教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 工程科技> 电子/电路> Fatigue crack nucleation assisted by thermal activation

Fatigue crack nucleation assisted by thermal activation

上传者:陈明
|
上传时间:2015-04-28
|
次下载

Fatigue crack nucleation assisted by thermal activation

疲劳裂纹

内容需要下载文档才能查看 内容需要下载文档才能查看

MaterialsScienceandEngineeringA272(1999)5–9

http://wendang.chazidian.com/locate/msea

Fatiguecracknucleationassistedbythermalactivation??

M.E.Fine*,V.Stolkarts,L.M.Keer

NorthwesternUni6ersity,2145SheridanRoad,E6anston,IL60208-3109,USA

Abstract

ExperimentalevidenceispresentedthatveryearlyinthefatiguelifetimeofSn–Pbeutecticsolderthefatiguedamageisgovernedbymicrocracknucleation.Amodelforthermallyassistedfatiguecrackinitiationispresentedusingstandardequationsfornucleationinphasetransformations.Predictionsofthemodelareingoodagreementwithnucleationdataforthissolder.©1999ElsevierScienceS.A.Allrightsreserved.

Keywords:Fatigue;Crack;Nucleation;Activation;Thermal;Solder

1.Introduction

PhasetransformationshavebeenamajorelementinHerbHerman’steachingandresearchfromthebeginninggoingbacktohisPhDThesisandhissub-sequentpapersonGuinier–PrestonzoneformationinAlbasealloys[1–5].Muraandcoworkers[6,7]showedthatinitialfatiguecrackformationisanucle-ationprocessinthatthereisanenergybarriertotheformationofafatiguecrack.Thepredictedinitialsizeisinthenanometerrangeandthusverydif?culttoinvestigate.Whenfatiguecracksare?rstseenevenwiththehighestresolutiontechniqueavailable,muchcrackgrowthbeyondtheinitiationstagehasalreadyoccurred.Kwonetal.[8,9]observedfatiguecracksassmallas100nmindepthalongslipbandsinCubytransmissionelectronmicroscopeexaminationofshadowedreplicasoffatiguedspecimensurfaces.Thekineticsofnucleation,however,canbestudiedwith-outknowingthejustnucleatedcracksizeifthefa-tiguecracksinitiatedarenoninteracting.Somemeasuresofthecrackdensitiesforgivenfatiguecon-ditions(cyclenumber,frequency,amplitude,meanstress,waveform,temperature)areneeded.Thesitua-tionissimilartonucleationofcrystalsinglassceram-

ThispaperisdedicatedtoProfessorHerbertHermanontheoccasionofhis65thbirthday.

*Correspondingauthor.Tel.:+1-847-491-4322;fax:+1-847-491-7820.

E-mailaddress:m-?ne@nwu.edu(M.E.Fine)

??

icsbecausethemaximumnucleationratetemperatureismuchbelowthemaximumcrystalgrowthratetem-perature[10].Specimensmaybenucleatedatalowtemperatureandthengrownatahighertemperatureuntilthecrystalsareobservable.Excellentnucleationkineticdatahavebeenobtainedinthisway[10].

IneutecticSn–Pbsolderthefatiguecracksinitiateatinterfacesandgrowtotheextremitiesoftheindi-vidualfacetsinitiallywithminimalinteractionbe-tweenneighboringcracks[11].ThefatiguedamageinSn–Pbeutecticsolderischaracterizedbyadecreaseinmaximumloadinstraincontrolledtests.Afteraninitialtransient,thedecreaseinloadoccursatacon-stantrate,i.e.d|/dN(where|isthenominalmaxi-mumtensilestressinthecycleandNisthecyclenumber)isconstant,untilarapiddropinloadoccurswhenunstablecrackpropagationtofailureoccurs.AnexampleisshowninFig.1.Shortfatiguecracksatinterfacesarereadilyseenveryearlyinthefatiguecyclingclosetotheonsetofthesteadystatesloperegion.Thisregioncannotbefatiguecrackpropaga-tioncontrolledbecausetherateofdropwouldin-creaseasthecracksgetlongerduetotheincreaseinDK,thestressintensityrange.Alsotherateofnucle-ationwouldincreasewithcyclingifdislocationaccu-mulationoccursatinterfacesandaconstantslopewouldnotbeobserved.Thehomologoustemperatureforthissolderisgreaterthan0.6atroomtempera-ture,sodynamicrecoveryisexpectedtooccurgivingasteadystatedislocationstructureatthemaximumloadpointinthecycle.

0921-5093/99/$-seefrontmatter©1999ElsevierScienceS.A.Allrightsreserved.PII:S0921-5093(99)00456-6

疲劳裂纹

内容需要下载文档才能查看

6M.E.Fineetal./MaterialsScienceandEngineeringA272(1999)5–9

InthispaperweapplythemathematicsofnucleationtoasetoffatiguecracknucleationdatadeducedforSn–Pbeutecticsolder.

2.Themathematicsoffatiguecracknucleationapplica-bletoSn–Pbeutecticsolder

IntheMura–Tanaka–Nakasonetheoryoffatiguecracknucleationthefreeenergyinitiallyincreaseswithcracksizebecauseoftheneedtocreatesurfaces.Intheirmodelduringfatiguecyclingthenumberofdislo-cationsalongaslipbandincreasesasthecyclenumberincreases.Whentheenergyofthedislocationsinaregionofthebandreachesacriticalvalue,thenafatiguecrackofcriticalsizeformsspontaneously.Thepredictedcracksizeisapproximatelyanorderofmag-nitudesmallerthanthesmallestcracksobservedbyKwoninthislaboratory.Athighhomologoustempera-tures,suchasroomtemperatureinSn–Pbsolders,recoverypreventsanincreaseindislocationdensityafterasteadystatedislocationstructureisreachedandifthemaximumappliedstressisnothighenoughtofracturethematerial,thenthermalactivationaidsthecracknucleation.Thisisthebasisofthefollowingdevelopment.

Thefreeenergychange,DG,toformacrackofradius,a,followingthetheoryofMuraetal.,is:DG=?W1?W2+(2ks?ki)ya2

(1)

TheMuramodelistwodimensionalsothesurfacetermhasbeenmodi?edforthreedimensions,thatisthecrackhasbeenassumedtobepennyshapedofarea,ya2,insteadofaline.Sincetwosurfacesareformed,thefreesurfaceenergy,ks,ismultipliedby2.Thefatiguecrackisassumedtoformonaninterface,sothe

Fig.1.Evolutionofpeakstresswithcyclingat0.6%strainrangeand1sramptime.

freeenergyoftheareaofinterfacelost,ki,mustbesubtracted.W1isthedislocationenergylostwhenthecrackformsandW2isthestoredelasticenergyreleasedoncrackformation(excludingdislocationenergy).Theformerisaconstantwithanincreaseincyclenumbersinceasteadystatehasbeenassumed.Duringthecycledislocationmotionoccurstoaccomplishtheplasticdeformationbutthedislocationstructureatmaximumstressinthecycleisassumedconstantinthemodel.Ifaplanepennyshapedcrackisperpendiculartotheappliedstress,thenthestoredelasticenergy,W2,isgivenby:

W8(1?w2)2=

3E

|2a3

(2)

where|,inthepresentcase,isthemaximumappliedstressinthecycle,EisYoung’smodulusandwisPoisson’sratio.

ThenDGmaybedifferentiatedwithrespecttoaandsetequaltozerotoobtainthenucleationconditions:dDG/da=?8(1?w2)|2a2/E+2aky=0

(3)

wherek=2ks?ki.SolvingEq.(3)forthecriticalcracksize,a*gives:a*=

Eky4(1?w2)|2

(4)

Substitutinga*intoEq.(1)togiveDG*,theactiva-tionenergyforfatiguecracknucleation,gives:E2k3y3

DG*=12(1?w2)24

?W1

(5)

Therateofnucleation,i.e.thenumberofnucleatedcracksperunitvolumepercycle,dn/dN,isgivenby:dnkT?DdN=pt??G*hexpkT

??

(6)

wherepisthenumberofpotentialnucleationsitesperunitvolume,tistimeinsequaltothatportionofthecyclewherethestressisnearmaximum,kisBoltz-mann’sconstant,TistheabsolutetemperatureandhisPlanck’sconstant.InEq.(6)kT/histhefrequencyofatomicvibrations,exp(?DG*/kT)istheprobabilitythatagivennucleationsitewillnucleateacrackwhenthestressisatornearthemaximuminthecycle.Thenumberofpotentialnucleationsitesisconsideredlargecomparedtothenumberofcracksnucleated,i.e.pisassumedconstant.

Thedensityofanassemblyofpennyshapedmicroc-rackswithanaverageradiusaisgivenby??=na3,wherenisthenumberofmicrocracksperunitvolume.Theincreaseinmicrocrackdensitypercycleis:

D??cycle=

d??dndN=dN

3

(7)

疲劳裂纹

M.E.Fineetal./MaterialsScienceandEngineeringA272(1999)5–97

wheretherateofnucleation,dn/dN,isgiveninEq.(6).Therateofnucleationofmicrocracksisafunctionofshearstrainrangepercyclealongaslipplane.Themicrocrackdensityincreasepercycle,D??cycle,isafunctionofDkcycle:D??cycle=g(Dkcycle)

(8)

BarenblattandBotvina[12]arguedthatamicrocracknucleationgoverneddamageprocesscouldbeconsid-eredself-similar.Self-similaritymeansthatifwecom-paretwomicrocrackdensityincrementsD??cycle1andD??cycle2,correspondingtotwodifferentrangesofshearstrainDkcycle1andDkcycle2,thentheratioofD??cycle1overD??cycle2isafunctionoftheratioofDkcycle1overDkcycle2,i.e.:D??cycle1

??Dkcycle1cycle2=g

cycle2

(9)

Itcanbeshown,similartoBarenblattandBotvina[12],thatfromEq.(9)anincreaseinmicrocrackdensitypercycleisequalto:D??cycle=

d??

=(Dkcycle)??dN

(10)

where??isamaterialconstantandNisthecyclenumber.ThisisaCof?n–Mansontyperelationshipformicrocracknucleation.ThenmicrocrackdensityafterNcyclesisequalto:??=D??cycleN=(Dkcycle)??N

(11)

BudianskyandO’Connell[13]usedtheself-consistentmodeltoderiveexpressionsfortheeffectiveelasticandshearmoduliasfunctionsofmicrocrackdensity,??,forbodiescontainingarandomdistributionof?atcircularcracks??asfollows:E=E1?16(1?(w¯)2)(10?3¯w)45(2?w¯)

??

v¯=v??

1?

32(1?w¯)(5?w¯)

45(2?w¯)

??

n

n

(12)

wheretheeffectivePoisson’sratio,w¯,canbefound

from:??=

45(w?w¯)(2?w¯)

16(1?(w¯)2)(10w?¯w

(1+3w))(13)

wherevisshearmodulusofdamage-freematerial.

Underuniaxialloadingtheeffectivestressisgivenby:|¯=|

E

E

(14)

whereE

/Eisafunctionofmicrocrackdensity??,whichisgiveninEq.(11).EstimationsofDkcycleand??inEq.(11)canbemadebyanalyzingtheexperimentallydeter-minedvaluesofeffectivestress,|¯,asafunctionof

numberofcyclesN.ThentheGibbsfreeenergyofmicrocracknucleation,DG*,canbedeterminedbycombiningEqs.(6)and(7)andEq.(10).Itisgivenby:DG*=?kTln

??

h(Dkcycle)??

ptkTa3

(15)

wherethemicrocrackradius,a,isgiveninEq.(4).

Thedislocationenergy,W1,canbefoundbyequat-ingexpressionsforDG*inEqs.(5)and(15):E2k3Wy3

h(Dkcycle)??1=12(1?w2)24+kTln

??

ptkTa3

(16)

3.AnalysisoffatiguedatatoobtainnucleationdataAnoftenusedmeasureoffatiguedamageinstraincontrolledexperimentsofeutecticSn–Pbsolderisthedeclineinpeakstress.Atypicalcurveshowingtheevolutionofpeakstresswithcyclingfor63Sn–37Pbsolderhasthreedistinctregionsrepresentingdifferentstagesoffatigue(Fig.1).The?rststageistheshortest,usuallynomorethan100cycles,andischaracterizedbyaninitialsharpdropinpeakstressfollowedbycontinuousreductionatadecliningrate.Thesecondstagehasthelongestdurationandistypi?edinthissolderbyanalmostconstantrateofdecline,i.e.thisregionisrepresentedbyanearlystraightline.Finally,thethirdstageshowstheaccelerateddeclineinpeakstressleadingtoultimatefailure.Similartocreep,thesethreestagescanbecalledtransient,steadystateandtertiaryfatigue.Theinitialrapiddropinpeakstressisduetomicrostructuralchanges.Themicrostructure,exceptformicrocracking,isinsteadystateaftertheinitialdrop.

Steadystatecreepisusuallyexplainedonthebasisofabalancebetweenthecompetingprocessesofstrainhardeningandrecovery.Steadystatefatigueineutectictin–leadsolder,onthecontrary,cannotbeat-tributabletoabalancebetweenhardeningandreduc-tioninoverallstressduetomicrocracks,sincenoisotropichardeningwasobservedinourexperiments,i.e.W1isconstant,andkinematichardeningshouldbeexcludedduetothesymmetrybetweenloadingandunloadingpasses.Whiletheoverallmaximumstressisreducedfromtheformationoffatiguecracks,thelocalmaximumstressingoodmaterialisassumedtoremainconstant.

Aconstantrateofpeakstressdeclineduringsteadystatefatigueexcludesmicrocrackgrowthasthemainsourceofdamageevolution,since,ifthiswerenottruetheratewouldnotbeconstant,butwouldincreasewithcracklengthfollowingaParislikerelationship.If,insteadystatefatigue,therewasnotasteadystatemi-crostructure,thenthenucleationratewouldbeex-pectedtoincreaseordecreasewithcycling,depending

疲劳裂纹

8M.E.Fineetal./MaterialsScienceandEngineeringA272(1999)5–9

onwhetherthedislocationdensitywasincreasingordecreasingwithcyclingorwhethersomeotherchangeinmicrostructurewasoccurringsuchasphasegrowth.Cutiongco[11]observedmicrocracksincriss-crossingshearbandsonthesurfaceoffatigued63Sn–37Pbsolder.Themicrocrackswerelocatedbe-tweenSn–SngrainboundariesandSn–Pbphaseboundaries.Thenetworkofmicrocrackseventuallylink-uptoformmacrocracks.Thisphysicalevidenceallowsustomakeanassumptionthatmicrocrackgrowthin63Sn–37Pbsolderislimitedtotheareaofgrainfacets,anddamageevolutionduringsteadystatefatigueisdominatedbymicrocracknucleationasstatedinthemodel.

Cutiongco[11]collectedextensiveexperimentaldataonfatigueinSn–Pbeutecticsolder.Heperformedisothermalstraincontrolledcyclictestsat25,50,65,80and100°C.Thestrainrangewasfrom0.3to1%andtheramptimefrom0.5to120s.AllshowedsimilarbehaviortothedataplottedinFig.1.Analy-sisofthesedatashowedthattheloadingamplitudehadamajoreffectontherateofmicrocracknucle-ationinSn–Pbeutecticsolder,whiletheloadingfre-quency,temperature(inisothermalconditions)andinitialmicrostructureplayedonlymarginalrolesovertherangesexamined.By?ttingtheexperimentaldataontheevolutionofpeakstresswithcyclingtothevaluesobtainedfromEq.(14),itwasdeterminedthatinEq.(11)??=3andDkcycle=5.1Dm,whereDmistheappliedtensilestrainrange.Itfollowsthatthein-creaseinmicrocrackdensitypercycleisequalto:D??cycle=133Dm3

(17)

andtheGibbsfreeenergyinEq.(15)canbewrittenas:

DG*=?kTln

??

133h(Dm)3

ptkTa3

n

(18)

SincemostofthemicrocracksineutecticSn–Pbsolderinitiateatinterfacesandgrowtotheextremi-tiesoftheindividualfacets,anaverageradiusacanbetakentobeequaltoahalfoftheaveragefacetsize.If,forexample,a=3×10?6andDm=0.006,thenanincreaseinthenumberofmicrocracksinonesawtoothedcyclefollowsfromEq.(7)andisequaltodn/dN=D??cycle/a3=133Dm3/a3=1012m?3.

Thepredictedradiusofanucleatedmicrocrackac-cordingtoEq.(4)amongotherthingsdependsonthesurfaceandinterfaceenergiesandappliedstress.Whiletheappliedstressdeclineswithcycling(Fig.1),atthemicrolevelitisconsideredconstantasalreadydiscussed.Taking|=45MPa,k=1Jm?2,E=35GPaandw=0.37,thenucleatedcrackradiusa*=15mm.Thisvalueismuchlargerthanthe100nmsizecracksobservedinCu.Themaximumlocalstressattheinterfacewherethecracknucleatesmaybelarger

than45MPa.However,doublingthestressreducesthepredictedcracksizetoonly4mm.Thektermmaybetoolarge.Dislocationsareexpectedtosegre-gatetointerfacesduetoslipdiscontinuity.ThiswouldincreasetheatomicmismatchattheinterfaceandincreasekiinEq.(1).Reducingkto0.1Jm?2reducesa*to1.5mm.Acombinationofthetwoeffectscouldreducea*toavaluemoreinlinewiththesmallestcracksobservedinCu.However,thefa-tiguecracknucleationinCuisexpectedtobedomi-natedbyadifferentprocess,adislocationaccumulationprocess,andthejustnucleatedcracksinthissoldermayactuallybelargerthaninCu.Carefulresearchisneededtomeasurethesmallestcracksob-servableandtodeterminethedislocationstructureatandnearinterfacesduringfatigue.

Ifweassumethematerialisdividedinto6-sidedcubes6mmonaside,thenumberofsharedinter-faces,p,isapproximately14×1015m?3.Ift=0.1s,a=1.5×10?6mandDm=0.006,thentheGibbsfreeenergyofactivationatroomtemperature,DG*:?0.4×10?20J.Thedislocationenergythencanbewrittenas:

W:E2k3y3

112(1?w2)24

+DG

(19)

Ifk=0.1Jm?2,thenW1:10?12J.WithoutthedislocationterminDG*,thepredictednucleationratewouldbeessentiallyzero;W1issubstantiallylargerthan?DG*.Whilethedislocationenergyhasbeentakenasconstant,inSn–Pbeutecticsolderatroomtemperatureafteraninitialtransient,becauseofthehighhomologoustemperature,asteadystatedisloca-tionstructuresuchasacellstructurewillform.Thesteadystatedislocationdensitymaybelargerthantheinitialdislocationdensity.Fatiguecracksareas-sumedtoformwherenodesofthedislocationstruc-tureareclosetointerfaces.Thedislocationenergylostwhenacrackforms,W1,mustbelargeenoughtosuf?cientlyreducetheactivationenergytogivetheobservednucleationrate.

4.Conclusions

ThesteadystatefatiguedamageregioninSn–Pbeutecticsolder,whered|/dN(|isthemaximumstressandNisthecyclenumber)isconstant,wasinterpretedasbeingduetoaconstantrateoffatiguecracknucleation.Themodelpresentedtreatsmicroc-racknucleationwhenthedislocationdensitystaysal-mostconstantduetorecovery.Themodelallowspredictionsofthesizeofthenucleatedmicrocrackandthedislocationenergylostwhenacrackforms.Itfurtherleadstoestimationsofthetotallengthofthedislocationsneededtobeconcentratedatthenu-

疲劳裂纹

M.E.Fineetal./MaterialsScienceandEngineeringA272(1999)5–99

cleationeventasfollows:takingthedislocationenergy,W1,tobe10?12J,theenergyperatomiclengthofdislocationtobe5×10?19J[14],andtheatomicdistancealongthedislocationtobe0.3nm(theaveragebetweenSnandPb)thetotallengthofdislocationsneededtobeconcentratedinthenucleationeventis600mm.Thiswouldbeintheformofapileuporadislocationcellortangle.Transmissionelectronmicro-scopeexaminationtodeterminethedislocationar-rangementsneartheinterfacesisneededtogivefurtherguidancetothetheorypresentedaswellastheinitialcracksizedeterminationalreadymentioned.Possiblyothermaterialswherethereisaconstantd|/dNregionearlyinthefatiguelifecanbetreatedsimilarly.

Acknowledgements

TheauthorsaregratefultotheSemiconductorRe-searchCorporationforsponsoringthisresearch.

.

References

[1]H.Herman,KineticsofFormationandReversionofG–PZones

inAl–BaseAlloys,PhDThesis,NorthwesternUniversity,1961.[2]H.Herman,M.Fine,Trans.Met.Soc.AIME218(1960)44.[3]H.Herman,M.Fine,Trans.Met.Soc.AIME224(1962)503.[4]H.Herman,M.Fine,J.Cohen,ActaMetall.11(1963)43.[5]H.Herman,Metall.Trans.2(1971)13.

[6]K.Tanaka,T.Mura,J.Appl.Mech.48(1981)97.[7]T.Mura,Y.Nakasone,J.Appl.Mech.57(1990)1.

[8]I.B.Kwon,M.E.Fine,J.Weertman,ActaMetall.37(1989)

2927.

[9]I.B.Kwon,M.E.Fine,J.Weertman,ActaMetall.37(1989)

2937.

[10]P.F.James,Nucleationinglassformingsystems—areview,

Adv.Ceram.4(1982)1.

[11]E.Cutiongco,FatigueofaNear-EutecticLead–TinSolder

AlloyforSurfaceMountTechnology,PhDThesis,NorthwesternUniversity,1991.

[12]G.I.Barenblatt,L.R.Botvina,in:G.C.Sih,H.Zorski(Eds.),

DefectsandFracture,M.Nijhoff,TheHague,Netherlands,1982,p.71.

[13]B.Budiansky,R.J.O’Connel,Int.J.SolidsStruct.12(1976)81.[14]J.Weertman,J.R.Weertman,ElementaryDislocationTheory,

OxfordUniversityPress,NewYork,1992,p.47.

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
沪教版八年级下册数学练习册21.3(3)分式方程P17
沪教版八年级下册数学练习册一次函数复习题B组(P11)
二年级下册数学第三课 搭一搭⚖⚖
冀教版小学数学二年级下册第二单元《租船问题》
第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
北师大版数学四年级下册3.4包装
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
外研版英语七年级下册module3 unit2第一课时
沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
冀教版英语三年级下册第二课
8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
冀教版英语五年级下册第二课课程解读
《空中课堂》二年级下册 数学第一单元第1课时
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
冀教版小学数学二年级下册第二单元《余数和除数的关系》
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
《小学数学二年级下册》第二单元测试题讲解
冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
外研版英语三起5年级下册(14版)Module3 Unit1
七年级英语下册 上海牛津版 Unit9
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
外研版英语七年级下册module1unit3名词性物主代词讲解
精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
二年级下册数学第一课
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
沪教版牛津小学英语(深圳用)五年级下册 Unit 1