Network Meta-Analysis Using R
上传者:方涛|上传时间:2015-05-05|密次下载
Network Meta-Analysis Using R
Network Meta-Analysis Using R
RESEARCHARTICLE
NetworkUsingAReviewofCurrentlyPackages
BinodNeupane1,DanielleRicher1,AshleyJoelBonner1,TaddeleKibret2,JosephBeyene1,2*
1.DepartmentofClinicalEpidemiologyandBiostatistics,McMasterUniversity,MDCL3200,1280MainStreetWest,Hamilton,Ontario,Canada,L8S4K1,2.DepartmentofMathematicsandStatistics,McMasterUniversity,HH218,1280MainStreetWest,Hamilton,Ontario,Canada,L8S4K1*beyene@mcmaster.ca
Abstract
Network(NMA)–astatisticaltechniquethatallowscomparisonofmultipleinthesamemeta-analysissimultaneously–hasbecomeincreasinglypopularinthemedicalliteratureinrecentyears.Thestatistical
methodologyunderpinningthistechniqueandsoftwaretoolsforimplementingthemethodsareevolving.BothcommercialandfreelyavailablestatisticalsoftwarepackageshavebeendevelopedfacilitatethestatisticalusingNMAwithvaryingdegreesoffunctionalityandeaseofuse.ThispaperaimstointroducethereadertothreeRpackages,gemtc,,,whicharefreelyavailablesoftwaretoolsimplementedinR.EachautomatestheprocessofperformingNMAsothatuserscanperformtheanalysiswithminimalcomputationaleffort.Wepresent,compareandcontrasttheavailabilityandfunctionalityofdifferentimportantfeaturesofNMAinthesethreepackagessothatclinicalinvestigatorsandresearcherscanwhichRpackagestoontheiranalysisneeds.Foursummarytablesdetailingdatainputandnetworkplotting,(ii)modeling(iii)assumptioncheckinganddiagnosticand(iv)inferenceandreportingareprovided,alongwithananalysisofapreviouslypublisheddatasettoillustratetheoutputsavailablefromeach
package.Wedemonstratethateachofthethreepackagesausefuloftools,andcombinedprovideuserswithnearlyallfunctionalitythatmightbedesiredwhenconductinga
内容需要下载文档才能查看 内容需要下载文档才能查看NMA.OPENACCESSCitation:NeupaneB,RicherD,BonnerAJ,KibretT,BeyeneJ(2014)NetworkMeta-AnalysisUsingR:AReviewofCurrentlyAvailableAutomatedPackages.PLoSONE9(12):e115065.doi:10.1371/journal.pone.0115065Editor:CynthiaGibas,UniversityofNorthCarolinaatCharlotte,UnitedStatesofAmericaReceived:September19,2014Accepted:November18,2014Published:December26,2014Copyright:ß2014Neupaneetal.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andrepro-ductioninanymedium,providedtheoriginalauthorandsourcearecredited.DataAvailability:Theauthorsconfirmthatalldataunderlyingthefindingsarefullyavailablewithout
restriction.Allrelevantdataarewithinthepaper.
Funding:FundingforthisworkcameformNSERC
andCIHR.Thefundershadnoroleinstudy
design,datacollectionandanalysis,decisionto
publish,orpreparationofthemanuscript.
CompetingInterests:Theauthorshavedeclared
thatnocompetinginterests
内容需要下载文档才能查看exist.
PLOSONE|DOI:10.1371/journal.pone.0115065December26,20141/17
Network Meta-Analysis Using R
NetworkMeta-AnalysisUsingR
Introduction
Network(NMA),alsoknownasmultipletreatmentcomparison(MTC)ormultipletreatment(MTM),hasbeenincreasinglyusedinrecentyears[1–3]tosimultaneouslycomparetheeffectsofmultipletreatmentsonahealthoutcome.NMAisbeingrapidlyadoptedacrossawiderangeofhealthresearchareas[].ResearcherslookingtoundertakeaNMAintheirfieldwillfindfamiliarityinthesystematicprocessesofselectingandgradingcontributingstudies,asisrequiredforstandardmeta-analysis[].However,theadditionalanalysiscomplexitiesinvolvedwithaNMArequirestheusertobeawareofconsiderations,diagnostictools,andreportingstyles.
NMAcanbeperformedeitherunderfrequentistorBayesianandseveralmodelshavebeenproposedunderbothframeworks[–].Networkmeta-analystsmustselectamodelingapproachandareadvisedtoexplorethedifferencesbetweenthefrequentistandBayesianapproaches[10].TheBayesianapproachismorefrequentlyused[1,3]asitcanproduceestimatesofrank
probabilities(theprobabilitythateachtreatmenttobethebest,secondbest,andsoon).Aftermakingseveralmodel-basedchoices,mustbeundertakentoverifyifthemodelwasappropriate.TheseapproachesmustassessheterogeneityandtwoassumptionsunderlyinganyNMAthatarehighlyinfluentialtotheresults.MethodsofidentifyinganddealingwiththeseissuesareexploredextensivelyintheNMAliterature[11–16].ItisimportanttopublishNMAresultsclearlyandcompletely.forreportingNMAresultsarediscussedatlengthinBafetaetal[].Displayingthenetwork,presentingrelativeeffectsandrankprobabilitiesareanimportantpartofreportingNMAresults.
ThereareseveralstatisticalprogramsavailablethatcanimplementthevariousstepsrequiredtocarryoutaNMA.FrequentistmodelscanbeimplementedusingcommercialprogramssuchasSASandFreelyavailablesoftwareprogramssuchasWinBUGS,orJAGScanbeusedtoconduct
BayesianNMA,buttheyrequiredevelopingaprogramcode(ormodifyingpre-existingcodes)thatcanbequiteinvolved.Inaddition,someoftheplottingtoolsofinteresttoNMAresearchersarenotincorporatedintotheseprograms.ThestatisticalsoftwareRisfreelyavailableandpopularamongstatisticiansbecauseitisopensource,allowingfortheimplementationofnewstatisticalmethodsalmostinstantaneouslythroughthecreationofpackages.RinterfaceswithallthreeBayesiansoftwareprogramsmentionedabovetoconductnetworkmeta-analyseswiththeuseofappropriatepackages.TheuserisnotrequiredtoprograminOpenBUGS,WinBUGSorJAGSinordertoimplementthese
packages,minimizingtheprogrammingrequiredoftheuser.Bycombiningthefunctionalityofafewpackages,almostalldesiredoutputscanbeobtainedinR.Recently,threepackages,gemtc(http://wendang.chazidian.com/web/packages/gemtc/index.html),pcnetmeta(http://wendang.chazidian.com/web/packages/pcnetmeta/index.),netmeta(),havebeendevelopedspecificallyfornetworkmeta-analysisintheR
内容需要下载文档才能查看environment,
PLOSONE|DOI:10.1371/journal.pone.0115065December26,20142/17
Network Meta-Analysis Using R
NetworkMeta-AnalysisUsingR
allowinguserstoperformNMAwithminimalprogramming.Atthetimeofwriting(July2014),thesearetheonlypackagesdevelopedspecificallyfor
performingNMAthatweidentified.Eachcanautomaticallygenerateandruntheanalysismodelwithminimalprogrammingrequiredbyusers.ThetwopackagesperformtheanalysisundertheBayesianframeworkandthethirdperformsunderthefrequentistThepurposeofthispaperistopresentaofthreeR
packages,namely,gemtc,pcnetmeta,andnetmetawithrespecttoandeaseofuse.ThisguideisdesignedtoinformnewusersofNMAwhoarefamiliarwiththeRenvironmentandwouldliketofindoutwhichpackagesmightsuittheirneeds.Ifresearchersknowthestatisticalchoicestheywanttomake,thispaperwillhelpthemtodeterminehowtodoitinR.Thispaperisorganizedasfollows.Thebelowdescribestheapproachwefollowedtoidentifyandexplorethethreepackages.TheResultssectionsummarizesourfindings,includingananalysisofrealdatausingeachpackage.Thelastsectionprovidesconclusionsaboutourinvestigation.
Methods
RforNMA
WesearchedtheComprehensiveRArchiveNetwork(CRAN)foranycontributedRpackageswrittenprimarilyforNMA.ThreeRmetthisrequirement:gemtc,pcnetmeta,andnetmeta.AlthoughwefoundotherpackageswithsomeapplicationsforNMA,includingmetaphor,wedidnotconsiderthesepackagesastheyarewrittenforgeneralpurposemeta-analysis(univariateandmultivariate,respectively).Thegemtcpackagesynthesizesevidenceontherelativeeffectsofmultipletreatmentsbyfittinggeneralizedlinearmodel(GLM)underaBayesianframework.pcnetmetasynthesizesprobabilitiesofeventsintreatmentsfromanetworkoftrialsusingamultivariatemeta-analysisalsounderaBayesianframework.Thenetmetapackageisbasedongraphtheorymethodologytomodeltherelativetreatmenteffectsofmultipleunderaframework.
Inthenextsection,wepresentamoredetailedgeneralintroductiontonetworkmeta-analysis,especiallyconcerningtheofNMA,theinputdata,andthemethodology.Detailsaboutthespecificdatainputandanalysisoptions,statisticalmodels,methods,andformulationsusedinthethreepackagescanbefoundintherespectivereferencemanualsandoriginalarticles:etal[]forgemtc,Zhangetal[18]forpcnetmeta,andKonigetal[19]andKrahnetal[20]fornetmeta.
andaspectsofNMA
NMAenablesinvestigatorstotheeffectsofmultiplehealthcare
interventionsincludingtreatmentsthatwerenotpreviouslycomparedin
内容需要下载文档才能查看head-to-
PLOSONE|DOI:10.1371/journal.pone.0115065December26,20143/17
Network Meta-Analysis Using R
NetworkMeta-AnalysisUsingR
headtrials.Additionally,combiningindirectanddirectevidencecansometimesprovidepreciseestimatesoftreatmenteffectstosupportdecision-making.Dependingonthetypeofoutcome(e.g.,count,theinputaggregatedatasetcanbeeither(e.g.,observednumberofeventsandnumberofpatientsrandomizedinatreatmentarmineachtrialforabinaryoutcomesuchasincidenceofdiabetes)or(e.g.,estimateoftherelativetreatmenteffectsuchaslog-oddsratioanditsstandarderrorforthe
binaryoutcomeforanytwotreatmentsinatrial).TherearetwobroadstatisticalinferenceframeworksthataretypicallyusedinNMA:aversusaapproach.TheBayesianframeworkisquiteflexibleandallows
incorporatingprioronmodelparametersandcomprehensively.Inaddition,onecouldmakedirectprobabilisticaboutparametersofinterest.
FortheresultsofNMAtovalid,thenetworkisassumedtomaintaintransitivity(potentialmodifiersoftreatmenteffectsaresimilarlydistributed
acrosstrials)consistency(indirecteffectestimatesareconsistentwiththatofdirecteffects),whileinterpretationofthetreatmenteffectsismorestraightforwardiftheyarealsotrials[].Therefore,acarefulevaluationofclinicalandmethodologicalheterogeneityacrosstrialsisimportanttomakesurethatthenetworkmaintainstransitivity(i.e.,includestrialswithsimilarpatientsandtrialcharacteristicswithinandacrosstrials).presenceofheterogeneityandinconsistencyinthenetworkcanbequantifiedandassessedforwhichdifferentmethodshavebeenproposed[11–16].Ifthereisunexplainedheterogeneity–identifiedthroughclinicalorstatisticalinvestigations-arandom-effectsratherthanafixed-effectmodelispreferred.ItisacommonpracticeintheNMAliteraturetoassumeacommonheterogeneityforalltreatmentseffectsunderrandom-effectassumption.havebeenproposedtoaccountforinconsistencyifsuspected[].Assessmentofmayalsohelptoidentifymoreappropriatemodel(e.g.,fixedvs.random-effects)forthedata[].AkaikeinformationcriteriaandDevianceinformationcriteriaarewidelyusedcriteriatoassessgoodness-of-fitofthemodelsinfrequentistandBayesianframeworks,respectively.Detailedreviewsaboutassessinganddealing[,]and[]inanetworkandchoiceoffrequentistorBayesianframeworksforNMA[]areprovidedingreatdetailsinthefirstbookonnetworkmeta-analysis[].
OurreviewofthethreeRpackagesreflectsthemethodologicalandstatisticalaspectsofNMAdescribedabove.Tosummarize,ananalystbeginswithanexplorationofthenetworkandproceedswithproposingandamodelforthedata.Themodelassumptionsandfitareassesseddiagnosticprocedurestocomeupwitha‘‘final’’whichwillthenbeusedtogenerateandinterpretresults.
Withthisprocessinmind,wereviewedtheavailablefeaturesorcapabilitiesofthesepackageswithrespecttoconductingaNMA:importingandpreparingdata,creatingamodel,detectinganddealingwithheterogeneityandinconsistencyandassessingmodelfits,andobtainingestimatesofeffectsor
内容需要下载文档才能查看PLOSONE|DOI:10.1371/journal.pone.0115065December26,20144/17
Network Meta-Analysis Using R
NetworkMeta-AnalysisUsingR
Table1.DatainputandnetworkplottingfunctionalityfromNMARpackagesgemtc,pcnetmetaandnetmeta.Tasks
Formsofinputdata
FeaturesArm-leveldataContrast-leveldata
Acceptsmulti-arm($3)trials
Typesofoutcomedatathatcanbeanalyzed
BinaryCountContinuousSurvival
Extractsdescriptivemeasures
Totalnumberofstudies
gemtc33333333
pcnetmeta3733777777733
3Usercanspecify,defaultby#studiesusingthetreatment3Numberofstudiesmakingthiscomparison
netmeta73333333373337
3Inversestandarderrorofaggre-gateddirecttreatmenteffects
内容需要下载文档才能查看Totalnumberofmulti-armstudies3TotalnumberofparticipantsTotalnumberoftreatments
Networkplotandoptions
NetworkplotAddnodelabels
Nodesizereflectsnetworkchar-acteristic
Edgethicknessreflectsnetworkcharacteristic
doi:10.1371/journal.pone.0115065.t001
333377
probabilities.Theauthorsofthepackagesweretoverifytheaccuracyof–.Wealsousedeachpackagetoperformnetworkmeta-analysisofpubliclyavailabledataontheincidenceofdiabetes[27].Inparticular,thisdatasetwasselectedforillustrationbecauseitrepresentsatypicalnetworkconsistingofcomparisonoftheeffectsoftreatmentsin22closetothemediannumbersof6treatmentsand21trials,respectively,onabinaryoutcome,themostcommonoutcometype,intheNMAliterature[3].Thenetworkincludesmulti-armstudiesandthereisanevidenceofinconsistencyinthenetwork,thusprovidinganopportunitytoseehoweachofthepackagesidentifiesanddealswiththiscommonissue.Theoutputfromeachpackageisincludedtoprovidevisualsofthereportingtoolsavailable.
Results
tosummarizetheimportantofNMAthatareavailableinoneormoreofthelatestversionsofthegemtc(versionreleasedon2014-03-11)[28pcnetmeta(versionreleasedon2014-03-09)[29],andnetmeta0.5-0,released2014-06-24)[30]packages.
PLOSONE|DOI:10.1371/journal.pone.0115065December26,20145/17
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 《新思维英语阅读Ⅲ》教学辅导(第9章)
- 大学军事理论论文
- 教育教学管理制度
- 2014 年 10 月高等教育自学考试全国统一命题考试 中国法制史试题和答案
- 单亲学生的心理倾向分析及教育对策_皇甫庆美
- 郑州大学学位论文写作规范
- 教育心理学总复习资料
- 离异单亲家庭学生心理问题初探_赵莹
- 教育学总复习资料
- 中央美院院长靳尚谊先生讲座
- 2014年甘肃省心理健康教育概论试卷
- 中央美术学院油画系张元老师讲座
- 思修-第七章
- 自考_07015_2013_10_计算机专业英语真题
- 凭什么让学生爱上你
- 蒋丽萨艺术修养与审美体验
- 教育教学论文参考格式
- Fcnki_词汇教学与学习中心理词库理论特征的运用_卢敏
- 独立学院学生学习动力影响因素研究
- 14-15-1电路分析基础A
- 课程考核
- 让单亲家庭的子女也阳光成长_孙海前
- 《新思维英语阅读Ⅲ》教学辅导(第10章)
- 电气测量技术复习题2014-12-26 10.59.12
- 2014年甘肃省心理健康教育概论试卷
- 临床生物化学检验课程双语教学的实践与思考
- 英国留学:双学位课程
- 中央美术学院壁画系高宗英先生讲座
- open eyes in your life
- 英国留学:读金融专业,英国最值得去的 4 所大学
网友关注视频
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
- 七年级英语下册 上海牛津版 Unit5
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
- 二年级下册数学第一课
- 冀教版英语三年级下册第二课
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 外研版英语七年级下册module3 unit2第二课时
- 外研版英语七年级下册module3 unit2第一课时
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 外研版英语三起6年级下册(14版)Module3 Unit1
- 人教版历史八年级下册第一课《中华人民共和国成立》
- 冀教版小学数学二年级下册第二单元《租船问题》
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
- 北师大版数学四年级下册第三单元第四节街心广场
- 七年级英语下册 上海牛津版 Unit3
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理