教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> > 物理> Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides

Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides

PHYSICALREVIEWX5,011029(2015)

WeylSemimetalPhaseinNoncentrosymmetricTransition-MetalMonophosphides

HongmingWeng,1,2,*ChenFang,3ZhongFang,1,2B.AndreiBernevig,4andXiDai1,2

BeijingNationalLaboratoryforCondensedMatterPhysics,andInstituteofPhysics,

ChineseAcademyofSciences,Beijing100190,China

2

CollaborativeInnovationCenterofQuantumMatter,Beijing100084,China

3

DepartmentofPhysics,MassachusettsInstituteofTechnology,Cambridge,Massachusetts02139,USA

4

DepartmentofPhysics,PrincetonUniversity,Princeton,NewJersey08544,USA

(Received12January2015;published17March2015)Basedonfirst-principlecalculations,weshowthatafamilyofnonmagneticmaterialsincludingTaAs,TaP,NbAs,andNbPareWeylsemimetals(WSM)withoutinversioncenters.WefindtwelvepairsofWeylpointsinthewholeBrillouinzone(BZ)foreachofthem.Intheabsenceofspin-orbitcoupling(SOC),bandinversionsinmirror-invariantplanesleadtogaplessnodalringsintheenergy-momentumdispersion.ThestrongSOCinthesematerialsthenopensfullgapsinthemirrorplanes,generatingnonzeromirrorChernnumbersandWeylpointsoffthemirrorplanes.Theresultingsurface-stateFermiarcstructuresonboth(001)and(100)surfacesarealsoobtained,andtheyshowinterestingshapes,pointingtofascinatingplaygroundsforfutureexperimentalstudies.

DOI:10.1103/PhysRevX.5.011029

SubjectAreas:CondensedMatterPhysics,

MaterialsScience,TopologicalInsulators

1

I.INTRODUCTION

Mosttopologicalinvariantsincondensed-matternon-interactingphasesaredefinedonclosedmanifoldsinmomentumspace.Forgappedsystems,boththeCherninsulatorandZ2topologicalinsulatorphasescanbedefinedusingtheBerryphaseandcurvatureineithertheentireorhalfofthetwo-dimensional(2D)Brillouinzone(BZ),respectively[1,2].Asimilarideacanbegeneralizedtogaplessmetallicsystems.Inthree-dimensional(3D)sys-tems,besidestheBZ,animportantclosedmanifoldinmomentumspaceisa2DFermisurface(FS).TopologicalmetalscanbedefinedbyChernnumbersofthesingle-particlewavefunctionsattheFermisurfaceenergies[3–5].SuchnonzeroFSChernnumbersappearwhentheFSenclosesaband-crossingpoint—theWeylpoint—whichcanbeviewedasasingularpointofBerrycurvatureor“magneticmonopole”inmomentumspace[6–9].MaterialswithsuchWeylpointsneartheFermilevelarecalledWeylsemimetals(WSM)[7–10].

Weylpointscanonlyappearwhenthespin-doubletdegeneracyofthebandsisremovedbybreakingeithertimereversalTorspacialinversionsymmetryP(infact,WeylpointsexistifthesystemdoesnotrespectT·P).Inthesecases,thelow-energysingle-particleHamiltonianarounda

*

hmweng@http://wendang.chazidian.com

PublishedbytheAmericanPhysicalSocietyunderthetermsoftheCreativeCommonsAttribution3.0License.Furtherdistri-butionofthisworkmustmaintainattributiontotheauthor(s)andthepublishedarticle’stitle,journalcitation,andDOI.

Weylpointcanbewrittenasa2×2“Weylequation,”whichishalfoftheDiracequationinthreedimensions.Accordingtothe“no-gotheorem”[11,12],foranylatticemodel,theWeylpointsalwaysappearinpairsofoppositechiralityormonopolecharge.TheconservationofchiralityisoneofthemanywaystounderstandthetopologicalstabilityoftheWSMagainstanyperturbationthatpre-servestranslationalsymmetry:TheonlywaytoannihilateapairofWeylpointswithoppositechiralityistomovethemtothesamepointinBZ.SincegenericallytheWeylscansitfarawayfromeachotherintheBZ,thisrequireslargechangesofHamiltonianparameters,andtheWSMisstable.TheexistenceofWeylpointsneartheFermilevelwillleadtoseveraluniquephysicalproperties,includingtheappear-anceofdiscontinuousFermisurfaces(Fermiarcs)onthesurface[7–9],theAdler-Bell-Jackiwanomaly[10,13–15],andothers[16,17].

ThefirstproposaltorealizeWSMincondensed-mattermaterialswassuggestedinRef.[7]forRn2Ir2O7pyro-chlorewithall-in/all-outmagneticstructure,where24pairsofWeylpointsemergeasthesystemundergoesthemagneticorderingtransition.ArelativelysimplersystemHgCr2Se4[9]wasthenproposedbysomeofthepresentauthors,whereapairofdouble-Weylpointsduetoquadraticbandcrossingappearwhenthesystemisinaferromagneticphase.Anotherproposalinvolvesafine-tunedmultilayerstructureofnormalinsulatorsandmag-neticallydopedtopologicalinsulators[18].TheseproposedWSMsystemsinvolvemagneticmaterials,wherethespindegeneracyofthebandsisremovedbybreakingtime-reversalsymmetry.Asmentioned,theWSMcanalsobe

2160-3308=15=5(1)=011029(10)011029-1PublishedbytheAmericanPhysicalSociety

WENGetal.

generatedbybreakingthespatialinversionsymmetryonly,amethodwhichhasthefollowingadvantages.First,comparedwithmagneticmaterials,nonmagneticWSMaremuchmoreeasilystudiedexperimentallyusingangle-resolvedphotoemissionspectroscopy(ARPES)asalignmentofmagneticdomainsisnolongerrequired.Second,withoutthespinexchangefield,theuniquestructureofBerrycurvatureleadstoveryunusualtransportpropertiesunderastrongmagneticfield,unspoiledbythemagnetismofthesample.

Currently,thereareseveralrepresentativeproposalsforWSMgeneratedbyinversionsymmetrybreaking.Thefirstoneisasuperlatticesystemformedbyalternativelystack-ingnormalandtopologicalinsulators[19,20].Thesecondoneinvolvestelluriumorseleniumcrystalsunderpressure[21].ThethirdoneisthesolidsolutionsofABi1?xSbxTe3(A¼LaandLu)[22]andTlBiðS1?xRxÞ2(R¼SeorTe)[23]tunedaroundthetopologicaltransitionpoints[24].Thefourthoneisamodelbasedonzinc-blendestructure[25]withthefine-tuningoftherelativestrengthbetweenSOCandtheinversionsymmetry-breakingterm.Butnoneoftheaboveproposalshasbeenrealizedexperimentally.Inthepresentstudy,wepredictthatTaAs,TaP,NbAs,and

PHYS.REV.X5,011029(2015)

NbPsinglecrystalsarenaturalWSM,http://wendang.chazidian.comparedwiththeexistingproposals,thisfamilyofmaterialsiscom-pletelystoichiometricand,therefore,areeasiertogrowandmeasure.UnlikeinthecaseofpyrochloreiridatesandHgCr2Se4,whereinversionisstillagoodsymmetryandtheappearanceofWeylpointscanbeimmediatelyinferredfromtheproductoftheparitiesatallthetime-reversalinvariantmomenta(TRIM)[26–28],intheTaAs,familyparityisnolongeragoodquantumnumber.However,theappearanceofWeylpointscanstillbeinferredbyanalyzingthemirrorChernnumbers(MCN)[29,30]andZ2indices[26,31]forthefourmirrorandtime-reversalinvariantplanesintheBZ.Similartomanyothertopologicalmaterials,theWSMphaseinthisfamilyisalsoinducedbyatypeofband-inversionphenomena,which,intheabsenceofspin-orbitcoupling(SOC),leadstonodalringsinthemirrorplane.OncetheSOCisturnedon,eachnodalringwillbegappedwiththeexceptionofthreepairsofWeylpointsleadingtofascinatingphysicalpropertieswhichincludecomplicatedFermiarcstructuresonthesurfaces.

(a)(b)

c

As

b

a

Ta

(c)

10.80.60.4

(d)

4321

0.04

Energy (eV)

0.20-0.2-0.4-0.6-0.8-1Γ

Σ

S

Z

N

Γ

Z

X

ΓΓ

Σ

S

32

EF

0.02Energy(eV)

-0.02

NΓZXΓ

FIG.1.CrystalstructureandBrillouinzone(BZ).(a)ThecrystalsymmetryofTaAs.(b)ThebulkBZandtheprojectedsurfaceBZforboth(001)and(100)surfaces.(c)ThebandstructureofTaAscalculatedbyGGAwithoutincludingthespin-orbitcoupling.(d)ThebandstructureofTaAscalculatedbyGGAwiththespin-orbitcoupling.

011029-2

WEYLSEMIMETALPHASEINNONCENTROSYMMETRIC…

II.CRYSTALSTRUCTUREANDCALCULATIONMETHODS

Asallfourmentionedmaterialsshareverysimilarbandstructures,intherestofthepaper,wewillchooseTaAsastherepresentativematerialtointroducetheelectronicstructuresofthewholefamily.TheexperimentalcrystalstructureofTaAs[32]isshowninFig.1(a).Itcrystalizesinbody-centered-tetragonalstructurewithnonsymmorphicspacegroupI41md(No.109),whichlacksinversionsymmetry.Themeasuredlatticeconstantsarea¼b¼3.4348Åandc¼11.641Å.BothTaandAsareat4aWyckoffposition(0,0,u)withu¼0and0.417forTaandAs,respectively.WehaveemployedthesoftwarepackageOpenMX[33]forthefirst-principlescalculation.Itisbasedonnorm-conservingpseudopotentialandpseudo-atomiclocalizedbasisfunctions.Thechoiceofpseudopotentials,pseudo-atomicorbitalbasissets(Ta9.0-s2p2d2f1andAs9.0-s2p2d1),andthesamplingofBZwitha10×10×10gridhavebeencarefullychecked.Theexchange-correlationfunctionalwithinageneralizedgradientapproximation(GGA)parametrizedbyPerdew,Burke,andErnzerhofhasbeenused[34].Afterfullstructuralrelaxation,weobtainthelatticeconstantsa¼b¼3.4824Å,c¼11.8038Åandoptimizedu¼0.4176fortheAssite,inverygoodagreementwiththeexperimentalvalues.TocalculatethetopologicalinvariantsuchasMCNandsurfacestatesofTaAs,wehavegeneratedatomiclikeWannierfunctionsforTa5dandAs4porbitalsusingtheschemedescribedinRef.[35].

III.RESULTS

A.Bandstructureswithandwithoutspin-orbitcoupling

WefirstobtainthebandstructureofTaAswithoutSOCbyGGAandplotitalongthehigh-symmetrydirectionsinFig.1(c).WefindclearbandinversionandmultiplebandcrossingfeaturesneartheFermilevelalongtheZN,ZS,andΣSlines.ThespacegroupoftheTaAsfamilycontainstwomirrorplanes,namely,MxandMy[shadedplanesinFig.1(b)]andtwoglidemirrorplanes,namely,MxyandM?xy[illustratedbythedashedlinesinFig.1(b)].TheplanespannedbyZ,N,andΓpointsisinvariantundermirrorMy,andtheenergybandswithintheplanecanbelabeledbymirroreigenvaluesÆ1.FurthersymmetryanalysisshowsthatthetwobandsthatcrossalongtheZtoNlinebelongtooppositemirroreigenvalues,andhence,thecrossingbetweenthemisprotectedbymirrorsym-metry.Similarbandcrossingscanalsobefoundalongotherhigh-symmetrylinesintheZNΓplane,i.e.,theZSandNSlines.Altogether,thesebandcrossingpointsforma“nodalring”intheZNΓplaneasshowninFig.2(b).UnlikeforthesituationintheZNΓplane,inthetwoglidemirrorplanes

PHYS.REV.X5,011029(2015)

(MxyandM?xy),thebandstructureisfullygapped,withaminimumgapofroughly0.5eV.

TheanalysisoforbitalcharactershowsthatthebandsneartheFermienergyaremainlyformedbyTa5dorbitals,whichhavelargeSOC.IncludingSOCinthefirst-principlecalculationleadstoadramaticchangeofthebandstructureneartheFermilevel,asplottedinFig.1(d).Atfirstglance,itseemsthatthepreviousbandcrossingsintheZNΓplaneareallgapped,withtheexceptionofonepointalongtheZNline.Detailedsymmetryanalysisrevealsthatthebands“2”and“3”inFig.1(d)belongtooppositemirroreigenvalues,indicatingthealmost-touchingpointalongtheZNlineiscompletelyaccidental.Infact,thereisasmallgapofroughly3meVbetweenbands“2”and“3”asillustratedbytheinsetofFig.1(d).TheZNΓplanethenbecomesfullygappedonceSOCisturnedon.

B.Topologicalinvariantsformirrorplane

andWeylpointsSincethematerialhasnoinversioncenter,theusualparitycondition[26–28]cannotbeappliedtopredicttheexistenceofWSM.Wethenresorttoanotherstrategy.Aspreviouslymentioned,thespacegroupofthematerialprovidestwomirrorplanes(MxandMy),wheretheMCNcanbedefined.IfafullgapexistsfortheentireBZ,theMCNwoulddirectlyrevealwhetherthissystemisatopologicalcrystallineinsulatorornot.Interestingly,asshownbelow,ifthesystemisnotfullygapped,wecanstillusetheMCNtofindoutwhetherthematerialhostsWeylpointsintheBZornot.Besidesthetwomirrorplanes,wehavetwoadditionalglidemirrorplanes(MxyandM?xy).AlthoughtheMCNisnotwelldefinedfortheglidemirrorplanes,theZ2indexisstillwelldefinedhereastheseplanesaretime-reversalinvariant.WethenapplytheWilson-loopmethodtocalculatetheMCNsforthetwomirrorplanesandZ2indicesforthetwoglidemirrorplanes.Here,wejustbrieflydescribetheessenceofthismethod.Foramoredetailedexplanationofthemethod,pleaserefertoRefs.[5,37].AWilsonloopisanarbitraryclosedk-pointloopinBZ,evaluatedaroundwhich,theoccupiedBlochfunctionsacquireatotalBerryphaseθðwÞ,withwbeingtheloopindex.OnecandefineaseriesofparallelWilsonloopswtofullycoveraclosed2Dmanifoldin3Dmomentumspace,suchasacutplaneinBZoraclosedFSasstatedinthebeginningofthispaper.Then,theevolutionofθðwÞalongtheseparallelWilsonloops(itturnsouttobea1Dproblem)givesinformationontheband-structuretopologyontheclosed2Dmanifold.Forexample,todeterminetheMCNsforthemirrorplaneMx,wedefineWilsonloopsalongthekxdirectionwithfixedkz.Alltheoccupiedbandsatkpointsinthisplanecanbeclassifiedintotwogroupsaccordingtotheireigenvaluesundermirroroperation,ior?i.Takingthosehavingeigenvaluei,theevolutionofBerryphasesalongtheperiodickzdirectioncanbeobtained,andtheMCNissimplyitswindingnumber.

011029-3

WENGetal.

TheresultsareplottedinFig.2(d),whichshowsthatMCNis1fortheZNΓplane(My)andtheZ2indexisevenortrivialfortheZXΓplane(Mxy).Then,ifweconsiderthe(001)surface,whichisinvariantundertheMymirror.ThenontrivialhelicalsurfacemodeswillappearbecauseofthenonzeroMCNintheZNΓplane,whichgeneratesasinglepairofFScutsalongtheprojectivelineoftheZNΓplane[thexaxisinFig.2(c)].WhethertheseFermicutswilleventuallyformasingleclosedFermicircleornotdependsontheZ2indexforthetwoglidemirrorplanes,whichareprojectedtothedashedbluelinesinFig.2(c).SincetheZ2indicesfortheglidemirrorplanesaretrivial,asconfirmedbyourWilson-loopcalculationplottedinFig.2(d),therearenoprotectedhelicaledgemodesalongtheprojectivelinesoftheglidemirrorplanes[dashedbluelinesinFig.2(c)],andtheFermicutsalongthexaxisinFig.2(c)mustendsomewherebetweenthexaxisandthediagonallines[dashedbluelinesinFig.2(c)].Inotherwords,theymustbeFermiarcs,indicatingtheexistenceofWeylpointsinthebulkbandstructureofTaAs.

PHYS.REV.X5,011029(2015)

FromtheaboveanalysisoftheMCNandZ2indexofseveralhigh-symmetryplanes,wecanconcludethatWeylpointsexistintheTaAsbandstructure.WenowdeterminethetotalnumberofWeylpointsandtheirexactpositions.Thisisahardtask,astheWeylpointsarelocatedatgenerickpointswithoutanylittle-groupsymmetry.Forthispurpose,wecalculatetheintegraloftheBerrycurvatureonaclosedsurfaceinkspace,whichequalsthetotalchiralityoftheWeylpointsenclosedbythegivensurface.BecauseofthefourfoldrotationalsymmetryandmirrorplanesthatcharacterizeTaAs,weonlyneedtosearchfortheWeylpointswithinthereducedBZ—one-eighthofthewholeBZ.WefirstcalculatethetotalchiralityormonopolechargeenclosedinthereducedBZ.Theresultis1,whichguaranteestheexistenceof,andoddnumberof,Weylpoints.TodeterminepreciselythelocationofeachWeylpoint,wedividethereducedBZintoaverydensek-pointmeshandcomputetheBerrycurvatureorthe“magneticfieldinmomentumspace”[35,38]onthatmesh,asshowninFig.3.Fromthis,wecaneasilyidentifytheprecise

(a)(b)

Σ

(c)

(d)

10.50-0.5

φΣ

-110.5

φπ

0-0.5-10

0.2

0.4

0.6

0.8

1

FIG.2.NodalringsandWeylpointsdistribution,aswellasZ2andMCNformirrorplanes.(a)3Dviewofthenodalrings(intheabsenceofSOC)andWeylpoints(withSOC)intheBZ.(b)Sideviewfrom[100]and(c)topviewfrom[001]directionsforthenodalringsandWeylpoints.OncetheSOCisturnedon,thenodalringsaregappedandgiverisetoWeylpointsoffthemirrorplanes(seemovieinSupplementalMaterial[36]).(d)Toppanel:FlowchartoftheaveragepositionoftheWanniercentersobtainedbyWilson-loopcalculationforbandswithmirroreigenvalueiinthemirrorplaneZNΓ.(d)Bottompanel:TheflowchartoftheWanniercentersobtainedbyWilson-loopcalculationforbandsintheglidemirrorplaneZXΓ.Thereisnocrossingalongthereferenceline(thedashedline),indicatingtheZ2indexiseven.

011029-4

WEYLSEMIMETALPHASEINNONCENTROSYMMETRIC…

(a)

内容需要下载文档才能查看 内容需要下载文档才能查看

PHYS.REV.X5,011029(2015)

TABLEI.ThetwononequivalentWeylpointsinthexyzcoordinatesshowninFig.1(b).ThepositionisgiveninunitsofthelengthofΓ-ΣforxandyandofthelengthofΓ-Zforz.

Weylnode1

TaAsTaPNbAs(0.949,(0.955,(0.894,0.014,0.025,0.007,0.0)0.0)0.0)Weylnode2(0.520,(0.499,(0.510,0.037,0.045,0.011,0.592)0.578)0.593)(b)

appearanceofWeylpointscanalsobederivedfromak·pmodelwithdifferenttypesofmasstermsinducedbySOC,whichwillbeintroducedindetailintheAppendix.Thebandstructuresfortheotherthreematerials—TaP,NbAs,andNbP—areverysimilar.TheprecisepositionsoftheWeylpointsforallthesematerialsaresummarizedinTable.I.

C.Fermiarcsandsurfacestates

UniquesurfacestateswithunconnectedFermiarcscanbefoundonthesurfaceofaWSM.Thesecanbeunder-stoodinthefollowingway:ForanysurfaceofaWSM,wecanconsidersmallcylindersinthemomentumspaceparalleltothesurfacenormal.Inthe3DBZ,thesecylinderswillbecutbythezoneboundary,andtheirtopologyisequivalenttothatofaclosedtorusratherthanthatofopencylinders.IfacylinderenclosesaWeylpoint,byStokestheorem,thetotalintegraloftheBerrycurvature(Chernnumber)ofthisclosedtorusmustequalthetotal“monopolecharge”carriedbytheWeylpoint(s)enclosedinside.Onthesurfaceofthematerial,suchacylinderwillbeprojectedtoacyclesurroundingtheprojectionpointoftheWeylpoint,andasingleFermisurfacecutstemmingfromthechiraledgemodelofthe2DmanifoldwithChernnumber1(or?1)mustbefoundonthatcircle.Byvaryingtheradiusofthecylinder,itiseasytoshowthatsuchFSsmuststartandendattheprojectionoftwo(ormore)Weylpointswithdifferent“monopolecharge”;i.e.,theymustbe“Fermiarcs”[7,9,16].IntheTaAsmaterialsfamily,onmostofthecommonsurfaces,multipleWeylpointswillbeprojectedontopofeachother,andwemustgeneralizetheaboveargumenttomultipleprojectionsofWeylpoints.ItiseasytoprovethatthetotalnumberofsurfacemodesattheFermilevelcrossingaclosedcircleinsurfaceBZmustequalthesumofthe“monopolecharge”oftheWeylpointsinsidethe3Dcylinderthatprojectstothegivencircle.AnotherfactcontrollingthebehaviorofthesurfacestatesistheMCNintroducedinthepreviousdiscussion,whichlimitsthenumberofFSscuttingcertainprojectionlinesofthemirrorplane(whenthecorrespondingmirrorsymmetriesarestillpreservedonthesurface).

ByusingtheGreen’sfunctionmethod[5]basedonthetight-binding(TB)Hamiltoniangeneratedbytheprevi-ouslyobtainedWannierfunctions,wehavecomputedthe

FIG.3.BerrycurvaturefrompairsofWeylpoints.(a)ThedistributionoftheBerrycurvatureforthekz¼0plane,wheretheblueandreddotsdenotetheWeylpointswithchiralityofþ1and?1,respectively;(b)sameas(a)butforthekz¼0.592πplane.Theinsetsshowthe3DviewofhedgehoglikeBerrycurvaturenearthetwoselectedWeylpoints.

positionoftheWeylpointsbysearchingforthe“source”and“drain”pointsofthe“magneticfield.”TheWeylpointsinTaAsareillustratedinFig.2(a),wherewefind12pairsofWeylpointsinthevicinityofwhatusedtobe,intheSOC-freecase,thenodalringsontwoofthemirror-invariantplanes.Foreachofthemirror-invariantplanes,afterturningonSOC,thenodalringswillbefullygappedwithintheplane,butisolatedgaplessnodesslightlyoffplaneappear,asillustratedinFig.2(b).TwopairsofWeylpointsarelocatedexactlyinthekz¼0plane,andanotherfourpairsofWeylpointsarelocatedoffthekz¼0plane.Consideringthefourfoldrotationalsymmetry,itistheneasytounderstandthatthereareatotalof12pairsofWeylpointsinthewholeBZ.TheWeylpointsinthekz¼0planeareabout2meVabovetheFermienergyandformeighttinyholepockets,whiletheothersareabout21meVbelowtheFermileveltoform16electronpockets.The

011029-5

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
沪教版牛津小学英语(深圳用)五年级下册 Unit 1
第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
苏科版数学八年级下册9.2《中心对称和中心对称图形》
七年级英语下册 上海牛津版 Unit9
化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
苏教版二年级下册数学《认识东、南、西、北》
外研版英语七年级下册module3 unit2第一课时
冀教版小学数学二年级下册1
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
外研版八年级英语下学期 Module3
沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
冀教版小学英语四年级下册Lesson2授课视频
飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
外研版英语三起5年级下册(14版)Module3 Unit2
沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
六年级英语下册上海牛津版教材讲解 U1单词
第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
小学英语单词
沪教版牛津小学英语(深圳用) 四年级下册 Unit 3