教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> > 英语考试> P- and S-wave separated elastic wave equation numerical modeling using 2D staggered-grid

P- and S-wave separated elastic wave equation numerical modeling using 2D staggered-grid

Main Menu

P- and S-wave separated elastic wave equation numerical modeling using 2D staggered-grid

Zhang Jianlei*, Tian Zhenping, Wang Chengxiang; BGP, CNPC

Summary

Traditional numerical modeling method using second-order elastic wave equation can only generate the synthetic seismograms of the Z and X component in isotropic medium, in which the P- and S-wavefields are coupled. To obtain wavefield of the pure P- and S-waves, the general method is wavefield separation processing of the coupled wavefield of each component, but it is difficult to get completely separated seismograms. If we use P- and S-wave equation respectively to generate P- and S-wave, the converted P- and S-wave will not appear in wavefield, thus it is not equal to full wavefield modeling. Carrying out full separation of wavefield modeling of pure P- and S-wave (In reconstructed wavefield, X and Z component comprise P- and S-wave that is fully separated.) makes no need of wavefield separation in following multi-wave processing, what’s more, it is of great practical importance for us to study seismic wave propagation mechanism and structure of geology as well as oil reservoir characterization.

Based on P- and S-wave separation of second-order elastic wave equation and first-order staggered-grid method, a P- and S-wave separated modeling equation in first-order staggered-grid is presented. In this method, P- and S-wave are fully separated instead of coupled together to produce synthetic seismograms of pure P- and S-wave. The feasibility and accuracy are shown by a couple of examples of numerical modeling.

Introduction

Ma Detang (2003) presented an elastic wave modeling method using second-order elastic wave equations to separate P- and S-waves. This leads to a new direction for elastic wave modeling study and inversion method. But this method doesn’t adapt to widely extend used because of its low efficient modeling and serious numerical dispersion. Then, we are facing on a problem how to use highly efficient new arithmetic to realize the thinking.

At present, the most prevailing and appropriate modeling method is using velocity-stress elastic wave equation. This is solved using staggered-grid (half–grid in wave field numerical modeling). The advantage is that it doesn’t need the derivatives to the elastic constant media (the known velocity and density). Thus, numerical modeling using velocity-stress elastic wave equation is more efficient and accurate than that of traditional second-order elastic wave equation. Virieux (1984) proposed finite-difference staggered-grid technique to the velocity-

stress elastic wave equation (Virieux, 1986). Its finite-difference accuracy is onlyO( t2+ x2). Levander (1988) presented the staggered-grid with higher order finite-difference schemes, the accuracy isO( t2+ x4). One of the advantage of staggered-grid method is that, with little increasing of the computation and memory space, the local accuracy improved four times and the performance is better (Igel, 1992) than that of conventional grid. To get high accuracy and resolution for seismic wave modeling of the complex structure and media, finite-difference accuracy and grid dispersion have to be improved.

The paper solves the second-order P- and S-wave separated elastic wave equation with higher order staggered-grid finite-difference method. Synthetic modeling result show the validity and effectiveness of our methods.

Basic Principle

Traditional 3D second-order elastic wave equations can be represented as:

2u2

2 u t2=Vp + 2v+ 2w x2

x y x z + V2 2u 2u 2v 2

w s y+ z x y x z

2v222

(1)

t=V2 up + v+ w x y y y z +

2v222

V2 + v u w

s

x2

z2 x y y z 2w2 2v 2=V2 u+w +

t2p x z y z+ z2 2 2w 2u 2 V2 wv

s + x2

y2 x z y z By introducing new variables:

Sp={up,vp,wp} (2) Ss={us,vs,ws}

where Sp is non-rotational P-wave field, and Ss is non-dispersed pure S-wave field, equation (1) will become (Ma Detang, 2003):

Main Menu

P- and S-wave separate Elastic wave equation numerical modeling using 2D staggered-grid

u=up+usv=vp+vsw=wp+ws 2up t=V2 2u 2v 2w p x+ x y+ x z

2vp2

2u 2 t2Vp

x y+v 2=w

y2

+ y z

2wp

2

t2=V2 u 2v 2w p (3)

x z+ y z

+ z2

2u2

2s u 2v 2w t2=V2 u s y2+ z2 x y x z 2v22s v 2u 2w t=V2 vs

x

+ z x y y z 2w2

s 2w 2u 2v t2=V2 ws x2+ y2 x z y z

For 2D case, equation (3) will be simplified to the

following equations:

u

=up+us w=wp+ws 2up2 2

u 2w

t=Vp x+ x z 2

2

wp=V2 u 2w t

p x z+ z 2u22

s(4)

t2=V2 us 2

w

z x z 2

w2s=V2 w

2

u

t2s x2 x z

Here,

up+wp

is non-rotational pure P-wave field,

wp+ws is non-dispersed pure S-wave field.

Unlike traditional regular grid, Madariaga (1976)

presented a more advanced staggered-grid finite-difference method which was used by Virieux to modeling SH and P-SV wave in isotropy medium. The accuracy of the traditional finite-difference schemes isO( t2+ x2). Without little loss of computation speed and memory space, the staggered-grid improved the local accuracy to be the fourth order at O( t2+ x4) (Levander, 1988). This makes the performance much better than that of conventional grid. Equation (5) shows 2D isotropic elastic equation, where B is the reciprocal of density.

In order to apply staggered-grid technique, we let

vx t=B τxx

x

+ τxz z

vz τzz t=B τxz

x

+ z (5) τxx vx v t=(λ+2µ) x

z

z τzz

t

=(λ+2µ)

vz z+λ vx x τxz t=µ vx

z+ vz x

where vx and vz are the velocity variables of particles in X- and Z-directions, respectively; τxxandτzz are normal stress;

τxz

is tangential stress;

λ

and

µ

Lames´

coefficient.

vx=vxp+vxs

vz=vzp+vzs

v=V2xpp t2λ+2µ( τxx x+ τ

zz x

vzp=V2

p( τxx τ

t2λ+2µ z+zz z) vxs2 1 τxz

1 τzz τxx t=Vs µ z 2λµ+2µ2 (λ+2µ) x λ

x

vzs=V2 1 τxz t

s µ x 1

2λµ+2µ (λ+2µ) τxx z λ τzz z (6)

τ xx=(λ+2µ) vx+ v τt xλz

zz vzx

=(λ+2µ) vz+λ

t τ z xxz vx

t=µ z+ vz

x

Here,

Vp is the P-wave velocity and Vs is S-wave

velocity. Equation (6) can be solved to get synthetic seismogram of pure P- and S-waves:vp=vxp+vzp

and

vs=vxs+vzs

. These pure seismograms contain

converted waves which will be absent from pure P- and S-wave equation modeling (without converted wave

component). This means that no further separations of P- and S-waves are needed.

Numerical modeling

To demonstrate the correctness of this method, we first test an example of horizontal layer model. The P- and S-

wave velocity model of the horizontal medium is shown in Figure 1. P-wave velocities are 2500m/s, 3000m/s and 4000m/s; S-wave velocities are 1732m/s, 2809m/s and 3309m/s; the densities are 2.0g

/cm3, 3.0g/cm3 and

3.5g/cm3. We use pure P-wave explosive source, which is located at the center of the model in horizontal direction and at the depth of 300m below the surface.

Distance(km)

Depth(k

Figure 1 P-wave velocity field

of a horizontal model. Figure 2 shows the snapshots of each component of the wavefield at the time 700 ms. Figures 2a and 2b are the P- and S-wave field of the Z component, respectively. Correspondingly, Figures 2c and 2d show the P- and S-wave field of the X component. P- and S-wave can be found in the first two snapshots and other waves such as reflection wave, transmitted wave, converted wave, refraction P-wave and refraction S-wave are also displayed in the figures.

Distance (km)

(a)

Depth (km)

Transmitted P-wave

(b)

Depth (km)

(c)

Depth (km)

(d)Depth (km)

Figure 2. Snapshotof each component of the wavefield at the time 700ms, (a) and (b) shows the P- and S-wave field of Z component; (c) and (d)

shows the P- and S-wave field of X component.

The synthetic seismogram is shown in Figure 3, where Figures 3a and 3b are P- and S-wave synthetic seismograms of the Z component, respectively. Figures 3c and 3d are P- and S-wave synthetic seismograms of the X component, respectively.

Trace number Trace number

(a) (b)

Time (s)

(c)

(d)

Time (s)

(e) (f)

间(s)

Figure 3. Modeling seismogram, (a) and (b) is P-andS-wave of Z component, (c) and (d) is P- and S-wave of X component, (e) and (f) is Z and X component seismogram that is got by applied elastic wave

equation modeling.

Figures 3e and 3f are the synthetic seismograms for the Z and X component from elastic wave equation modeling. These results just confirm that our 2D P- and S-wave separated elastic wave equation can model both pure P- and S-wave seismograms just like wavefield snapshot shown.

内容需要下载文档才能查看

Distance (m)

Depth (m)

Figure 4 The P-wave velocity of complex model

Trace number Trace number(a)

(b)

Time (s)

(c)

(d)

Time (s)

(e)

(f)

Time (s)

Figure 5. The complex model synthetic seismogram, (a) and (b) are P- and S-wave synthetic seismogram of Z component; (c) and (d) are P- and S-wavesynthetic seismogram of X component; (e) and (f) are Z and X

synthetic seismograms from elastic wave equationmodeling.

To further test our modeling method, we design a relatively complex model. Figure 4 is the P-wave velocity for this complex model. The explosive source, which mainly generates a pure P-wave, is located 13000m away from the left boundary at a depth of 300m below the surface. The trace interval is 10m and maximum offset is 5000m. Modeling seismogram is shown in Figure 5, where Figures 5a and 5b are P- and S-wave modeling seismograms of the Z component, Figures 5c and 5d are P- and S-wave modeling seismograms of the X component, Figures 5e and 4f are the Z and X component seismograms from elastic wave equation modeling. This relatively complex model demonstrates that our modeling method works well.

Conclusion

The paper presents 2D P- and S-wave separate staggered-grid finite-difference elastic wave numerical modeling method; this method can generate separated P- and S-wave using elastic wave numerical modeling of complex 2D model. The P- and S-waves are naturally separated in the numerical modeling instead of the separation of wavefield afterwards. It may help understand elastic wave modeling and inversion.

Acknowledgement

The authors would like to thank the BGP of CNPC for encouraging this work and for permission to present this paper.

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

特岗教师招考英语语法专题复习:定语从句详解(三)
2015特岗教师招聘历史“建设有中国特色的社会主义”测试题(2)
特岗招考历史备考:“民族团结和祖国统一”考点梳理(三)
特岗招考历史备考:“民族团结和祖国统一”考点梳理(四)
特岗教师招考英语语法专题复习:定语从句详解(一)
2015特岗招考音乐备考:西方音乐史之古典主义早期的音乐(二)
特岗教师招聘语文备考:文言文翻译方法十字例析
特岗教师招聘语文备考之文言文题解题技巧
2015特岗教师招考英语备考:定语从句专项练习及详解(2)
特岗教师招聘语文备考重点之文言文翻译的要求
2015年特岗教师招聘西方音乐史填空题集锦(十二)
特岗教师招考化学知识点精讲:离子方程式正误判断
2015特岗招考音乐备考:西方音乐史之古典主义盛期的音乐(二)
特岗教师招聘语文备考重点之文言文翻译得分点把握技巧
特岗教师招聘语文文言文备考之文言通假字(八)
特岗教师招聘英语备考:定语从句难点透析(一)
特岗教师招聘生物知识点:基因突变及其他变异(三)
2015年特岗教师招聘西方音乐史填空题集锦(十)
特岗教师招聘英语备考——定语从句句型总结
特岗教师招聘化学备考——化学物质及其变化常考题型
2015特岗招考音乐备考:西方音乐史之古典主义盛期的音乐(一)
2015特岗招考音乐备考:西方音乐史之古典主义盛期的音乐(三)
特岗教师招聘生物备考:染色体组的理解与判定规律(一)
2015年特岗教师招聘西方音乐史填空题集锦(十一)
特岗教师招考“化学物质及其变化”历年考题回顾(一)
特岗招考历史备考:“民族团结和祖国统一”考点梳理(一)
特岗教师招聘生物知识点:基因突变及其他变异(一)
2015特岗教师招聘语文文言文阅读专项练习(1)
2015特岗教师招聘生物学科“染色体变异”重难点解读(一)
特岗招考历史备考:“民族团结和祖国统一”考点梳理(二)

网友关注视频

外研版英语三起6年级下册(14版)Module3 Unit1
沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
二年级下册数学第二课
沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
北师大版小学数学四年级下册第15课小数乘小数一
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
沪教版八年级下册数学练习册21.4(1)无理方程P18
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
沪教版八年级下册数学练习册21.3(2)分式方程P15
小学英语单词
北师大版数学四年级下册3.4包装
冀教版小学英语四年级下册Lesson2授课视频
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
三年级英语单词记忆下册(沪教版)第一二单元复习
河南省名校课堂七年级下册英语第一课(2020年2月10日)
二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
七年级下册外研版英语M8U2reading
苏教版二年级下册数学《认识东、南、西、北》
六年级英语下册上海牛津版教材讲解 U1单词
化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
苏科版八年级数学下册7.2《统计图的选用》
冀教版英语五年级下册第二课课程解读
第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187