教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 医学/心理学> 预防医学、卫生学> Network Meta-Analysis Using R

Network Meta-Analysis Using R

上传者:方涛
|
上传时间:2015-05-05
|
次下载

Network Meta-Analysis Using R

Network Meta-Analysis Using R

RESEARCHARTICLE

NetworkUsingAReviewofCurrentlyPackages

BinodNeupane1,DanielleRicher1,AshleyJoelBonner1,TaddeleKibret2,JosephBeyene1,2*

1.DepartmentofClinicalEpidemiologyandBiostatistics,McMasterUniversity,MDCL3200,1280MainStreetWest,Hamilton,Ontario,Canada,L8S4K1,2.DepartmentofMathematicsandStatistics,McMasterUniversity,HH218,1280MainStreetWest,Hamilton,Ontario,Canada,L8S4K1*beyene@mcmaster.ca

Abstract

Network(NMA)–astatisticaltechniquethatallowscomparisonofmultipleinthesamemeta-analysissimultaneously–hasbecomeincreasinglypopularinthemedicalliteratureinrecentyears.Thestatistical

methodologyunderpinningthistechniqueandsoftwaretoolsforimplementingthemethodsareevolving.BothcommercialandfreelyavailablestatisticalsoftwarepackageshavebeendevelopedfacilitatethestatisticalusingNMAwithvaryingdegreesoffunctionalityandeaseofuse.ThispaperaimstointroducethereadertothreeRpackages,gemtc,,,whicharefreelyavailablesoftwaretoolsimplementedinR.EachautomatestheprocessofperformingNMAsothatuserscanperformtheanalysiswithminimalcomputationaleffort.Wepresent,compareandcontrasttheavailabilityandfunctionalityofdifferentimportantfeaturesofNMAinthesethreepackagessothatclinicalinvestigatorsandresearcherscanwhichRpackagestoontheiranalysisneeds.Foursummarytablesdetailingdatainputandnetworkplotting,(ii)modeling(iii)assumptioncheckinganddiagnosticand(iv)inferenceandreportingareprovided,alongwithananalysisofapreviouslypublisheddatasettoillustratetheoutputsavailablefromeach

package.Wedemonstratethateachofthethreepackagesausefuloftools,andcombinedprovideuserswithnearlyallfunctionalitythatmightbedesiredwhenconductinga

内容需要下载文档才能查看 内容需要下载文档才能查看

NMA.OPENACCESSCitation:NeupaneB,RicherD,BonnerAJ,KibretT,BeyeneJ(2014)NetworkMeta-AnalysisUsingR:AReviewofCurrentlyAvailableAutomatedPackages.PLoSONE9(12):e115065.doi:10.1371/journal.pone.0115065Editor:CynthiaGibas,UniversityofNorthCarolinaatCharlotte,UnitedStatesofAmericaReceived:September19,2014Accepted:November18,2014Published:December26,2014Copyright:ß2014Neupaneetal.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andrepro-ductioninanymedium,providedtheoriginalauthorandsourcearecredited.DataAvailability:Theauthorsconfirmthatalldataunderlyingthefindingsarefullyavailablewithout

restriction.Allrelevantdataarewithinthepaper.

Funding:FundingforthisworkcameformNSERC

andCIHR.Thefundershadnoroleinstudy

design,datacollectionandanalysis,decisionto

publish,orpreparationofthemanuscript.

CompetingInterests:Theauthorshavedeclared

thatnocompetinginterests

内容需要下载文档才能查看

exist.

PLOSONE|DOI:10.1371/journal.pone.0115065December26,20141/17

Network Meta-Analysis Using R

NetworkMeta-AnalysisUsingR

Introduction

Network(NMA),alsoknownasmultipletreatmentcomparison(MTC)ormultipletreatment(MTM),hasbeenincreasinglyusedinrecentyears[1–3]tosimultaneouslycomparetheeffectsofmultipletreatmentsonahealthoutcome.NMAisbeingrapidlyadoptedacrossawiderangeofhealthresearchareas[].ResearcherslookingtoundertakeaNMAintheirfieldwillfindfamiliarityinthesystematicprocessesofselectingandgradingcontributingstudies,asisrequiredforstandardmeta-analysis[].However,theadditionalanalysiscomplexitiesinvolvedwithaNMArequirestheusertobeawareofconsiderations,diagnostictools,andreportingstyles.

NMAcanbeperformedeitherunderfrequentistorBayesianandseveralmodelshavebeenproposedunderbothframeworks[–].Networkmeta-analystsmustselectamodelingapproachandareadvisedtoexplorethedifferencesbetweenthefrequentistandBayesianapproaches[10].TheBayesianapproachismorefrequentlyused[1,3]asitcanproduceestimatesofrank

probabilities(theprobabilitythateachtreatmenttobethebest,secondbest,andsoon).Aftermakingseveralmodel-basedchoices,mustbeundertakentoverifyifthemodelwasappropriate.TheseapproachesmustassessheterogeneityandtwoassumptionsunderlyinganyNMAthatarehighlyinfluentialtotheresults.MethodsofidentifyinganddealingwiththeseissuesareexploredextensivelyintheNMAliterature[11–16].ItisimportanttopublishNMAresultsclearlyandcompletely.forreportingNMAresultsarediscussedatlengthinBafetaetal[].Displayingthenetwork,presentingrelativeeffectsandrankprobabilitiesareanimportantpartofreportingNMAresults.

ThereareseveralstatisticalprogramsavailablethatcanimplementthevariousstepsrequiredtocarryoutaNMA.FrequentistmodelscanbeimplementedusingcommercialprogramssuchasSASandFreelyavailablesoftwareprogramssuchasWinBUGS,orJAGScanbeusedtoconduct

BayesianNMA,buttheyrequiredevelopingaprogramcode(ormodifyingpre-existingcodes)thatcanbequiteinvolved.Inaddition,someoftheplottingtoolsofinteresttoNMAresearchersarenotincorporatedintotheseprograms.ThestatisticalsoftwareRisfreelyavailableandpopularamongstatisticiansbecauseitisopensource,allowingfortheimplementationofnewstatisticalmethodsalmostinstantaneouslythroughthecreationofpackages.RinterfaceswithallthreeBayesiansoftwareprogramsmentionedabovetoconductnetworkmeta-analyseswiththeuseofappropriatepackages.TheuserisnotrequiredtoprograminOpenBUGS,WinBUGSorJAGSinordertoimplementthese

packages,minimizingtheprogrammingrequiredoftheuser.Bycombiningthefunctionalityofafewpackages,almostalldesiredoutputscanbeobtainedinR.Recently,threepackages,gemtc(http://wendang.chazidian.com/web/packages/gemtc/index.html),pcnetmeta(http://wendang.chazidian.com/web/packages/pcnetmeta/index.),netmeta(),havebeendevelopedspecificallyfornetworkmeta-analysisintheR

内容需要下载文档才能查看

environment,

PLOSONE|DOI:10.1371/journal.pone.0115065December26,20142/17

Network Meta-Analysis Using R

NetworkMeta-AnalysisUsingR

allowinguserstoperformNMAwithminimalprogramming.Atthetimeofwriting(July2014),thesearetheonlypackagesdevelopedspecificallyfor

performingNMAthatweidentified.Eachcanautomaticallygenerateandruntheanalysismodelwithminimalprogrammingrequiredbyusers.ThetwopackagesperformtheanalysisundertheBayesianframeworkandthethirdperformsunderthefrequentistThepurposeofthispaperistopresentaofthreeR

packages,namely,gemtc,pcnetmeta,andnetmetawithrespecttoandeaseofuse.ThisguideisdesignedtoinformnewusersofNMAwhoarefamiliarwiththeRenvironmentandwouldliketofindoutwhichpackagesmightsuittheirneeds.Ifresearchersknowthestatisticalchoicestheywanttomake,thispaperwillhelpthemtodeterminehowtodoitinR.Thispaperisorganizedasfollows.Thebelowdescribestheapproachwefollowedtoidentifyandexplorethethreepackages.TheResultssectionsummarizesourfindings,includingananalysisofrealdatausingeachpackage.Thelastsectionprovidesconclusionsaboutourinvestigation.

Methods

RforNMA

WesearchedtheComprehensiveRArchiveNetwork(CRAN)foranycontributedRpackageswrittenprimarilyforNMA.ThreeRmetthisrequirement:gemtc,pcnetmeta,andnetmeta.AlthoughwefoundotherpackageswithsomeapplicationsforNMA,includingmetaphor,wedidnotconsiderthesepackagesastheyarewrittenforgeneralpurposemeta-analysis(univariateandmultivariate,respectively).Thegemtcpackagesynthesizesevidenceontherelativeeffectsofmultipletreatmentsbyfittinggeneralizedlinearmodel(GLM)underaBayesianframework.pcnetmetasynthesizesprobabilitiesofeventsintreatmentsfromanetworkoftrialsusingamultivariatemeta-analysisalsounderaBayesianframework.Thenetmetapackageisbasedongraphtheorymethodologytomodeltherelativetreatmenteffectsofmultipleunderaframework.

Inthenextsection,wepresentamoredetailedgeneralintroductiontonetworkmeta-analysis,especiallyconcerningtheofNMA,theinputdata,andthemethodology.Detailsaboutthespecificdatainputandanalysisoptions,statisticalmodels,methods,andformulationsusedinthethreepackagescanbefoundintherespectivereferencemanualsandoriginalarticles:etal[]forgemtc,Zhangetal[18]forpcnetmeta,andKonigetal[19]andKrahnetal[20]fornetmeta.

andaspectsofNMA

NMAenablesinvestigatorstotheeffectsofmultiplehealthcare

interventionsincludingtreatmentsthatwerenotpreviouslycomparedin

内容需要下载文档才能查看

head-to-

PLOSONE|DOI:10.1371/journal.pone.0115065December26,20143/17

Network Meta-Analysis Using R

NetworkMeta-AnalysisUsingR

headtrials.Additionally,combiningindirectanddirectevidencecansometimesprovidepreciseestimatesoftreatmenteffectstosupportdecision-making.Dependingonthetypeofoutcome(e.g.,count,theinputaggregatedatasetcanbeeither(e.g.,observednumberofeventsandnumberofpatientsrandomizedinatreatmentarmineachtrialforabinaryoutcomesuchasincidenceofdiabetes)or(e.g.,estimateoftherelativetreatmenteffectsuchaslog-oddsratioanditsstandarderrorforthe

binaryoutcomeforanytwotreatmentsinatrial).TherearetwobroadstatisticalinferenceframeworksthataretypicallyusedinNMA:aversusaapproach.TheBayesianframeworkisquiteflexibleandallows

incorporatingprioronmodelparametersandcomprehensively.Inaddition,onecouldmakedirectprobabilisticaboutparametersofinterest.

FortheresultsofNMAtovalid,thenetworkisassumedtomaintaintransitivity(potentialmodifiersoftreatmenteffectsaresimilarlydistributed

acrosstrials)consistency(indirecteffectestimatesareconsistentwiththatofdirecteffects),whileinterpretationofthetreatmenteffectsismorestraightforwardiftheyarealsotrials[].Therefore,acarefulevaluationofclinicalandmethodologicalheterogeneityacrosstrialsisimportanttomakesurethatthenetworkmaintainstransitivity(i.e.,includestrialswithsimilarpatientsandtrialcharacteristicswithinandacrosstrials).presenceofheterogeneityandinconsistencyinthenetworkcanbequantifiedandassessedforwhichdifferentmethodshavebeenproposed[11–16].Ifthereisunexplainedheterogeneity–identifiedthroughclinicalorstatisticalinvestigations-arandom-effectsratherthanafixed-effectmodelispreferred.ItisacommonpracticeintheNMAliteraturetoassumeacommonheterogeneityforalltreatmentseffectsunderrandom-effectassumption.havebeenproposedtoaccountforinconsistencyifsuspected[].Assessmentofmayalsohelptoidentifymoreappropriatemodel(e.g.,fixedvs.random-effects)forthedata[].AkaikeinformationcriteriaandDevianceinformationcriteriaarewidelyusedcriteriatoassessgoodness-of-fitofthemodelsinfrequentistandBayesianframeworks,respectively.Detailedreviewsaboutassessinganddealing[,]and[]inanetworkandchoiceoffrequentistorBayesianframeworksforNMA[]areprovidedingreatdetailsinthefirstbookonnetworkmeta-analysis[].

OurreviewofthethreeRpackagesreflectsthemethodologicalandstatisticalaspectsofNMAdescribedabove.Tosummarize,ananalystbeginswithanexplorationofthenetworkandproceedswithproposingandamodelforthedata.Themodelassumptionsandfitareassesseddiagnosticprocedurestocomeupwitha‘‘final’’whichwillthenbeusedtogenerateandinterpretresults.

Withthisprocessinmind,wereviewedtheavailablefeaturesorcapabilitiesofthesepackageswithrespecttoconductingaNMA:importingandpreparingdata,creatingamodel,detectinganddealingwithheterogeneityandinconsistencyandassessingmodelfits,andobtainingestimatesofeffectsor

内容需要下载文档才能查看

PLOSONE|DOI:10.1371/journal.pone.0115065December26,20144/17

Network Meta-Analysis Using R

NetworkMeta-AnalysisUsingR

Table1.DatainputandnetworkplottingfunctionalityfromNMARpackagesgemtc,pcnetmetaandnetmeta.Tasks

Formsofinputdata

FeaturesArm-leveldataContrast-leveldata

Acceptsmulti-arm($3)trials

Typesofoutcomedatathatcanbeanalyzed

BinaryCountContinuousSurvival

Extractsdescriptivemeasures

Totalnumberofstudies

gemtc33333333

pcnetmeta3733777777733

3Usercanspecify,defaultby#studiesusingthetreatment3Numberofstudiesmakingthiscomparison

netmeta73333333373337

3Inversestandarderrorofaggre-gateddirecttreatmenteffects

内容需要下载文档才能查看

Totalnumberofmulti-armstudies3TotalnumberofparticipantsTotalnumberoftreatments

Networkplotandoptions

NetworkplotAddnodelabels

Nodesizereflectsnetworkchar-acteristic

Edgethicknessreflectsnetworkcharacteristic

doi:10.1371/journal.pone.0115065.t001

333377

probabilities.Theauthorsofthepackagesweretoverifytheaccuracyof–.Wealsousedeachpackagetoperformnetworkmeta-analysisofpubliclyavailabledataontheincidenceofdiabetes[27].Inparticular,thisdatasetwasselectedforillustrationbecauseitrepresentsatypicalnetworkconsistingofcomparisonoftheeffectsoftreatmentsin22closetothemediannumbersof6treatmentsand21trials,respectively,onabinaryoutcome,themostcommonoutcometype,intheNMAliterature[3].Thenetworkincludesmulti-armstudiesandthereisanevidenceofinconsistencyinthenetwork,thusprovidinganopportunitytoseehoweachofthepackagesidentifiesanddealswiththiscommonissue.Theoutputfromeachpackageisincludedtoprovidevisualsofthereportingtoolsavailable.

Results

tosummarizetheimportantofNMAthatareavailableinoneormoreofthelatestversionsofthegemtc(versionreleasedon2014-03-11)[28pcnetmeta(versionreleasedon2014-03-09)[29],andnetmeta0.5-0,released2014-06-24)[30]packages.

PLOSONE|DOI:10.1371/journal.pone.0115065December26,20145/17

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

3月2日小学二年级数学下册(数一数)
沪教版八年级下册数学练习册21.3(2)分式方程P15
北师大版小学数学四年级下册第15课小数乘小数一
8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
北师大版数学四年级下册3.4包装
30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
苏科版数学 八年级下册 第八章第二节 可能性的大小
小学英语单词
沪教版八年级下册数学练习册一次函数复习题B组(P11)
飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
冀教版英语四年级下册第二课
3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
冀教版小学数学二年级下册第二单元《租船问题》
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
《空中课堂》二年级下册 数学第一单元第1课时
苏科版数学七年级下册7.2《探索平行线的性质》
七年级下册外研版英语M8U2reading
《小学数学二年级下册》第二单元测试题讲解
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
七年级英语下册 上海牛津版 Unit3