Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides
上传者:吕宏伟|上传时间:2015-05-07|密次下载
Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides
PHYSICALREVIEWX5,011029(2015)
WeylSemimetalPhaseinNoncentrosymmetricTransition-MetalMonophosphides
HongmingWeng,1,2,*ChenFang,3ZhongFang,1,2B.AndreiBernevig,4andXiDai1,2
BeijingNationalLaboratoryforCondensedMatterPhysics,andInstituteofPhysics,
ChineseAcademyofSciences,Beijing100190,China
2
CollaborativeInnovationCenterofQuantumMatter,Beijing100084,China
3
DepartmentofPhysics,MassachusettsInstituteofTechnology,Cambridge,Massachusetts02139,USA
4
DepartmentofPhysics,PrincetonUniversity,Princeton,NewJersey08544,USA
(Received12January2015;published17March2015)Basedonfirst-principlecalculations,weshowthatafamilyofnonmagneticmaterialsincludingTaAs,TaP,NbAs,andNbPareWeylsemimetals(WSM)withoutinversioncenters.WefindtwelvepairsofWeylpointsinthewholeBrillouinzone(BZ)foreachofthem.Intheabsenceofspin-orbitcoupling(SOC),bandinversionsinmirror-invariantplanesleadtogaplessnodalringsintheenergy-momentumdispersion.ThestrongSOCinthesematerialsthenopensfullgapsinthemirrorplanes,generatingnonzeromirrorChernnumbersandWeylpointsoffthemirrorplanes.Theresultingsurface-stateFermiarcstructuresonboth(001)and(100)surfacesarealsoobtained,andtheyshowinterestingshapes,pointingtofascinatingplaygroundsforfutureexperimentalstudies.
DOI:10.1103/PhysRevX.5.011029
SubjectAreas:CondensedMatterPhysics,
MaterialsScience,TopologicalInsulators
1
I.INTRODUCTION
Mosttopologicalinvariantsincondensed-matternon-interactingphasesaredefinedonclosedmanifoldsinmomentumspace.Forgappedsystems,boththeCherninsulatorandZ2topologicalinsulatorphasescanbedefinedusingtheBerryphaseandcurvatureineithertheentireorhalfofthetwo-dimensional(2D)Brillouinzone(BZ),respectively[1,2].Asimilarideacanbegeneralizedtogaplessmetallicsystems.Inthree-dimensional(3D)sys-tems,besidestheBZ,animportantclosedmanifoldinmomentumspaceisa2DFermisurface(FS).TopologicalmetalscanbedefinedbyChernnumbersofthesingle-particlewavefunctionsattheFermisurfaceenergies[3–5].SuchnonzeroFSChernnumbersappearwhentheFSenclosesaband-crossingpoint—theWeylpoint—whichcanbeviewedasasingularpointofBerrycurvatureor“magneticmonopole”inmomentumspace[6–9].MaterialswithsuchWeylpointsneartheFermilevelarecalledWeylsemimetals(WSM)[7–10].
Weylpointscanonlyappearwhenthespin-doubletdegeneracyofthebandsisremovedbybreakingeithertimereversalTorspacialinversionsymmetryP(infact,WeylpointsexistifthesystemdoesnotrespectT·P).Inthesecases,thelow-energysingle-particleHamiltonianarounda
*
hmweng@http://wendang.chazidian.com
PublishedbytheAmericanPhysicalSocietyunderthetermsoftheCreativeCommonsAttribution3.0License.Furtherdistri-butionofthisworkmustmaintainattributiontotheauthor(s)andthepublishedarticle’stitle,journalcitation,andDOI.
Weylpointcanbewrittenasa2×2“Weylequation,”whichishalfoftheDiracequationinthreedimensions.Accordingtothe“no-gotheorem”[11,12],foranylatticemodel,theWeylpointsalwaysappearinpairsofoppositechiralityormonopolecharge.TheconservationofchiralityisoneofthemanywaystounderstandthetopologicalstabilityoftheWSMagainstanyperturbationthatpre-servestranslationalsymmetry:TheonlywaytoannihilateapairofWeylpointswithoppositechiralityistomovethemtothesamepointinBZ.SincegenericallytheWeylscansitfarawayfromeachotherintheBZ,thisrequireslargechangesofHamiltonianparameters,andtheWSMisstable.TheexistenceofWeylpointsneartheFermilevelwillleadtoseveraluniquephysicalproperties,includingtheappear-anceofdiscontinuousFermisurfaces(Fermiarcs)onthesurface[7–9],theAdler-Bell-Jackiwanomaly[10,13–15],andothers[16,17].
ThefirstproposaltorealizeWSMincondensed-mattermaterialswassuggestedinRef.[7]forRn2Ir2O7pyro-chlorewithall-in/all-outmagneticstructure,where24pairsofWeylpointsemergeasthesystemundergoesthemagneticorderingtransition.ArelativelysimplersystemHgCr2Se4[9]wasthenproposedbysomeofthepresentauthors,whereapairofdouble-Weylpointsduetoquadraticbandcrossingappearwhenthesystemisinaferromagneticphase.Anotherproposalinvolvesafine-tunedmultilayerstructureofnormalinsulatorsandmag-neticallydopedtopologicalinsulators[18].TheseproposedWSMsystemsinvolvemagneticmaterials,wherethespindegeneracyofthebandsisremovedbybreakingtime-reversalsymmetry.Asmentioned,theWSMcanalsobe
2160-3308=15=5(1)=011029(10)011029-1PublishedbytheAmericanPhysicalSociety
WENGetal.
generatedbybreakingthespatialinversionsymmetryonly,amethodwhichhasthefollowingadvantages.First,comparedwithmagneticmaterials,nonmagneticWSMaremuchmoreeasilystudiedexperimentallyusingangle-resolvedphotoemissionspectroscopy(ARPES)asalignmentofmagneticdomainsisnolongerrequired.Second,withoutthespinexchangefield,theuniquestructureofBerrycurvatureleadstoveryunusualtransportpropertiesunderastrongmagneticfield,unspoiledbythemagnetismofthesample.
Currently,thereareseveralrepresentativeproposalsforWSMgeneratedbyinversionsymmetrybreaking.Thefirstoneisasuperlatticesystemformedbyalternativelystack-ingnormalandtopologicalinsulators[19,20].Thesecondoneinvolvestelluriumorseleniumcrystalsunderpressure[21].ThethirdoneisthesolidsolutionsofABi1?xSbxTe3(A¼LaandLu)[22]andTlBiðS1?xRxÞ2(R¼SeorTe)[23]tunedaroundthetopologicaltransitionpoints[24].Thefourthoneisamodelbasedonzinc-blendestructure[25]withthefine-tuningoftherelativestrengthbetweenSOCandtheinversionsymmetry-breakingterm.Butnoneoftheaboveproposalshasbeenrealizedexperimentally.Inthepresentstudy,wepredictthatTaAs,TaP,NbAs,and
PHYS.REV.X5,011029(2015)
NbPsinglecrystalsarenaturalWSM,http://wendang.chazidian.comparedwiththeexistingproposals,thisfamilyofmaterialsiscom-pletelystoichiometricand,therefore,areeasiertogrowandmeasure.UnlikeinthecaseofpyrochloreiridatesandHgCr2Se4,whereinversionisstillagoodsymmetryandtheappearanceofWeylpointscanbeimmediatelyinferredfromtheproductoftheparitiesatallthetime-reversalinvariantmomenta(TRIM)[26–28],intheTaAs,familyparityisnolongeragoodquantumnumber.However,theappearanceofWeylpointscanstillbeinferredbyanalyzingthemirrorChernnumbers(MCN)[29,30]andZ2indices[26,31]forthefourmirrorandtime-reversalinvariantplanesintheBZ.Similartomanyothertopologicalmaterials,theWSMphaseinthisfamilyisalsoinducedbyatypeofband-inversionphenomena,which,intheabsenceofspin-orbitcoupling(SOC),leadstonodalringsinthemirrorplane.OncetheSOCisturnedon,eachnodalringwillbegappedwiththeexceptionofthreepairsofWeylpointsleadingtofascinatingphysicalpropertieswhichincludecomplicatedFermiarcstructuresonthesurfaces.
(a)(b)
c
As
b
a
Ta
(c)
10.80.60.4
(d)
4321
0.04
Energy (eV)
0.20-0.2-0.4-0.6-0.8-1Γ
Σ
S
Z
N
Γ
Z
X
ΓΓ
Σ
S
32
EF
0.02Energy(eV)
-0.02
NΓZXΓ
FIG.1.CrystalstructureandBrillouinzone(BZ).(a)ThecrystalsymmetryofTaAs.(b)ThebulkBZandtheprojectedsurfaceBZforboth(001)and(100)surfaces.(c)ThebandstructureofTaAscalculatedbyGGAwithoutincludingthespin-orbitcoupling.(d)ThebandstructureofTaAscalculatedbyGGAwiththespin-orbitcoupling.
011029-2
WEYLSEMIMETALPHASEINNONCENTROSYMMETRIC…
II.CRYSTALSTRUCTUREANDCALCULATIONMETHODS
Asallfourmentionedmaterialsshareverysimilarbandstructures,intherestofthepaper,wewillchooseTaAsastherepresentativematerialtointroducetheelectronicstructuresofthewholefamily.TheexperimentalcrystalstructureofTaAs[32]isshowninFig.1(a).Itcrystalizesinbody-centered-tetragonalstructurewithnonsymmorphicspacegroupI41md(No.109),whichlacksinversionsymmetry.Themeasuredlatticeconstantsarea¼b¼3.4348Åandc¼11.641Å.BothTaandAsareat4aWyckoffposition(0,0,u)withu¼0and0.417forTaandAs,respectively.WehaveemployedthesoftwarepackageOpenMX[33]forthefirst-principlescalculation.Itisbasedonnorm-conservingpseudopotentialandpseudo-atomiclocalizedbasisfunctions.Thechoiceofpseudopotentials,pseudo-atomicorbitalbasissets(Ta9.0-s2p2d2f1andAs9.0-s2p2d1),andthesamplingofBZwitha10×10×10gridhavebeencarefullychecked.Theexchange-correlationfunctionalwithinageneralizedgradientapproximation(GGA)parametrizedbyPerdew,Burke,andErnzerhofhasbeenused[34].Afterfullstructuralrelaxation,weobtainthelatticeconstantsa¼b¼3.4824Å,c¼11.8038Åandoptimizedu¼0.4176fortheAssite,inverygoodagreementwiththeexperimentalvalues.TocalculatethetopologicalinvariantsuchasMCNandsurfacestatesofTaAs,wehavegeneratedatomiclikeWannierfunctionsforTa5dandAs4porbitalsusingtheschemedescribedinRef.[35].
III.RESULTS
A.Bandstructureswithandwithoutspin-orbitcoupling
WefirstobtainthebandstructureofTaAswithoutSOCbyGGAandplotitalongthehigh-symmetrydirectionsinFig.1(c).WefindclearbandinversionandmultiplebandcrossingfeaturesneartheFermilevelalongtheZN,ZS,andΣSlines.ThespacegroupoftheTaAsfamilycontainstwomirrorplanes,namely,MxandMy[shadedplanesinFig.1(b)]andtwoglidemirrorplanes,namely,MxyandM?xy[illustratedbythedashedlinesinFig.1(b)].TheplanespannedbyZ,N,andΓpointsisinvariantundermirrorMy,andtheenergybandswithintheplanecanbelabeledbymirroreigenvaluesÆ1.FurthersymmetryanalysisshowsthatthetwobandsthatcrossalongtheZtoNlinebelongtooppositemirroreigenvalues,andhence,thecrossingbetweenthemisprotectedbymirrorsym-metry.Similarbandcrossingscanalsobefoundalongotherhigh-symmetrylinesintheZNΓplane,i.e.,theZSandNSlines.Altogether,thesebandcrossingpointsforma“nodalring”intheZNΓplaneasshowninFig.2(b).UnlikeforthesituationintheZNΓplane,inthetwoglidemirrorplanes
PHYS.REV.X5,011029(2015)
(MxyandM?xy),thebandstructureisfullygapped,withaminimumgapofroughly0.5eV.
TheanalysisoforbitalcharactershowsthatthebandsneartheFermienergyaremainlyformedbyTa5dorbitals,whichhavelargeSOC.IncludingSOCinthefirst-principlecalculationleadstoadramaticchangeofthebandstructureneartheFermilevel,asplottedinFig.1(d).Atfirstglance,itseemsthatthepreviousbandcrossingsintheZNΓplaneareallgapped,withtheexceptionofonepointalongtheZNline.Detailedsymmetryanalysisrevealsthatthebands“2”and“3”inFig.1(d)belongtooppositemirroreigenvalues,indicatingthealmost-touchingpointalongtheZNlineiscompletelyaccidental.Infact,thereisasmallgapofroughly3meVbetweenbands“2”and“3”asillustratedbytheinsetofFig.1(d).TheZNΓplanethenbecomesfullygappedonceSOCisturnedon.
B.Topologicalinvariantsformirrorplane
andWeylpointsSincethematerialhasnoinversioncenter,theusualparitycondition[26–28]cannotbeappliedtopredicttheexistenceofWSM.Wethenresorttoanotherstrategy.Aspreviouslymentioned,thespacegroupofthematerialprovidestwomirrorplanes(MxandMy),wheretheMCNcanbedefined.IfafullgapexistsfortheentireBZ,theMCNwoulddirectlyrevealwhetherthissystemisatopologicalcrystallineinsulatorornot.Interestingly,asshownbelow,ifthesystemisnotfullygapped,wecanstillusetheMCNtofindoutwhetherthematerialhostsWeylpointsintheBZornot.Besidesthetwomirrorplanes,wehavetwoadditionalglidemirrorplanes(MxyandM?xy).AlthoughtheMCNisnotwelldefinedfortheglidemirrorplanes,theZ2indexisstillwelldefinedhereastheseplanesaretime-reversalinvariant.WethenapplytheWilson-loopmethodtocalculatetheMCNsforthetwomirrorplanesandZ2indicesforthetwoglidemirrorplanes.Here,wejustbrieflydescribetheessenceofthismethod.Foramoredetailedexplanationofthemethod,pleaserefertoRefs.[5,37].AWilsonloopisanarbitraryclosedk-pointloopinBZ,evaluatedaroundwhich,theoccupiedBlochfunctionsacquireatotalBerryphaseθðwÞ,withwbeingtheloopindex.OnecandefineaseriesofparallelWilsonloopswtofullycoveraclosed2Dmanifoldin3Dmomentumspace,suchasacutplaneinBZoraclosedFSasstatedinthebeginningofthispaper.Then,theevolutionofθðwÞalongtheseparallelWilsonloops(itturnsouttobea1Dproblem)givesinformationontheband-structuretopologyontheclosed2Dmanifold.Forexample,todeterminetheMCNsforthemirrorplaneMx,wedefineWilsonloopsalongthekxdirectionwithfixedkz.Alltheoccupiedbandsatkpointsinthisplanecanbeclassifiedintotwogroupsaccordingtotheireigenvaluesundermirroroperation,ior?i.Takingthosehavingeigenvaluei,theevolutionofBerryphasesalongtheperiodickzdirectioncanbeobtained,andtheMCNissimplyitswindingnumber.
011029-3
WENGetal.
TheresultsareplottedinFig.2(d),whichshowsthatMCNis1fortheZNΓplane(My)andtheZ2indexisevenortrivialfortheZXΓplane(Mxy).Then,ifweconsiderthe(001)surface,whichisinvariantundertheMymirror.ThenontrivialhelicalsurfacemodeswillappearbecauseofthenonzeroMCNintheZNΓplane,whichgeneratesasinglepairofFScutsalongtheprojectivelineoftheZNΓplane[thexaxisinFig.2(c)].WhethertheseFermicutswilleventuallyformasingleclosedFermicircleornotdependsontheZ2indexforthetwoglidemirrorplanes,whichareprojectedtothedashedbluelinesinFig.2(c).SincetheZ2indicesfortheglidemirrorplanesaretrivial,asconfirmedbyourWilson-loopcalculationplottedinFig.2(d),therearenoprotectedhelicaledgemodesalongtheprojectivelinesoftheglidemirrorplanes[dashedbluelinesinFig.2(c)],andtheFermicutsalongthexaxisinFig.2(c)mustendsomewherebetweenthexaxisandthediagonallines[dashedbluelinesinFig.2(c)].Inotherwords,theymustbeFermiarcs,indicatingtheexistenceofWeylpointsinthebulkbandstructureofTaAs.
PHYS.REV.X5,011029(2015)
FromtheaboveanalysisoftheMCNandZ2indexofseveralhigh-symmetryplanes,wecanconcludethatWeylpointsexistintheTaAsbandstructure.WenowdeterminethetotalnumberofWeylpointsandtheirexactpositions.Thisisahardtask,astheWeylpointsarelocatedatgenerickpointswithoutanylittle-groupsymmetry.Forthispurpose,wecalculatetheintegraloftheBerrycurvatureonaclosedsurfaceinkspace,whichequalsthetotalchiralityoftheWeylpointsenclosedbythegivensurface.BecauseofthefourfoldrotationalsymmetryandmirrorplanesthatcharacterizeTaAs,weonlyneedtosearchfortheWeylpointswithinthereducedBZ—one-eighthofthewholeBZ.WefirstcalculatethetotalchiralityormonopolechargeenclosedinthereducedBZ.Theresultis1,whichguaranteestheexistenceof,andoddnumberof,Weylpoints.TodeterminepreciselythelocationofeachWeylpoint,wedividethereducedBZintoaverydensek-pointmeshandcomputetheBerrycurvatureorthe“magneticfieldinmomentumspace”[35,38]onthatmesh,asshowninFig.3.Fromthis,wecaneasilyidentifytheprecise
(a)(b)
Σ
(c)
(d)
10.50-0.5
φΣ
-110.5
φπ
0-0.5-10
0.2
0.4
0.6
0.8
1
FIG.2.NodalringsandWeylpointsdistribution,aswellasZ2andMCNformirrorplanes.(a)3Dviewofthenodalrings(intheabsenceofSOC)andWeylpoints(withSOC)intheBZ.(b)Sideviewfrom[100]and(c)topviewfrom[001]directionsforthenodalringsandWeylpoints.OncetheSOCisturnedon,thenodalringsaregappedandgiverisetoWeylpointsoffthemirrorplanes(seemovieinSupplementalMaterial[36]).(d)Toppanel:FlowchartoftheaveragepositionoftheWanniercentersobtainedbyWilson-loopcalculationforbandswithmirroreigenvalueiinthemirrorplaneZNΓ.(d)Bottompanel:TheflowchartoftheWanniercentersobtainedbyWilson-loopcalculationforbandsintheglidemirrorplaneZXΓ.Thereisnocrossingalongthereferenceline(thedashedline),indicatingtheZ2indexiseven.
011029-4
WEYLSEMIMETALPHASEINNONCENTROSYMMETRIC…
(a)
内容需要下载文档才能查看 内容需要下载文档才能查看PHYS.REV.X5,011029(2015)
TABLEI.ThetwononequivalentWeylpointsinthexyzcoordinatesshowninFig.1(b).ThepositionisgiveninunitsofthelengthofΓ-ΣforxandyandofthelengthofΓ-Zforz.
Weylnode1
TaAsTaPNbAs(0.949,(0.955,(0.894,0.014,0.025,0.007,0.0)0.0)0.0)Weylnode2(0.520,(0.499,(0.510,0.037,0.045,0.011,0.592)0.578)0.593)(b)
appearanceofWeylpointscanalsobederivedfromak·pmodelwithdifferenttypesofmasstermsinducedbySOC,whichwillbeintroducedindetailintheAppendix.Thebandstructuresfortheotherthreematerials—TaP,NbAs,andNbP—areverysimilar.TheprecisepositionsoftheWeylpointsforallthesematerialsaresummarizedinTable.I.
C.Fermiarcsandsurfacestates
UniquesurfacestateswithunconnectedFermiarcscanbefoundonthesurfaceofaWSM.Thesecanbeunder-stoodinthefollowingway:ForanysurfaceofaWSM,wecanconsidersmallcylindersinthemomentumspaceparalleltothesurfacenormal.Inthe3DBZ,thesecylinderswillbecutbythezoneboundary,andtheirtopologyisequivalenttothatofaclosedtorusratherthanthatofopencylinders.IfacylinderenclosesaWeylpoint,byStokestheorem,thetotalintegraloftheBerrycurvature(Chernnumber)ofthisclosedtorusmustequalthetotal“monopolecharge”carriedbytheWeylpoint(s)enclosedinside.Onthesurfaceofthematerial,suchacylinderwillbeprojectedtoacyclesurroundingtheprojectionpointoftheWeylpoint,andasingleFermisurfacecutstemmingfromthechiraledgemodelofthe2DmanifoldwithChernnumber1(or?1)mustbefoundonthatcircle.Byvaryingtheradiusofthecylinder,itiseasytoshowthatsuchFSsmuststartandendattheprojectionoftwo(ormore)Weylpointswithdifferent“monopolecharge”;i.e.,theymustbe“Fermiarcs”[7,9,16].IntheTaAsmaterialsfamily,onmostofthecommonsurfaces,multipleWeylpointswillbeprojectedontopofeachother,andwemustgeneralizetheaboveargumenttomultipleprojectionsofWeylpoints.ItiseasytoprovethatthetotalnumberofsurfacemodesattheFermilevelcrossingaclosedcircleinsurfaceBZmustequalthesumofthe“monopolecharge”oftheWeylpointsinsidethe3Dcylinderthatprojectstothegivencircle.AnotherfactcontrollingthebehaviorofthesurfacestatesistheMCNintroducedinthepreviousdiscussion,whichlimitsthenumberofFSscuttingcertainprojectionlinesofthemirrorplane(whenthecorrespondingmirrorsymmetriesarestillpreservedonthesurface).
ByusingtheGreen’sfunctionmethod[5]basedonthetight-binding(TB)Hamiltoniangeneratedbytheprevi-ouslyobtainedWannierfunctions,wehavecomputedthe
FIG.3.BerrycurvaturefrompairsofWeylpoints.(a)ThedistributionoftheBerrycurvatureforthekz¼0plane,wheretheblueandreddotsdenotetheWeylpointswithchiralityofþ1and?1,respectively;(b)sameas(a)butforthekz¼0.592πplane.Theinsetsshowthe3DviewofhedgehoglikeBerrycurvaturenearthetwoselectedWeylpoints.
positionoftheWeylpointsbysearchingforthe“source”and“drain”pointsofthe“magneticfield.”TheWeylpointsinTaAsareillustratedinFig.2(a),wherewefind12pairsofWeylpointsinthevicinityofwhatusedtobe,intheSOC-freecase,thenodalringsontwoofthemirror-invariantplanes.Foreachofthemirror-invariantplanes,afterturningonSOC,thenodalringswillbefullygappedwithintheplane,butisolatedgaplessnodesslightlyoffplaneappear,asillustratedinFig.2(b).TwopairsofWeylpointsarelocatedexactlyinthekz¼0plane,andanotherfourpairsofWeylpointsarelocatedoffthekz¼0plane.Consideringthefourfoldrotationalsymmetry,itistheneasytounderstandthatthereareatotalof12pairsofWeylpointsinthewholeBZ.TheWeylpointsinthekz¼0planeareabout2meVabovetheFermienergyandformeighttinyholepockets,whiletheothersareabout21meVbelowtheFermileveltoform16electronpockets.The
011029-5
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 物理奥赛讲义汇编(陨中高一)
- 第2课时 幂的乘方
- 高中校园主持人初赛朗诵材料
- 高中数学平面几何拓展-数学竞赛知识
- 我和父母第一课时
- 中国腾飞,华夏骄傲
- 学案12(三单元2《阁夜》学生案)
- 反向假设法展开语段(教师版)
- 济南市中考体考成绩计算办法
- 让我们少一点浮躁
- 2012最后训练题
- 2013年全国高中生物联赛竞赛
- 美文2
- 专题二十二浮力及应用
- 放弃,是为了更好地获得作文点评
- 关于慎独
- 2015年全国高中数学联赛江苏赛区初赛参考答案与评分细则(定稿)
- 高一.2班真善美征文
- 2013年中考地理真题按年级分项汇编 八下
- 22015年潍坊市中考思想品德模拟试卷(二)
- 高中英语竞赛各类题材的写作技巧
- 【原创】高考应急作文
- 高中物理练习及解析第六套
- 动态规划 - 导入课
- 学案
- 湖屯足球:创“三纪录” 夺“双冠王” 圆“一个梦”
- 高考作文审题指导及写作范文
- 第一章电路基础知识复习提要
- 读书,给我能量
- 阳光下成长 高靖宇
网友关注视频
- 苏科版八年级数学下册7.2《统计图的选用》
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 《空中课堂》二年级下册 数学第一单元第1课时
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 外研版英语七年级下册module1unit3名词性物主代词讲解
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 小学英语单词
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 七年级英语下册 上海牛津版 Unit9
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 二年级下册数学第一课
- 冀教版小学数学二年级下册1
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 二年级下册数学第三课 搭一搭⚖⚖
- 外研版英语七年级下册module3 unit2第二课时
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
- 冀教版英语三年级下册第二课
- 七年级英语下册 上海牛津版 Unit3
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 外研版英语七年级下册module3 unit1第二课时
- 人教版二年级下册数学
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
- 北师大版数学四年级下册3.4包装
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理