumloadinstraincontrolledtests.Afteraninitialtransient,thedecreaseinloadoccursatacon-stantrate,i.e.d|/dN(where|isthenominalmaxi-mumtensilestressinthecycleandNisthecyclenumber)isconstant,untilarapiddropinloadoccurswhenunstablecrackpropagationtofailureoccurs.AnexampleisshowninFig.1.Shortfatiguecracksatinterfacesarereadilyseenveryearlyinthefatiguecyclingclosetotheonsetofthesteadystatesloperegion.Thisregioncannotbefatiguecrackpropaga-tioncontrolledbecausetherateofdropwouldin-creaseasthecracksgetlongerduetotheincreaseinDK,thestressintensityrange.Alsotherateofnucle-ationwouldincreasewithcyclingifdislocationaccu-mulationoccursatinterfacesandaconstantslopewouldnotbeobserved.Thehomologoustemperatureforthissolderisgreaterthan0.6atroomtempera-ture,sodynamicrecoveryisexpectedtooccurgivingasteadystatedislocationstructureatthemaximumloadpointinthecycle.
0921-5093/99/$-seefrontmatter©1999ElsevierScienceS.A.Allrightsreserved.PII:S0921-5093(99)00456-6
疲劳裂纹
内容需要下载文档才能查看6M.E.Fineetal./MaterialsScienceandEngineeringA272(1999)5–9
InthispaperweapplythemathematicsofnucleationtoasetoffatiguecracknucleationdatadeducedforSn–Pbeutecticsolder.
2.Themathematicsoffatiguecracknucleationapplica-bletoSn–Pbeutecticsolder
IntheMura–Tanaka–Nakasonetheoryoffatiguecracknucleationthefreeenergyinitiallyincreaseswithcracksizebecauseoftheneedtocreatesurfaces.Intheirmodelduringfatiguecyclingthenumberofdislo-cationsalongaslipbandincreasesasthecyclenumberincreases.Whentheenergyofthedislocationsinaregionofthebandreachesacriticalvalue,thenafatiguecrackofcriticalsizeformsspontaneously.Thepredictedcracksizeisapproximatelyanorderofmag-nitudesmallerthanthesmallestcracksobservedbyKwoninthislaboratory.Athighhomologoustempera-tures,suchasroomtemperatureinSn–Pbsolders,recoverypreventsanincreaseindislocationdensityafterasteadystatedislocationstructureisreachedandifthemaximumappliedstressisnothighenoughtofracturethematerial,thenthermalactivationaidsthecracknucleation.Thisisthebasisofthefollowingdevelopment.
Thefreeenergychange,DG,toformacrackofradius,a,followingthetheoryofMuraetal.,is:DG=?W1?W2+(2ks?ki)ya2
(1)
TheMuramodelistwodimensionalsothesurfacetermhasbeenmodi?edforthreedimensions,thatisthecrackhasbeenassumedtobepennyshapedofarea,ya2,insteadofaline.Sincetwosurfacesareformed,thefreesurfaceenergy,ks,ismultipliedby2.Thefatiguecrackisassumedtoformonaninterface,sothe
Fig.1.Evolutionofpeakstresswithcyclingat0.6%strainrangeand1sramptime.
freeenergyoftheareaofinterfacelost,ki,mustbesubtracted.W1isthedislocationenergylostwhenthecrackformsandW2isthestoredelasticenergyreleasedoncrackformation(excludingdislocationenergy).Theformerisaconstantwithanincreaseincyclenumbersinceasteadystatehasbeenassumed.Duringthecycledislocationmotionoccurstoaccomplishtheplasticdeformationbutthedislocationstructureatmaximumstressinthecycleisassumedconstantinthemodel.Ifaplanepennyshapedcrackisperpendiculartotheappliedstress,thenthestoredelasticenergy,W2,isgivenby:
W8(1?w2)2=
3E
|2a3
(2)
where|,inthepresentcase,isthemaximumappliedstressinthecycle,EisYoung’smodulusandwisPoisson’sratio.
ThenDGmaybedifferentiatedwithrespecttoaandsetequaltozerotoobtainthenucleationconditions:dDG/da=?8(1?w2)|2a2/E+2aky=0
(3)
wherek=2ks?ki.SolvingEq.(3)forthecriticalcracksize,a*gives:a*=
Eky4(1?w2)|2
(4)
Substitutinga*intoEq.(1)togiveDG*,theactiva-tionenergyforfatiguecracknucleation,gives:E2k3y3
DG*=12(1?w2)24
?W1
(5)
Therateofnucleation,i.e.thenumberofnucleatedcracksperunitvolumepercycle,dn/dN,isgivenby:dnkT?DdN=pt??G*hexpkT
??
(6)
wherepisthenumberofpotentialnucleationsitesperunitvolume,tistimeinsequaltothatportionofthecyclewherethestressisnearmaximum,kisBoltz-mann’sconstant,TistheabsolutetemperatureandhisPlanck’sconstant.InEq.(6)kT/histhefrequencyofatomicvibrations,exp(?DG*/kT)istheprobabilitythatagivennucleationsitewillnucleateacrackwhenthestressisatornearthemaximuminthecycle.Thenumberofpotentialnucleationsitesisconsideredlargecomparedtothenumberofcracksnucleated,i.e.pisassumedconstant.
Thedensityofanassemblyofpennyshapedmicroc-rackswithanaverageradiusaisgivenby??=na3,wherenisthenumberofmicrocracksperunitvolume.Theincreaseinmicrocrackdensitypercycleis:
D??cycle=
d??dndN=dN
3
(7)
疲劳裂纹
M.E.Fineetal./MaterialsScienceandEngineeringA272(1999)5–97
wheretherateofnucleation,dn/dN,isgiveninEq.(6).Therateofnucleationofmicrocracksisafunctionofshearstrainrangepercyclealongaslipplane.Themicrocrackdensityincreasepercycle,D??cycle,isafunctionofDkcycle:D??cycle=g(Dkcycle)
(8)
BarenblattandBotvina[12]arguedthatamicrocracknucleationgoverneddamageprocesscouldbeconsid-eredself-similar.Self-similaritymeansthatifwecom-paretwomicrocrackdensityincrementsD??cycle1andD??cycle2,correspondingtotwodifferentrangesofshearstrainDkcycle1andDkcycle2,thentheratioofD??cycle1overD??cycle2isafunctionoftheratioofDkcycle1overDkcycle2,i.e.:D??cycle1
??Dkcycle1cycle2=g
cycle2
(9)
Itcanbeshown,similartoBarenblattandBotvina[12],thatfromEq.(9)anincreaseinmicrocrackdensitypercycleisequalto:D??cycle=
d??
=(Dkcycle)??dN
(10)
where??isamaterialconstantandNisthecyclenumber.ThisisaCof?n–Mansontyperelationshipformicrocracknucleation.ThenmicrocrackdensityafterNcyclesisequalto:??=D??cycleN=(Dkcycle)??N
(11)
BudianskyandO’Connell[13]usedtheself-consistentmodeltoderiveexpressionsfortheeffectiveelasticandshearmoduliasfunctionsofmicrocrackdensity,??,forbodiescontainingarandomdistributionof?atcircularcracks??asfollows:E=E1?16(1?(w¯)2)(10?3¯w)45(2?w¯)
??
v¯=v??
1?
32(1?w¯)(5?w¯)
45(2?w¯)
??
n
n
(12)
wheretheeffectivePoisson’sratio,w¯,canbefound
from:??=
45(w?w¯)(2?w¯)
16(1?(w¯)2)(10w?¯w
(1+3w))(13)
wherevisshearmodulusofdamage-freematerial.
Underuniaxialloadingtheeffectivestressisgivenby:|¯=|
E
E
(14)
whereE
/Eisafunctionofmicrocrackdensity??,whichisgiveninEq.(11).EstimationsofDkcycleand??inEq.(11)canbemadebyanalyzingtheexperimentallydeter-minedvaluesofeffectivestress,|¯,asafunctionof
numberofcyclesN.ThentheGibbsfreeenergyofmicrocracknucleation,DG*,canbedeterminedbycombiningEqs.(6)and(7)andEq.(10).Itisgivenby:DG*=?kTln
??
h(Dkcycle)??
ptkTa3
(15)
wherethemicrocrackradius,a,isgiveninEq.(4).
Thedislocationenergy,W1,canbefoundbyequat-ingexpressionsforDG*inEqs.(5)and(15):E2k3Wy3
h(Dkcycle)??1=12(1?w2)24+kTln
??
ptkTa3
(16)
3.AnalysisoffatiguedatatoobtainnucleationdataAnoftenusedmeasureoffatiguedamageinstraincontrolledexperimentsofeutecticSn–Pbsolderisthedeclineinpeakstress.Atypicalcurveshowingtheevolutionofpeakstresswithcyclingfor63Sn–37Pbsolderhasthreedistinctregionsrepresentingdifferentstagesoffatigue(Fig.1).The?rststageistheshortest,usuallynomorethan100cycles,andischaracterizedbyaninitialsharpdropinpeakstressfollowedbycontinuousreductionatadecliningrate.Thesecondstagehasthelongestdurationandistypi?edinthissolderbyanalmostconstantrateofdecline,i.e.thisregionisrepresentedbyanearlystraightline.Finally,thethirdstageshowstheaccelerateddeclineinpeakstressleadingtoultimatefailure.Similartocreep,thesethreestagescanbecalledtransient,steadystateandtertiaryfatigue.Theinitialrapiddropinpeakstressisduetomicrostructuralchanges.Themicrostructure,exceptformicrocracking,isinsteadystateaftertheinitialdrop.
Steadystatecreepisusuallyexplainedonthebasisofabalancebetweenthecompetingprocessesofstrainhardeningandrecovery.Steadystatefatigueineutectictin–leadsolder,onthecontrary,cannotbeat-tributabletoabalancebetweenhardeningandreduc-tioninoverallstressduetomicrocracks,sincenoisotropichardeningwasobservedinourexperiments,i.e.W1isconstant,andkinematichardeningshouldbeexcludedduetothesymmetrybetweenloadingandunloadingpasses.Whiletheoverallmaximumstressisreducedfromtheformationoffatiguecracks,thelocalmaximumstressingoodmaterialisassumedtoremainconstant.
Aconstantrateofpeakstressdeclineduringsteadystatefatigueexcludesmicrocrackgrowthasthemainsourceofdamageevolution,since,ifthiswerenottruetheratewouldnotbeconstant,butwouldincreasewithcracklengthfollowingaParislikerelationship.If,insteadystatefatigue,therewasnotasteadystatemi-crostructure,thenthenucleationratewouldbeex-pectedtoincreaseordecreasewithcycling,depending
疲劳裂纹
8M.E.Fineetal./MaterialsScienceandEngineeringA272(1999)5–9
onwhetherthedislocationdensitywasincreasingordecreasingwithcyclingorwhethersomeotherchangeinmicrostructurewasoccurringsuchasphasegrowth.Cutiongco[11]observedmicrocracksincriss-crossingshearbandsonthesurfaceoffatigued63Sn–37Pbsolder.Themicrocrackswerelocatedbe-tweenSn–SngrainboundariesandSn–Pbphaseboundaries.Thenetworkofmicrocrackseventuallylink-uptoformmacrocracks.Thisphysicalevidenceallowsustomakeanassumptionthatmicrocrackgrowthin63Sn–37Pbsolderislimitedtotheareaofgrainfacets,anddamageevolutionduringsteadystatefatigueisdominatedbymicrocracknucleationasstatedinthemodel.
Cutiongco[11]collectedextensiveexperimentaldataonfatigueinSn–Pbeutecticsolder.Heperformedisothermalstraincontrolledcyclictestsat25,50,65,80and100°C.Thestrainrangewasfrom0.3to1%andtheramptimefrom0.5to120s.AllshowedsimilarbehaviortothedataplottedinFig.1.Analy-sisofthesedatashowedthattheloadingamplitudehadamajoreffectontherateofmicrocracknucle-ationinSn–Pbeutecticsolder,whiletheloadingfre-quency,temperature(inisothermalconditions)andinitialmicrostructureplayedonlymarginalrolesovertherangesexamined.By?ttingtheexperimentaldataontheevolutionofpeakstresswithcyclingtothevaluesobtainedfromEq.(14),itwasdeterminedthatinEq.(11)??=3andDkcycle=5.1Dm,whereDmistheappliedtensilestrainrange.Itfollowsthatthein-creaseinmicrocrackdensitypercycleisequalto:D??cycle=133Dm3
(17)
andtheGibbsfreeenergyinEq.(15)canbewrittenas:
DG*=?kTln
??
133h(Dm)3
ptkTa3
n
(18)
SincemostofthemicrocracksineutecticSn–Pbsolderinitiateatinterfacesandgrowtotheextremi-tiesoftheindividualfacets,anaverageradiusacanbetakentobeequaltoahalfoftheaveragefacetsize.If,forexample,a=3×10?6andDm=0.006,thenanincreaseinthenumberofmicrocracksinonesawtoothedcyclefollowsfromEq.(7)andisequaltodn/dN=D??cycle/a3=133Dm3/a3=1012m?3.
Thepredictedradiusofanucleatedmicrocrackac-cordingtoEq.(4)amongotherthingsdependsonthesurfaceandinterfaceenergiesandappliedstress.Whiletheappliedstressdeclineswithcycling(Fig.1),atthemicrolevelitisconsideredconstantasalreadydiscussed.Taking|=45MPa,k=1Jm?2,E=35GPaandw=0.37,thenucleatedcrackradiusa*=15mm.Thisvalueismuchlargerthanthe100nmsizecracksobservedinCu.Themaximumlocalstressattheinterfacewherethecracknucleatesmaybelarger
than45MPa.However,doublingthestressreducesthepredictedcracksizetoonly4mm.Thektermmaybetoolarge.Dislocationsareexpectedtosegre-gatetointerfacesduetoslipdiscontinuity.ThiswouldincreasetheatomicmismatchattheinterfaceandincreasekiinEq.(1).Reducingkto0.1Jm?2reducesa*to1.5mm.Acombinationofthetwoeffectscouldreducea*toavaluemoreinlinewiththesmallestcracksobservedinCu.However,thefa-tiguecracknucleationinCuisexpectedtobedomi-natedbyadifferentprocess,adislocationaccumulationprocess,andthejustnucleatedcracksinthissoldermayactuallybelargerthaninCu.Carefulresearchisneededtomeasurethesmallestcracksob-servableandtodeterminethedislocationstructureatandnearinterfacesduringfatigue.
Ifweassumethematerialisdividedinto6-sidedcubes6mmonaside,thenumberofsharedinter-faces,p,isapproximately14×1015m?3.Ift=0.1s,a=1.5×10?6mandDm=0.006,thentheGibbsfreeenergyofactivationatroomtemperature,DG*:?0.4×10?20J.Thedislocationenergythencanbewrittenas:
W:E2k3y3
112(1?w2)24
+DG
(19)
Ifk=0.1Jm?2,thenW1:10?12J.WithoutthedislocationterminDG*,thepredictednucleationratewouldbeessentiallyzero;W1issubstantiallylargerthan?DG*.Whilethedislocationenergyhasbeentakenasconstant,inSn–Pbeutecticsolderatroomtemperatureafteraninitialtransient,becauseofthehighhomologoustemperature,asteadystatedisloca-tionstructuresuchasacellstructurewillform.Thesteadystatedislocationdensitymaybelargerthantheinitialdislocationdensity.Fatiguecracksareas-sumedtoformwherenodesofthedislocationstruc-tureareclosetointerfaces.Thedislocationenergylostwhenacrackforms,W1,mustbelargeenoughtosuf?cientlyreducetheactivationenergytogivetheobservednucleationrate.
4.Conclusions
ThesteadystatefatiguedamageregioninSn–Pbeutecticsolder,whered|/dN(|isthemaximumstressandNisthecyclenumber)isconstant,wasinterpretedasbeingduetoaconstantrateoffatiguecracknucleation.Themodelpresentedtreatsmicroc-racknucleationwhenthedislocationdensitystaysal-mostconstantduetorecovery.Themodelallowspredictionsofthesizeofthenucleatedmicrocrackandthedislocationenergylostwhenacrackforms.Itfurtherleadstoestimationsofthetotallengthofthedislocationsneededtobeconcentratedatthenu-
疲劳裂纹
M.E.Fineetal./MaterialsScienceandEngineeringA272(1999)5–99
cleationeventasfollows:takingthedislocationenergy,W1,tobe10?12J,theenergyperatomiclengthofdislocationtobe5×10?19J[14],andtheatomicdistancealongthedislocationtobe0.3nm(theaveragebetweenSnandPb)thetotallengthofdislocationsneededtobeconcentratedinthenucleationeventis600mm.Thiswouldbeintheformofapileuporadislocationcellortangle.Transmissionelectronmicro-scopeexaminationtodeterminethedislocationar-rangementsneartheinterfacesisneededtogivefurtherguidancetothetheorypresentedaswellastheinitialcracksizedeterminationalreadymentioned.Possiblyothermaterialswherethereisaconstantd|/dNregionearlyinthefatiguelifecanbetreatedsimilarly.
Acknowledgements
TheauthorsaregratefultotheSemiconductorRe-searchCorporationforsponsoringthisresearch.
.
References
[1]H.Herman,KineticsofFormationandReversionofG–PZones
inAl–BaseAlloys,PhDThesis,NorthwesternUniversity,1961.[2]H.Herman,M.Fine,Trans.Met.Soc.AIME218(1960)44.[3]H.Herman,M.Fine,Trans.Met.Soc.AIME224(1962)503.[4]H.Herman,M.Fine,J.Cohen,ActaMetall.11(1963)43.[5]H.Herman,Metall.Trans.2(1971)13.
[6]K.Tanaka,T.Mura,J.Appl.Mech.48(1981)97.[7]T.Mura,Y.Nakasone,J.Appl.Mech.57(1990)1.
[8]I.B.Kwon,M.E.Fine,J.Weertman,ActaMetall.37(1989)
2927.
[9]I.B.Kwon,M.E.Fine,J.Weertman,ActaMetall.37(1989)
2937.
[10]P.F.James,Nucleationinglassformingsystems—areview,
Adv.Ceram.4(1982)1.
[11]E.Cutiongco,FatigueofaNear-EutecticLead–TinSolder
AlloyforSurfaceMountTechnology,PhDThesis,NorthwesternUniversity,1991.
[12]G.I.Barenblatt,L.R.Botvina,in:G.C.Sih,H.Zorski(Eds.),
DefectsandFracture,M.Nijhoff,TheHague,Netherlands,1982,p.71.
[13]B.Budiansky,R.J.O’Connel,Int.J.SolidsStruct.12(1976)81.[14]J.Weertman,J.R.Weertman,ElementaryDislocationTheory,
OxfordUniversityPress,NewYork,1992,p.47.
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 五年级数学趣味试题八
- 红十字会基本知识竞赛试题
- 作业3
- 五年级数学竞赛试题
- 二次根式 家庭作业
- 《王好战》测试题学生
- 年级秋季第12讲:我会动脑筋
- 2015期中试卷
- 一年级 秋季 周周练
- 2014级矿物加工工程班缅怀革命先烈班会总结
- 精品—2014年“我爱数学”三至六年级数学竞赛卷详解
- 一年级 秋季 周周练
- 2015年北京市高中一年级初赛试题解答
- 小学六年级数学计算能力竞赛试题(人教版)
- 2015智力竞赛题
- 六年级课外必读书目
- 真题解析
- 五年级奥数11周周期问题习题 2
- 小学二年级数学计算能力竞赛试题(人教版)1
- 三年级奥数简单的周期问题
- 体育
- 小学六年级数学计算能力竞赛试题(人教版)1
- 学生防溺水安全教育知识竞赛试卷文档
- 一次方程解40题
- 桐乡市凤鸣同福小学 徐国飞2015年嘉兴市青少年信息学竞赛试卷分析
- 四年级文明礼仪_诗歌朗诵(1)
- 工程问题3
- 附:小学信息技术学科教学知识大赛试题
- 数学每日一记
- “鸡兔同笼” 问题练习课1(1)
网友关注视频
- 冀教版小学英语四年级下册Lesson2授课视频
- 冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
- 小学英语单词
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 六年级英语下册上海牛津版教材讲解 U1单词
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 外研版八年级英语下学期 Module3
- 二年级下册数学第三课 搭一搭⚖⚖
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 外研版英语七年级下册module3 unit1第二课时
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 外研版英语三起6年级下册(14版)Module3 Unit1
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理