教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 工程科技> 交通运输> Influence of soil non-linearity on the dynamic response of high-speed railway tracks

Influence of soil non-linearity on the dynamic response of high-speed railway tracks

2.5D维有限元经典文献,把等效线性化模型应用到其中。

内容需要下载文档才能查看 内容需要下载文档才能查看

SoilDynamicsandEarthquakeEngineering30(2010)221–235

ContentslistsavailableatScienceDirect

SoilDynamicsandEarthquakeEngineering

journalhomepage:http://wendang.chazidian.com/locate/soildyn

In?uenceofsoilnon-linearityonthedynamicresponseofhigh-speedrailwaytracks

´nioSilvaCardosoa,AndersBodarebPedroAlvesCostaa,RuiCalc-adaa,n,Anto

ab

FacultyofEngineeringoftheUniversityofPorto,RuaDr.RobertoFrias,4200-465Porto,Portugal

GeoRisk&VibrationScandinaviaAB,SolnaTorg13,3tr-17145Solna,Sweden

articleinfo

Articlehistory:

Received14August2009Receivedinrevisedform19November2009

Accepted20November2009Keywords:

High-speedrailwaytrackSoftsoil

Equivalentlinearanalysis2.5D?niteelementmethodFrequency-domainanalysis

abstract

Themainobjectivesofthispaperaretheevaluationoftherelevanceofthenon-linearbehaviourofthesoilonthetrackresponseandthevalidationofamethodology,whichincludestheseeffectsthroughanequivalentlinearanalysis.Theproposednumericalmodelisbasedon2.5D?nite/in?niteelementsmethod,coupledwithaniterativeprocedureinordertoobtainanagreementbetweenthestrainlevelsandthedynamicpropertiesofthematerials.Inordertovalidatethemodel,thecasestudyofLedsgardwassimulated,andtheexperimentalandnumericalresultsofdisplacementsofthetrackwerecompared,consideringseveralcirculationspeedsfortheX2000train.Fromtheresults,itispossibletorecognizethatthestiffnessdegradation,functionofthestrainlevel,playsarelevantroleforthecaseofhigh-speedrailwaylinesonsoftground.Moreover,thesimulationsdevelopedwiththeproposedmethodologyprovidedsimilarresultstothoseobserved,independentlyofthetrainspeed,contrarytowhatwasobtainedwhentheelasticlinearmodelwasused.

&2009ElsevierLtd.Allrightsreserved.

1.Introduction

Theassessmentofvibrationsatandalongsiderailwaytracksisbecomingasubjectofprimeimportance,mainlyduetotheincreasingnumberofhigh-speedrailwaylinesbeingbuiltthroughoutEuropeandEastAsia.Whenthetrackcrossesregionsofsoftsoils,theassessmentofthevibrationsinducedbytraf?cisparticularlyimportant.Inthesecases,thisissuehasnotonlyenvironmentalimplications,relatedwithnuisancetoinhabitantsofbuildingsinthevicinityofhigh-speedlines,butalsostructuralconsequences,sincetheampli?cationofthedynamicresponseofthetrackmaycompromiseitsstabilityandsafety.

http://wendang.chazidian.comuallyadistinctionismadebetweenquasi-staticanddynamicexcitationmechanisms[1,2].Thedynamicexcitation,ofgreatimportanceinenvironmentalvibrationassessment,iscausedbythetrain–trackinteractionduetoseveralmechanismsthatinduceverticalaccelerationontherolling-stock[3].Ontheotherhand,thequasi-staticexcitationisrelatedwiththemagnitudeofthemovingloadscorrespondingtothedistributionofthetrainweightbyitsaxles.Whenthetrainspeedislowincomparisonwiththecriticalphasevelocityofthetrack-groundsystem(minimumphasevelocityofthe1stRayleighmodeofthesoilandembankmentpro?leatthesite[4])the

Correspondingauthor.

E-mailaddresses:pacosta@fe.up.pt(P.AlvesCosta),ruiabc@fe.up.pt(R.Calc-ada),scardoso@fe.up.pt(A.SilvaCardoso),bodare@georisk.se(A.Bodare).0267-7261/$-seefrontmatter&2009ElsevierLtd.Allrightsreserved.doi:10.1016/j.soildyn.2009.11.002

n

quasi-staticexcitationpresentsareducedcontributiontotheresponseatthefree-?eld,althoughthetrackresponseisconditionedbythismechanism.However,theimportanceofthequasi-staticexcitationincreaseswhenthetrackcrossesregionsofsoftsoilsandthetrainspeedreachesthephasevelocityofthesystem.Inthesecases,highampli?cationsareidenti?ed[3,5],whicharenotcompatiblewiththeassumptionofsmall-strainsintheground,asusuallyconsideredintheanalysisofvibrationsinducedbytraf?c.

Duringthecurrentdecade,fewpredictionmodelsweredevelopedwithdifferentdegreesofcomplexityandaccuracy.However,inauthors’knowledge,almostalltheanalysesdevel-opeduntilnowwerebasedonelasto-dynamictheory,undertheassumptionthatstrainsinducedbythetraf?careboundedintherangeofverysmallstrains,thusnotinvolvingsoilstiffnessdegradation.

Thispaperisfocusedonthepredictionofthedynamicresponseofthetrack,includingtheeffectsofsoilnon-linearity.Intheauthors’opinion,theeffectofstiffnessdegradationwiththestrainlevelhasnotbeenappropriatelytakenintoaccountyet.Inthiscontext,thefewexperimentalcasestudiesperformeduntilnow,whereseveralmeasurementshavebeenobtained,areveryusefultoidentifythemaintrendsoftheproblemandtocalibrateandvalidatethenumericalmodels.Oneofthosecasesisthewell-knowncaseofLedsgard,atSweden,whereseveraltestswereperformedfordistincttrainspeeds,someofthemclosetothecriticalspeedofthesystem[6,7].Thiscasestudyhasbeenusedasbenchmarkbyseveralresearchers[4,7–11].Inthestudycon-ductedbyMadshusandKaynia[4]andalsobyHall[7],the

2.5D维有限元经典文献,把等效线性化模型应用到其中。

222

P.AlvesCostaetal./SoilDynamicsandEarthquakeEngineering30(2010)221–235

authorsrecognizedtherelevanceoftheconsiderationofthenon-linearbehaviourofthesoilandtriedtocontemplatethiseffectusingasimpli?edapproach.

Thestudiespresentedinthispaperrepresentanadvanceinknowledgeinthis?eldofresearch,namelywhencomparedwiththestudiespresentedbyMadshusandKaynia[http://wendang.chazidian.comparingbothstudies,severalimprovementscanbepointedout:(i)thegroundismodelledbya2.5D?niteelementapproach;ina2.5D?niteelementapproach,the3Dresponseofthegroundiscomputedassumingthatthestructureisinvariantalongthedevelopmentdirectionofthetrack;(ii)intheproposedapproach,thetrackandtheembankmentaresimulatedattendingtotheirspeci?ccharacteristics;theembankment,aswellastheground,issimulatedbymeansof2.5D?niteelements,whichallowfortheinclusionoftherealgeometryoftheembankmentanditsmechanicalbehaviour;(iii)thenon-lineareffectsarehandledintheproposedmodelthrougha‘‘true’’equivalentlinearanalysis,i.e.,theconvergenceisobtainedelement-by-element,whichinducesatransverseinhomogeneityinthegroundduetothefactthatthenon-lineareffectsaremorepronouncedalongtherailwaytrackthanatthefar-?eld.Inthefollowingsections,themaincharacteristicsoftheproposedmodelareoutlined.

Followingacommonstrategyforresolutionofsoildynamicsproblems,themodelpresentedinthispaperconsidersthenon-linearsoilbehaviourthroughtheequivalentlinearapproach,whichconstitutesacompromiseoptionbetweenaccuracyandcomplexity.Afteridentifyingthemechanismsofvibrationgen-erationandtheirimportancefortheresponseofrailwaytrackanditssurroundingsoilmass,itisassumed,forthepresentcasestudy,thatthemainmechanismofvibrationisquasi-static,forthereasonspointedoutabove.Theextensionofthemodeltowardsincludingthedynamicexcitationisasimplestepfromthepointofviewoftheformulation;however,thecomputationaleffortisdrasticallyincreased.

Asinothernumericalmodels,thepresentmodelisbasedonthe‘‘two-and-a-half’’dimensionconcept.Thismethodologyleadstoanef?cientcomputationscheme,usingFouriertransformswithrespecttothespatialcoordinatealongthetrack.Thisisthemainadvantageofthiskindofmodelsbutitisalsoitsmaindrawback,sinceitimpliestheassumptionofinvariabilityofgeometryandofmechanicalpropertiesalongthatdirection.Concerningthenumericalmethoditself,the2.5D?niteelement(2.5DFEM)formulationadoptedissimilartotheoneusedbyMuller[12],YangandHung[13]andShengetal.[14].Toavoidspuriousre?ectionsonarti?cialboundaries,2.5Din?niteelements(2.5DIEM)areused.ThismodelismoreversatilethanthemodelsbasedonGreen’sfunctionsconcept,sinceitallowsfortheconsiderationofanarbitrarycross-sectionforthetrack/groundsystem.

The2.5DFEM–IEMiscoupledwithaniterative,element-by-element,methodology;asaresult,successivelinearelasticequivalentanalysesareperformed,wherethestiffnesspropertiesareadjustedtomatchthemechanicalpropertiesandthestrainlevel,untiltheconvergencecriterionisreached.

Inthepresentstudy,theresultsofseveralsimulationsarecomparedwith?eldmeasurementsandthein?uenceofthenon-linearityofthesoilontheresponseofthetrackisanalyzedanddiscussed.

2.Numericalmodel

2.1.2.5D?niteelementmethodformodellingboundedregionsTheapplicationofthe2.5D?niteelementsiscon?nedto

structureswhichcanbeassumedtohavein?nitedevelopmentandinvariantpropertiesinonedirection,asillustratedinFig.1.In

thesecasesthestructureis2D,sincethecross-sectionremainsinvariableinthelongitudinaldirection,buttheloadingis3D.Themainconceptbehindtheproposedsolutiontotheproblemistheuseofamethodwhichisbetweenthetwo-dimensionalandthethree-dimensionaldomain.Thismethodwas?rstlyproposedbyHwangandLysmer[15]forthestudyofundergroundstructuresundertravellingseismicwaves.Subsequently,themethodhasbeenappliedbyafewresearcherstothestudyofvibrationsinducedbytraf?c.Inthis?eld,specialattentionshouldbededicatedtotheworksofMuller[12],YangandHung[13],Shengetal.[14]andAlvesCosta[16].

Assumingthattheresponseofthestructureislinear,theanalysiscanbecarriedoutonthewavenumber/frequencydomain.Allthevariables,i.e.,loads(action)anddisplacements(response),mustbetransformedtothewavenumber/frequencydomainbymeansofadoubleFouriertransform,relatedwiththedirectionalongthetrack(xdirection)andwithtime.TransformedquantitieswillbedenotedasfunctionsoftheFourierimagesofxandt,de?nedaswavenumberandfrequency,arerepresentedbyk1ando,respectively.

Followingtheusualstepsofthe?niteelementprocedure,namelythestrongandweakformulations,thefollowingequili-briumequationcanbederivedforanypointofathree-dimensionaldomain:Z

desdVþZ

dur@2uiðx;tÞ

dVZ

dupdSð1Þ

VV

@t2¼

S

wheredeisthevirtualstrain?eld,srepresentsthestress?eld,du

isthevirtualdisplacement?eld,uisthedisplacement?eld,risthemassdensityandprepresentstheappliedloads.

Afterthetransformation,thecross-sectionofthedomainremainsontheuntransformeddomainandisdiscretizedinto?niteelements.ThisapproachenablestorewriteEq.(1)intermsofnodalvariables.

Inordertoapplytheconceptofvirtualworkonthetransformeddomain,someconsiderationsmustbeattended,namelytheParserval’stheorem[12,17,18]:Z

dfðxÞpðxÞdx¼

Z

dfðÀk1Þpðk1Þdk1

ð2Þ

Eq.(2)providestheformulationoftheprincipleofvirtualworksinthetransformeddomain.ConsideringEq.(1),thevirtualworkoftheinternalstressesandinertialforcesinthetransformeddomainisgivenby,respectively:Z

desdV¼

Z

duTÞ

ZZ

BTðÀk1ÞDBðk1Þdydzunðk1;oÞdk1

V

knðÀk1;

o1

z

y

ð3

内容需要下载文档才能查看

Þ

Fig.1.In?niteandinvariantstructureinonedirection(after[13]).

2.5D维有限元经典文献,把等效线性化模型应用到其中。

P.AlvesCostaetal./SoilDynamicsandEarthquakeEngineering30(2010)221–235

223

Z

dur@2uðx;tÞZ

@tdV¼Ào2

duTZ

1;

ZNTrNdydzunðk1;oÞdk1

V

knðÀk1

z

y

ð4Þ

whereBisthematrixwiththederivativesoftheshapefunctions;Nistheshapefunctionmatrix;Disthestrain–stressmatrix;unisthevectorofnodaldisplacements(inthetransformeddomain).

ThevirtualworkdonebytheexternalloadsiscomputedtakingadvantageofthefactthatthegeometryisonlydiscretizedontheZYplane.So,consideringacoordinates,paralleltotheedgeoftheelementwheretractionisapplied,thevirtualworkdevelopedbytheloadsystemisgivenby

Z

dupdS¼

Z

duTZ

T

Z

1;oÞdsdk1¼

duTÞpnðk1;oÞdk1

S

knðÀk1;oÞNpðk1

s

knðÀk11

ð5Þ

ReplacingandrearrangingEqs.(3)–(5)onEq.(1)yields

??ZZBTðÀk1ÞDBðk1ÞdydzÀo2ZZ

NTrNdydz unðk1;oÞ¼pnðk1;oÞ

z

y

z

y

ð6Þ

Adoptingtheclassic?niteelementnotation,resultson½K ¼ZZBTðÀk1ÞDBðk1Þdydz

ð7Þ

z

y

and½M ¼

ZZ

NTrNdydz

ð8Þ

z

y

where[K]and[M]arethestiffnessandmassmatrices,respectively.

Asusual,thematrix[B]isderivedfromtheproductofthedifferentialoperatormatrix[L](onthetransformeddomain)withthematrix[N].Sincethedirectionxistransformedtothewavenumberdomain,thederivativesinordertok1areanalyti-callycomputed,aspresentedinthefollowingexpression:

2@3T6ik@1

00607½L ¼666@@760

6@y0ik1@z0777ð9Þ

40

@@7@z

ik7@y

1

5Dampingisintroducedbyahystereticdampingmodel,i.e.,consideringcomplexstiffnessparameters.

Thecomputationalef?ciencycanbeimprovedbydividingmatrix[K]intosub-matrices,independentofthewavenumberandfrequency.Thisstepisdevelopedconsideringthematrix[B]astheresultoftheadditionoftwomatrices,wherethenumericalandanalyticalderivativesareseparated.Inthatcase,Eq.(6)canbereplacedby

ð½K 1þik1½K 2þk22

1½K 3Ào½M Þunðk1Þ¼pnðk1Þ

ð10Þ

Theglobalsystemofequationsiscompletelyde?nedaftertheassemblyoftheindividualmatricesofeachelementandthede?nitionoftheNewmanandDiricheletboundaryconditions.Theresultsobtainedaftersolvingthesystemofequationsareinthetransformeddomain,requiringadoubleinverseFouriertransform,inordertode?neasolutioninthespace/timedomain.

Theadvantageofthemethodinrelationtothefullythree-dimensional?niteelementmethodisevident:insteadofsolvingasystemofequationswithahighnumberofdegreesoffreedom,asmallersystemofequationsissolvedmanytimes,correspondingtoarangeofwavenumbers.Thisprocedurerepresentsagreatreductionofcomputationaltime.

2.2.Modellingunboundedregionsthroughin?niteelementsManycivilengineeringstructurescanbeidealizedasresting

ontheground,which,forpracticalpurposes,canbeconsideredunbounded.Forstaticproblems,thecontributionofthegroundisre?ectedintermsofstiffness,soitispossibletotruncatethedomainatasuf?cientlyfardistancewherethegrounddeforma-tionissosmallthatitcanbeneglected.However,indynamicanalyses,thegroundmodelshouldful?ltherequirementsofrepresentingthedynamicgroundstiffnessbutalsotheradiationconditions.Thelatterrequirementdemandsaspecialtreatmentoftheboundaryconditions,sincespuriousre?ectionofthewavesattheboundariesshouldnotoccur.Arigorousapproachcanbereachedusing?niteelementstorepresentthenear-?elddomainandboundaryelementstosimulatethefar-?elddomain.Thisapproachhasbeenusedinthecontextof2.5Dmodellingbyseveralresearcherswithsatisfactoryresults[12–14,16].Anotherapproachconsistsontheuseofabsorbingboundaryconditionsorin?niteelements.

Inthispaper,theauthorsoptedforusingin?niteelementsduetothesimplicityofitsnumericalimplementation.Inthein?niteelementsformulation,similarlytothe?niteelementsformula-tion,the?eldvariableisapproximatedbyshapefunctions.However,theshapefunctionsforthein?niteelementsmustbemoreelaborated,sincethesehavetorepresenta‘‘reasonable’’behaviourofthe?eldvariabletowardsin?nite[19].Inelasto-dynamicharmonicconditions,thispurposecanbereachedbythecombinationofthreefunctions:(i)astandardshapefunction,(ii)adecayfunction,and(iii)anoscillatoryfunction.Theissueiscomplexinelasto-dynamicproblemssincethereisnolongerauniquewavespeed,evenforahalf-spaceproblem.Thisproblemcanbeovercomebymeansofspecialin?niteelements,whichrepresentthecharacteristicsofmultiplewavespropagatingintotheunboundouterdomainofthemedia[20];however,thisprocedureincreasesitscomplexity.Alternatively,asdemon-stratedbyYangandHung[13],theuseofconventionalin?niteelementscombinedwithcriteriaforthechoiceofthedecayandoscillatoryfactorscanleadtoaccurateresultsevenformovingloadproblems.So,inthepresentwork,theauthorsdecidedontheuseofthein?niteelementsproposedbytheaforementionedauthors.

Aschematicrepresentationoftheadoptedin?niteelementsispresentedinFig.2.Thedisplacementshapefunctionsoftheelementarede?nedbyN1¼

12

ZðZÀ1ÞeÀaxeik0

xð11Þ

NÞðZþ1ÞeÀaxeik0

2¼ÀðZÀ1x

ð12

内容需要下载文档才能查看

Þ

Fig.2.In?niteelements:(a)globalcoordinatesand(b)localcoordinates(after[13]).

2.5D维有限元经典文献,把等效线性化模型应用到其中。

224

P.AlvesCostaetal./SoilDynamicsandEarthquakeEngineering30(2010)221–235

N3¼

1ZðZþ1ÞeÀaxeik0

xð13Þ

whereaandk0arethedecayandoscillatoryfactors,respectively.Fordetailsregardingtheselectionprocedureofvaluesforthesefactors,readersshouldrefertotheworksofYangetal.[13,21].

Havingde?nedtheshapefunctionsofthein?niteelements,theusual?niteelementprocedureisapplied,i.e.,thestiffnessandmassmatricesofeachin?niteelementarecomputedandaddedtotheglobalmatrices,formingtheglobalsystemofequations.2.3.Modellingparticularelements:sleepersandrails

Thesleepersarediscontinuouselementsandtheconsiderationofthisdiscontinuityincreasesthedif?cultyoftheirimplementa-tionona2.5Dmodel.However,someauthorshavemodelledtheinherentinhomogeneityofthesleepers,havingconcludedthatthecomputationaleffortwasdisproportionatewhencomparedwiththeobtainedincreaseofaccuracy[11,22,23].

Inthiswork,thesleepersaremodelledconsideringanequivalentcontinuousformulation,whichrepresentsacompro-misesolutionbetweencomplexity/computationalcostandaccu-racy.Theadoptedformulationisthemostusualforthistypeofproblems;nevertheless,thecomparisonbetweencomputedandexperimentalresultsprovedtobesatisfactory,mainlywhentherelevantfrequencieswerebelow500Hz,asshowedinthereceptancetestsperformedbyKnotheandGrassie[24]andKnotheandWu[25].Sheng[23]alsodedicatedattentiontothisissueand,aftercomparingtheoreticalresultsoftheverticaldynamicresponseinducedonaperiodicmodelandonanequivalentcontinuousmodel,concludedthatforfrequenciesupto250Hztheresultsobtainedbythetwodistinctformulationsareverysimilar.TakemiyaandBian[11]developedaninhomo-geneoustrackmodelwherethesleepersweresimulatedusingadiscreteformulationandalsoconcludedthat,forlow-frequencyanalyses,theuseofadiscretemodelforthesleeperswouldnotbeadvantageous,evenwhenthesoilbeneaththetrackpresentspoormechanicalproperties.Therefore,equivalentcontinuoustrackmodelsprovideareliablepredictionofthetrackreceptance,butdonotaccountforparametricexcitationasthesmallspatialvariationofthesupportstiffnessofthediscretelysupportedtrackisdisregarded[5,26].

Thedevelopedmethodpresentssomeimprovementsinrelationtootherequivalentcontinuousmethodspreviouslyproposedbyotherauthors,sincealmostallotherstudiesconsidertheinertialeffectofthesleepersbutdisregarditsstiffnessinthecrossdirection.Anexceptionmustbementioned,relativelytotheworkdevelopedbyKarlstromandBostrom[10]whereanisotropicKirshoffplateswereusedtosimulatethesleepers.

Inthispaper,themethodproposedbyKarlstromandBostrom[10]isusedasastartingpointforthedevelopmentofthesleepersmodel.InsteadofKirshoffplates,assuggestedbytheabovereferredauthors,theimplementedformulationmakesuseofvolumetricelementsinthe2.5Dsense.Theconstitutivemodelisbasedonananisotropicformulation,wherethephysicalproper-tiesofthesleepersareappliedtode?nethecontinuousequivalentstiffnesspropertiesofthemodelontheplaneperpendiculartothetrackdirection(xdirection).Inturn,regardingthepropertiesonthexdirection,theirstiffnesscanbeassumedeitherclosetozeroorclosetothestiffnessoftheballast,sincethesleepersareusuallyembeddedintheballast.Inwhatconcernstherails,Euler–Bernoullibeamsconnectedtotherestofthe?eldbyrailpadsareused,asillustratedinFig.3.TheselectedoptionofEuler–BernoullibeamsinsteadofTimoshenkobeamsresidesonthefactthat,forfrequenciesupto500Hz,theresultsprovidedbybothformulationsareidentical[27],buttheEuler–

Fig.3.Rail–sleeperconnection.

Bernoullibeammodeliseasiertoimplementinanumericalcode.Somesimpli?cationsareassumed,suchas,forexample,theconnectionbetweentherailandthesleepersisassumedtobecontinuousandonlyonedegreeoffreedomisconsidered,correspondingtotheverticaldisplacement.Thesesimpli?cationsareperfectlyadmissibleforrailwaytrackmodels,asexplainedin[5,24,25].

Themotionoftherailinthetransformeddomainisexpressedbythefollowingsystemofequations:

B"#BEIk4þkÃpÀkÃ

1p??mr??1@20CÀkÃ|???????????????pkÃÀop0CA(?{z????????????????}½K rail

|??????{z??????}0

½M railurail

)

u¼fPgð14Þ

|???????sleeper?{z????????}|{z}fuwhereEIisthebendingstiffnessoftherail;kpisthecomplexstiffnessoftherailpad,mristhemassperunitlengthoftherail;andthevectorsuandfarethevectorsofdisplacementsandloads,respectively.Thesuperscriptsymbolninkprepresentscomplexstiffnessinordertohaverailpad’sdampingintoaccount.Inthiscase,kÃp¼kpþiocp,wherecpistheviscousdampingfactorandkpisthestiffnessoftherailpad.

Thestiffnessandmassmatricesoftherailarethenassembledtotheglobaldynamicsystemofequations.Animprovednumericalperformanceisobtainedbythesubdivisionofmatrix[K]railintosub-matrices,totallyindependentofthewavenumber;thiscanbeachievedbyfollowingtheprocedureexplainedabove.2.4.Equivalentlinearanalysis

Whenlargestrains,i.e.between10À4and10À2,canbeexpected,theuseofanequivalentlinearmodelmaybenecessary.Withtheincreaseofthestrainlevel,thestiffnesstendstodecreaseandthedissipationofenergytendstoincrease,asillustratedinFig.4forasymmetriccyclicloadingcondition[28,29].

ThehystereticloopsrepresentedinFig.4canbedescribedby:(i)thepathofloopitselfand(ii)theparametersdescribingthegeneralshapeoftheloopanditsevolutionwiththestrainlevel.Todescribethepathofloopsanditsevolutionwithstrainlevel,acyclicnon-linearmodelmaybeused[30].However,anaveragebehaviourcanbedescribedbytwoimportantparametersofeachloop:itsinclination(stiffness)anditsbreadth(damping).Thelatterapproachisusedinthispaper.Forthedevelopmentofanequivalentlinearanalysis,twomainparametersareneeded:(i)theelasticpropertiesforverysmallstrains(usuallyobtainedfromthepropagationvelocityofSandPwaves)and(ii)thelawsdescribingstiffnessdegradationanddampingincreasewith

内容需要下载文档才能查看

the

2.5D维有限元经典文献,把等效线性化模型应用到其中。

P.AlvesCostaetal./SoilDynamicsandEarthquakeEngineering30(2010)221–235

225

increaseofthestrainlevels.Theselawsshouldbeobtainedfromlaboratorytestsor,initsabsence,fromcorrelationswithsomephysicalparametersofthesoil[31,32].Fig.5showstheglobalaspectofthetypicaldegradationlawsandtheirdependenceontheplasticityindex(PI)andmeancon?ningstress(s0m)[32].

Inordertoaddressthisproblem,anobjectivede?nitionofstrainlevelateach?niteelementisrequired.Inthree-dimen-sionalproblems,thestrainlevelisusuallyde?nedbytheeffectiveoctahedralshearstrainasproposedbyHalabianandNaggar[33]andLysmeretal.[34].Theeffectiveoctahedralshearstrainiscalculatedby

q????????????????????????????????????????????????????????????????????????????????????????????????????122geff¼að15ÞðexÀeyÞ2þðexÀezÞ2þðeyÀezÞ2þ6ðg2xyþgxzþgyzÞ3whereaisaparameterinthe0.5–0.7interval.Inthiswork,ais

assumedequalto0.65asitisusuallyconsideredinseismicanalysis.Thevariableseiandgicorrespondtothestrainsofthestraintensor.

Regardingthenumericalprocedure,itispossible,foradiscretizedmediumthroughanelement-by-elementprocedure,tocomputetheinducedstrainateachelementandtomakecorrectionstothepropertiesuntilanagreementisobtainedwith

theinvolvedstrains.Intheimplementedmodel,itisassumedthatthepropertiesareconstantinsideeach?niteelement,sothestrainsinthecentrepointofeachelementareconsideredrepresentativeofthestrainsinwholeelementdomain.

Fortheupdateofthepropertiesoftheelements,anumberoflinearproblemsaresuccessivelysolveduntilamatchbetweenthestrainlevelandthedynamicpropertiesofthesoilisobtained.Thecomputationalprocedurecanbesummarizedasfollows:1.Assumelow-strainpropertiesforallelements.

http://wendang.chazidian.comingthevalueofgieff,choosenewequivalentlinearvalues,

i+1i+1

Gsecandx,forthenextiteration.

4.Repeatsteps2and3untilthedifferencesbetweencomputedshearmodulusanddampingintwosuccessiveiterationsfallbelowapreviouslyestablishedtoleranceforall?niteelements.Concerningtheconvergencetolerance,avalueof3%is,intheauthors’opinion,consideredacceptable,sincethelinearequiva-lentmodelisanapproximationtotherealproblem.

Itisimportanttobearinmindthateventhoughthelinearequivalentanalysisallowsforanapproximationtothenon-linearsoilbehaviour,theresponseisperformedbyalinearelasticmethod.Thismeansthatthemethodisincapableofrepresentingthechangeofthesoilpropertiesthatactuallyoccurduringthepassageofthetrain[30].Moreover,theapplicationofthismodelinthecontextof2.5D?niteelementsdealswithanapproxima-tioninherenttothemodel:thepropertiesremainconstantinthedirectionalongthetrack,meaningthattheconsidereddegrada-tionprocessisindependentofthetrainposition.

3.Theoreticalvalidation

ThenumericalmodelpresentedintheprevioussectionwasimplementedbytheauthorsinthenumericalplatformMatlab.Sincethemodelisdevelopedinthefrequencydomain,itispossibletotakeadvantageofthenumericalcomputationaltoolsavailableinMatlab2009forparallelprocessing,whichallowforaconsiderablereductionofthecomputationaltime.

Inordertocheckthereliabilityandaccuracyoftheproposedapproachforthedynamicanalysisofthegroundresponseundermovingloadactions,asmallexample,whichwaspreviously

内容需要下载文档才能查看

Fig.4.Stress–strainpathduringcyclic

内容需要下载文档才能查看

loading.

10.90.80.7Gsec/Gmax0.60.50.40.30.20.1010-6

10-5

10-4

10-3

10-2

10-1

Cyclic shear strain amplitude

内容需要下载文档才能查看

1

0.90.80.7Gsec/Gmax0.60.50.40.30.20.1010-6

10-510-410-310-210-1Cyclic shear strain amplitude

Fig.5.Modulusreductioncurvesfor:(a)non-plasticsoilsand(b)plasticsoils(after[32],adapted).

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

2017云南公务员考试行测资料分析重点解读:比重
2007年云南省玉溪市公务员考试面试题及答案解析(10月23日)
2017云南省公务员面试题库:面试每日一练结构化面试模拟题答案4.27
2017云南公务员考试申论解读:心怀过去,活在当下
2017云南公务员面试题库:面试每日一练结构化面试模拟题答案5.09
2016云南公务员面试热点模拟题:如何劝说商贩
2017云南公务员面试题库:面试每日一练结构化面试模拟题答案5.11
2013年云南曲靖面试真题解析(3)(7月22日下午)
2007年云南省省直公务员录用考试面试题及答案解析(10月27日)
2017云南公务员面试题库:面试每日一练结构化面试模拟题5.10
2016云南公务员面试模拟题:论规矩
2017云南公务员面试题库:面试每日一练结构化面试模拟题答案5.19
2013年云南曲靖面试真题解析(2)(7月22日下午)
2016云南公务员面试模拟题:改变“重涨不重跌”现象 切实保障农民利益
2017云南公务员面试题库:面试每日一练结构化面试模拟题答案6.19
2013年云南曲靖面试真题解析(1)(7月22日下午)
2013云南曲靖公务员面试真题解析(2)(7月22日上午)
2013云南曲靖公务员面试真题解析(1)(7月22日上午)
2016云南公务员面试模拟题:全面放开二孩政策
2007年云南玉溪直属机关公务员考试面试题及答案解析(10月27日上午)
2017云南公务员面试题库:面试每日一练结构化面试模拟题答案5.10
2017云南公务员面试题库:面试每日一练结构化面试模拟题5.19
2017云南公务员面试题库:面试每日一练结构化面试模拟题5.18
2017云南公务员面试题库:面试每日一练结构化面试模拟题答案6.12
2008年云南省曲靖市公务员录用考试面试题及答案解析(11月11日)
2016云南公务员面试模拟题:“狗占人座”
2017云南公务员考试申论真题材料
2017云南公务员面试题库:面试每日一练结构化面试模拟题5.11
2008年云南省玉溪市公务员考试面试题及答案解析(11月5日)
2017云南公务员面试题库:面试每日一练结构化面试模拟题6.19

网友关注视频

外研版英语三起6年级下册(14版)Module3 Unit1
8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
二年级下册数学第三课 搭一搭⚖⚖
苏科版数学七年级下册7.2《探索平行线的性质》
沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
苏科版八年级数学下册7.2《统计图的选用》
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
七年级英语下册 上海牛津版 Unit5
外研版英语三起6年级下册(14版)Module3 Unit2
外研版英语三起5年级下册(14版)Module3 Unit2
沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
人教版二年级下册数学
六年级英语下册上海牛津版教材讲解 U1单词
北师大版小学数学四年级下册第15课小数乘小数一
外研版英语七年级下册module3 unit2第二课时
30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
沪教版八年级下册数学练习册21.3(3)分式方程P17
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
冀教版小学英语五年级下册lesson2教学视频(2)
七年级英语下册 上海牛津版 Unit3
沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
二年级下册数学第一课
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省