X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis
上传者:法焕宝|上传时间:2015-05-07|密次下载
X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis
KristinaHaslinger1*,MadeleinePeschke1*,ClaraBrieke1,EgleMaximowitsch1&MaxJ.Cryle1
X-domainofpeptidesynthetasesrecruits
oxygenasescrucialforglycopeptidebiosynthesis
Non-ribosomalpeptidesynthetase(NRPS)mega-enzymecomplexesaremodularassemblylinesthatareinvolvedinthebiosynthesisofnumerouspeptidemetabolitesindependentlyoftheribosome1.ThemultipleinteractionsbetweencatalyticdomainswithintheNRPSmachineryarefurthercomplementedbyadditionalinteractionswithexternalenzymes,particularlyfocusedonthefinalpeptidematura-tionprocess.AnimportantclassofNRPSmetabolitesthatrequireextensiveexternalmodificationoftheNRPS-boundpeptidearetheglycopeptideantibiotics(GPAs),whichincludevancomycinandteicoplanin2,3.TheseclinicallyrelevantpeptideantibioticsundergocytochromeP450-catalysedoxidativecrosslinkingofaromaticsidechainstoachievetheirfinal,activeconformation4–12.However,themechanismunderlyingtherecruitmentofthecytochromeP450oxy-genasestotheNRPS-boundpeptidewaspreviouslyunknown.Hereweshow,throughinvitrostudies,thattheX-domain13,14,aconserveddomainofunknownfunctionpresentinthefinalmoduleofallGPANRPSmachineries,isresponsiblefortherecruitmentofoxygenasestotheNRPS-boundpeptidetoperformtheessentialside-chaincross-linking.X-raycrystallographyshowsthattheX-domainisstructurallyrelatedtocondensationdomains,butthatitsaminoacidsubstitu-tionsrenderitcatalyticallyinactive.WefoundthattheX-domainrecruitscytochromeP450oxygenasestotheNRPSanddeterminedtheinterfacebysolvingthestructureofaP450–X-domaincomplex.Additionally,wedemonstratedthatthemodificationofpeptidepre-cursorsbyoxygenasesinvitro—inparticulartheinstallationofthesecondcrosslinkinGPAbiosynthesis—occursonlyinthepresenceoftheX-domain.Ourresultsindicatethatthepresentationofpep-tidylcarrierprotein(PCP)-boundsubstratesforoxidationinGPAbiosynthesisrequiresthepresenceoftheNRPSX-domaintoensureconversionoftheprecursorpeptideintoamatureaglycone,andthatthecarrierproteindomainaloneisnotalwayssufficienttogenerateacompetentsubstrateforexternalcytochromeP450oxygenases.Fewcompoundclasseshavehadsuchapositiveeffectonhumanhealthasantibiotics15.Concernovertheriseofantibioticresistancemakesitessentialtodevelopnewchemotherapeutics,throughthediscoveryofnovelantibioticsandtherenewedexploitationofexistingones15,16.TheGPAsareagroupofcompoundsincurrentusethatarehighlyef-fectiveagainstGram-positivebacterialinfectionsresistanttootherclassesofantibiotics2:examplesarethenaturalproductsvancomycinandteico-planinandsemi-syntheticderivativesunderdevelopment16.TheGPAsarecomplexmolecules,comprisingheptapeptideaglyconeswithahighpercentageofnon-proteinogenicaminoacids,whicharecrosslinkedthroughmultiplearylandphenoliclinks.Theaglyconesarefurtherdecoratedthroughmanydifferentprocesses,includingglycosylationandsulfonation2.GPAsfunctionthroughtheformationofanon-covalentcomplexofmicromolaraffinitywithapeptidoglycanprecursor(lipidII).Thiscomplexisformedviahydrogenbondsfrombackboneamidegroupsoftheglycopeptideaglycone,andthecrosslinkedaromaticsidechainsarecrucialingivingtheaglyconethethree-dimensionalshaperequiredforbinding2.GPAsarebiosynthesizedwithouttheribosomebyalinearNRPS(Fig.1andExtendedDataFig.1)1,2.Inglycopeptide
1
biosynthesis,thematurationoftheheptapeptiderequirestheNRPSforinteractionwithexternaloxygenaseenzymes—cytochromesP450(OxyA,B,C,E)—thatcatalysethe(aryl/phenolic)crosslinkingofaromaticaminoacidsidechainsandprovidethefinal,rigidaglyconestructure3.ExtensiveinvivogenedisruptionexperimentshavesuggestedrolesforeachoftheOxyproteinsandalsoaspecificsequenceofoxidation,withOxyBintroducingthefirstcrosslink5–7,11,12.Invitroandinvivoexperi-mentshaveindicatedthatthepeptidesubstratesfortheseP450oxy-genasesremainboundtotheNRPSduringoxidation4,9,10.Ourrecentstudieshaveconcentratedonunderstandingthelater,crucial,stagesofglycopeptidebiosynthesis,inparticularthecyclizationofthelinearpep-tidethroughtheoxidativecrosslinkingofaromaticsidechainsbytheOxyproteins8,17.Wearenowfocusingontheroleofadomainofun-knownfunctionthatispresentinthefinalmoduleofallglycopeptide-typeNRPSmachineries14.Fromphylogeneticanalyses,thisdomainappearstoberelatedtothecondensation/epimerization(C/E)-domainsfoundinNRPSbiosynthesisandmostcloselytoanLCL-typecondensa-tiondomain.However,itseemstobecatalyticallyinactiveduetothemutationofresiduesofthehighlyconservedHHxxxDGmotifessentialforpeptidebondformationandepimerization13,andisreferredtoasthe‘X-domain’.
AsthefinalNRPSmodulesofGPAsallcontainanX-domain,wesoughttoclarifythemolecularfunctionofthisdomain.WedeterminedthecrystalstructureoftheX-domainfromthefinalNRPSmoduleof
?resolution(Fig.2aandExtendedteicoplaninbiosynthesis(Xtei)to2.9A
DataTable1)18–22.TheX-domainadoptsaC/E-typefold,whichischar-acterizedbyaV-shapedarrangementoftwosubdomainsthatbothbe-longtothechloramphenicol-acetyltransferase(CAT)fold.Crossoverelementsbetweenthesubdomainscomprisethe‘floor’oftheV-shapedcleft(I;Fig.2a,magenta)andthecrossover‘latch’(II;Fig.2a,orange).TheX-domainalsocontainsseveralinsertionregionscomparedwithotherstructurallycharacterizedC/E-domains(Fig.2a,red/yellow).Im-portantlyforthefunctionoftheX-domain,theacceptorentrysideoftheX-domainisblockedbytheorientationofseveralloopregions(Fig.2a,cyan)andnotunnelthroughtheX-domaincanbeobserved.Whilethestructuralactive-sitemotifresiduesH140andD145aremaintained,theresiduesmutatedfromthecanonicalC-domainactivesite(HRxxxDD;boldtextindicatesmutatedresidues)impactonthepotentialcatalyticfunctionofthisdomain:thesidechainsofbothresiduesR141andD146projectdirectlyintothepositionexpectedtobeoccupiedbythedonor49-phosphopantetheinegroupduringpeptidebondformationinanactiveC-domain(Fig.2candExtendedDataFig.4a).
SincethestructureoftheX-domainsuggestedthatitsfunctioninglycopeptidebiosynthesiswasunlikelytoberelatedtoamide-bondfor-mation,weconsidereditspossibleroleintheinteractionwithpeptide-modifyingproteinsintrans:theOxyproteinsresponsibleforside-chaincyclizationoftheNRPS-boundpeptide4–8.Invivoexperimentshadpre-viouslyindicatedtheprobableassociationoftheNRPSwiththeoxy-genaseenzymes4,andtheinitialoxidationinvancomycinbiosynthesisbyOxyBvanhasbeenshowntooccurinvitrothroughtheoxidationofsubstratesboundtocarrierproteins9,10.However,wehaverecently
MaxPlanckInstituteforMedicalResearch,Jahnstrasse29,69120Heidelberg,Germany.*Theseauthorscontributedequallytothiswork.
7MAY2015|VOL521|NATURE|105
G2015
MacmillanPublishersLimited.Allrightsreserved
RESEARCHLETTER
Tcp9
Module 1
D-Hpg
Tcp10Module 3
D-Dpg
Tcp11
Module 4
Tcp12
Module 6
内容需要下载文档才能查看Module 2
Module 5
D-Hpg
Module 7
L-Dpg
CD
E
B
A
F
G
Teicoplanin-type aglycone
Figure1|Structureoftheteicoplaninaglycone
andaschematicpathwayofteicoplanin
biosynthesisbynon-ribosomalpeptidesynthesis.DomainlabelsforNRPSproteins(Tcp9–12):A,adenylation(selectedaminoacidsindicatedabovethemodule:Hpg,4-hydroxyphenylglycine;Dpg,3,5-dihydroxyphenylglycine);C,condensation;E,epimerization;T,thiolation/peptidylcarrierprotein(PCP);TE,thioesterase;X,domainofunknownfunction.EssentialP450-catalysedaglyconerigidificationtakesplacethroughcrosslinkingofaromaticsidechains(OxyA–C,OxyE).EachcrosslinkingreactionisperformedbyaspecificOxyprotein,withtheproductsofeachOxyproteinindicatedschematically;standardringnomenclatureisindicatedontheteicoplaninaglyconeinredlettering.
Teicoplanin peptide
demonstratedthatOxyBvandisplaysapromiscuityinsubstrateselec-tion17notobservedfortheOxyBproteinfromteicoplanin23,24biosyn-thesis:forOxyBtei,thecarrierproteindomainisinsufficienttomediateefficientcrosslinkingoftheboundpeptide8.WethereforeinvestigatedseveralconstructsfromthelastteicoplaninNRPSmoduletoassesspotentialinteractionsoflargerNRPSconstructswithOxyBtei:toachievethisweusedbothgelfiltrationco-elutionexperimentsandnativepoly-acrylamidegelelectrophoresis(PAGE)mobilityshiftassay.Beginningwiththelargestconstruct,whichcontainsthreeNRPSdomains,PCP7–X–thioesterase(seeFig.1),weobservedco-elutionofOxyBteiwiththe
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看a
C-terminalsubdomain
b
X-domain
C-terminalsubdomain
N-terminalsubdomain
OxyBtei
c
Crossover II
D146
E391
2.3
3.32.9
D147
N-terminalsubdomain
Crossover I
N148
A303
D1452.8
2.9
2.8
β1
α4
β5
R141
A144
F302
d
α4
A158R167
2.7
e
A172
R64
α4
f
D294
I293
E290
3.1
2.7
2.7
2.5
A143
3.1
3.12.8
2.7
3.5
3.1
2.6
2.52.5
D161
2.6
R192
2.9
4.03.73.0β6
H140
I142
α1
R171
2.9
E291αG
E188
2.9
R181
E170
3.1
D162
Figure2|StructuresoftheX-domainandtheX-domain–OxyBteicomplex.a,IsolatedX-domain:thesecondarystructuredisplaysthetopologytypicalofC/E-domains.b,TheX-domain–OxyBteicomplex:selectedOxyBhelices
arelabelled.c,X-domainactivesiteshowingtheeffectsoftheresiduesmutatedfromthecanonicalC-domainactive-siteR141andD146.d–f,Selectedaminoacidsformingimportantinteractionsintheinterfaceareshown(OxyBtei
F-helixD161(d)andD162(e),OxyBteiG-helix(f)).Colourscheme:X-domain
106|NATURE|VOL521|7MAY2015
G2015
amino-terminalsubdomain,green;carboxy-terminalsubdomain,blue;
crossoverelementI,magenta,andII,orange;X-domaininsertionsa5/a6,red,andb12/b13,yellow;loopsoccludingtheacceptorsite,cyan;X-domain
proteinsurface,grey;OxyBtei,yellow;watermoleculesmediatinginteractionsbetweentheX-domainandOxyBteiareshownasbluespheres.Residuesdisplayedassticksarelabelled,asareselectedsecondarystructureelements;
?).hydrogenbondsareindicatedbydashedlineswithdistances(A
MacmillanPublishersLimited.Allrightsreserved
LETTERRESEARCH
NRPStri-domainbygelfiltration(ExtendedDataFig.2a).Thisasso-ciationwasconfirmedbytheappearanceofabandinthenative-PAGEassayoflowerelectrophoreticmobilitythatcontainedbothOxyBteiandtheNRPStri-domain(ExtendedDataFig.3a),asconfirmedbypeptidemassfingerprinting.RepetitionoftheseexperimentswithsmallerNRPSconstructsshowedthattheminimalconstructrequiredforOxyBteiin-teractionfromthefinalNRPSmoduleofteicoplaninwastheX-domainitself(Fig.3andExtendedDataFigs2a,3a).Native-PAGEanalysisofOxyBteiinthepresenceofincreasingconcentrationsofX-domainshowedthatatequimolarconcentrationsOxyBisfullyboundandthattheappar-entdissociationconstantisinthelowmicromolarrange(ExtendedDataFig.3c).ThisiswithintherangeobservedforotherP450–NRPSinter-actions—albeithereintheabsenceoftheactualP450substrate9,25–27.WiththeinteractionofOxyBteiandtheX-domainofteicoplanindem-onstrated,werepeatedtheseexperimentsforvancomycin-typesystemsandfoundcomparableresults(Fig.3andExtendedDataFig.3a).ThecrossoverexperimentwithalternateP450–NRPSpairsalsoindicatedthatOxyBvancaninteractwiththeteicoplanin-producingNRPSdomain(ExtendedDataFig.3a)—whichagreeswiththeinvivoactivityobservedforoxyBcross-complementationstudies11,12.Theseexperimentsindi-catethattheinteractionoftheX-domainwithOxyBisaconservedfeatureinglycopeptidebiosynthesis.
Wethendeterminedacrystalstructureoftheproteincomplexbe-?resolution(Fig.2b,ExtendedtweentheX-domainandOxyBteito2.5A
DataFigs4b,5aandExtendedDataTable1)Theorientationofthecom-plexplacestheuppersurfaceoftheP450(withthehaem-centredactivesite)facingtowardsthedonorsiteoftheX-domaincleft,http://wendang.chazidian.comparisonofthecomplexwiththeisolatedP450(ref.8)andX-domainstructuresindicatesthatthereislittlerearrangementofeither
?,proteinoninteraction(rootmeansquareddeviation1.1and0.9A
respectively);theinteractionismoreofarigidbodydockingandismediatedthroughapproximately20residuesoneachprotein.Thein-teractionsbetweenthetwoproteinsaremainlyviahydrogenbondsandsaltbridges;hydrophobicinteractions,asareoftenseeninintramole-cularNRPSdomaininteractions,arelimitedtoisolatedresiduesintheX-domain–OxyBinterface(Fig.2d–f).ThestartoftheF-helix(PRDD)isconservedintheOxyproteins(ExtendedDataFig.5b)andiscritical
a
Molecular mass (×105)
b
12345678
tei
c
1234567
cepNative PAGE1: GB1–X2: OxyA3: OxyB4: OxyC
5: OxyA+GB1–X6: OxyB+GB1–X7: OxyC+GB1–X8: OxyE+GB1–X
Elution profiles:
P450, 415 nm
P450–NRPS mix (1:3), 415 nmP450–NRPS mix (1:3), 280 nmNRPS, 280 nm
Molecular massdistributions:P450
P450–NRPS mix (1:3)NRPS
Figure3|InteractionoftheX-domainwithOxyproteins.a,Elutionprofilesofanalyticalsize-exclusionchromatography(solidlines415nm,dashedlines280nmdetection)andmolecularmassesoftheindividualspecies
observedbymulti-anglelightscatteringofindividuallysampledandco-elutedOxyBteiandXteifusedtoGB1(proteinG,B1domain;1:3mixture).AU,
arbitraryunits.b,NativePAGEofteicoplaninXtei-domainandOxyteiproteins(1–4)and3:1mixturesthereof(5–8;asterisksindicatethenewbandsoflowelectrophoreticmobility,triangleindicatesthebandofOxyEteithatdoesnotco-migratewithGB1–Xtei).c,NativePAGEofvancomycin-producingXcep-domainandOxyvanproteins(sampleorderasinbwiththesquareindicatingthebandofOxyCvanthatdoesnotco-migratewithGB1–Xcep).
G2015
forinteractionwiththeX-domain.TheB–B2loopregion(66–77),typ-icallydisorderedintheabsenceofaboundsubstrateinP450oxyge-nases,remainsunresolved,indicatingthatthebindingoftheX-domaindoesnotstimulateclosureoftheP450activesitebutratheractstodockontotheP450topresenttheneighbouringPCP7-peptidesubstrate.WemodelledthepositionofthePCP7-domainbasedonthecomplexstruc-tureofthetwoknownP450–carrierproteincomplexes;26,28thisindicatesthatthePCPorientationfromtheskyllamycinP450–PCPcomplexiscompatiblewiththeX–P450complexstructure(ExtendedDataFig.6).MutationofspecificresiduesineachofthethreeX-domaininteractionregionsrevealedthattheloopregionafterhelixa4thatcontainsresi-duesR167andR171(whichcontacttheconservedPRDDOxymotif)isessentialfortheinteraction(ExtendedDataFig.2b).
SincenoinvitroactivityforanyOxyproteinbeyondtheinitialcy-clizationstepcatalysedbyOxyBvanhasbeendescribedsofar9,10,17,weexaminedwhethertheX-domaininteractedwiththeremainingoxy-genases(OxyAtei,OxyCteiandOxyEtei)usingtheinteractionassaysde-scribedearlierforOxyB(Fig.3andExtendedDataFigs2c,3b).TheseexperimentsshowedthatbothOxyAteiandOxyCteiinteractwithamin-imalX-domainconstructfromteicoplaninbiosynthesis;thesameholdstrueforvancomycin-typesystems.TheaffinitiesoftheteicoplaninOxyenzymesfortheX-domain,asdeterminedbygelfiltration,appearedtobelowerthanthatofOxyB,withOxyAbindingmoretightlythanOxyC.DifferentialaffinityfortheX-domainimpliesthatadditionalselectivityforOxybindingisbasedonthestateofthecrosslinkingofthepeptide.Thus,theroleoftheX-domainintheglycopeptideNRPSistoactasageneralrecruitmentplatformforoxygenaseenzymesingly-copeptidetailoring:thisdiffersfromothercarrierprotein–P450sys-temssuchasthosefoundinaminoacyl-PCPoxidation25–27orbiotinbiosynthesis28—theserelyonthecarrierprotein–substratepairforsub-straterecognition.
Curiously,OxyE—theoxygenaseresponsiblefortheF-O-Gringin-stallationinteicoplaninbiosynthesis—didnotdisplayaninteractionwiththeteicoplaninX-domain(Fig.3andExtendedDataFig.2c).How-ever,asOxyEteicatalysesaphenoliccouplingstepwithminimalpeptidepenetrationintotheP450activesite(residues1and3),itisplausiblethatthisP450requiresthepresenceofthePCP7-boundpeptidetomain-tainatightinteractiontotheNRPS.AstheF-O-Gringisnotrequiredforantibioticactivitybutrathermoderatesselectivityagainstdifferentbacterialtargets2,16,alloxygenaseenzymescrucialforpeptidetailoringinGPAbiosynthesisarerecruitedtotheNRPS-boundheptapeptidebytheX-domain.
Thewell-studiedOxyBenzymefromthevancomycinsystem(OxyBvan)hasbeenshowntocatalysetheinvitrooxidationofheptapeptideswithdecreasedefficiencycomparedwithitsefficientturnoverofhexapep-tidespresentedbythePCP-domainfrommodulesevenoftheNRPS(PCP7),leavingthequestionofitsnaturalsubstrateunanswered9.WesoughttoreconstitutetheenzymaticactivityofOxyBvaninamorenat-uralcontext,comprisingasimplifiedheptapeptide(SupplementaryFig.1)presentedbyaPCP7-domainintheabsenceandpresenceoftheX-domain.WiththisapproachweobservedamoderateincreaseinturnoveryieldbyusingthePCP7–Xconstruct(Fig.4andExtendedDataFig.7c).TheeffectsoftheX-domainweremorepronouncedforOxyBteiduetothecomparativelylowactivityofOxyBteiintheinvitroturnoverofPCP7-boundmodelhexapeptides:8indeed,OxyBteiishighlyactiveincyclizingheptapeptidesboundtothePCP7–Xconstructs,whereasitisonlyabletocatalyse,25%C-O-DringformationinPCP7-boundteicoplanin-likeheptapeptidesunderthesameconditions(Fig.4andExtendedDataFig.7a).ActivityassaysperformedwiththePCP7–X-domaininterfacemutantsconfirmtheresultsfromtheinter-actionstudies(ExtendedDataFig.2b),withnoactivityobservedfortheX1variant(Fig.4andExtendedDataFig.8).MutantvariantsthatretaintheabilitytobindOxyBteiretainP450activitycomparablewiththewild-typePCP7–Xprotein,underpinningtheimportanceoftheX-domainfortheOxyBteiturnoverreaction.WeexaminedwhetherthedifferencesobservedinthepresenceoftheX-domaininthesesystemsweredueto
内容需要下载文档才能查看7MAY2015|VOL521|NATURE|107
MacmillanPublishersLimited.Allrightsreserved
RESEARCHLETTER
a
Tei7(Hpg3,7)a
MonocyclicOxyBtei
Bicyclic
OxyBtei + OxyAtei
b
Yield (%)
Yield (%)
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看Relative intensity
PCtei
P–XPCteP–iXPC1teiP–X2PCteiP–PCXP–3teiX
PCpPPCcepP–X
PCPPCcepP–X
PCPPCteiP–X
1–3tei
PCP
cep
tei
ce
X1: R167A, R171A X2: E290A, D291A X3: E377A, R382AX1–3: R167A, R171A, E290A, D291A, E377A, R382A
teitei
b
Figure5|CoupledinvitroactivityofOxyAteiandOxyBtei.a,TurnoverofheptapeptidesubstratesboundtoPCP7andPCP7–X(GB1fusionproteins)expressedasapercentageofthetotalpeptidedetectedandshownasstackedbars(averageoftriplicateexperiments,errorbarsindicates.d.).b,ESI-MS/MSanalysisofHPLC-purifiedbicyclicteicoplanin-likeOxyB/OxyAturnoverproduct,demonstratingtheanticipatedfragmentationforaC-O-D/D-O-Ebicyclicpeptidestructure(SupplementaryFig.6).
Relative intensity
内容需要下载文档才能查看Figure4|InvitroactivityofOxyBteianditshomologues.a,TurnoverofheptapeptidesubstratesboundtoPCP7andPCP7–X(GB1fusionproteins)fromtheteicoplaninandchloroerymomycinNRPSwithOxyBenzymesfromteicoplanin-likesystems(OxyBtei,StaH)andvancomycin-likesystems(OxyBvan,CepF)expressedasapercentageofthetotalpeptidedetected.HeptapeptidesubstratesloadedontothePCP7/PCP7–Xconstructsare
indicatedabovetherespectiveOxyBenzymes;X-domainvariantsX1–X3andX1–3oftheteicoplaninNRPS(describedbelowthegraph)showstronglyreducedactivityforconstructsX1andX1–3thatpossessR167AandR171AmutationscontactingtheconservedPRDDOxymotifinthewild-typeprotein(averageoftriplicateexperiments;errorbarsindicatestandarddeviation(s.d.)).b,Electrosprayionizationtandemmassspectrometry(ESI-MS/MS)analysisofhigh-performanceliquidchromatography(HPLC)-purifiedmonocyclicteicoplanin-likeOxyBturnoverproduct,demonstratingtheanticipated
fragmentationforaC-O-Dmonocyclicpeptidestructure(SupplementaryFig.5).
OnemajorhurdleinGPAbiosynthesishasbeenthelackofinvitroactivityofanyOxyproteinbeyondtheC-O-DringformationcatalysedbyOxyB.WithresultsindicatingthattheX-domainwasabletorecruitallessentialOxyenzymes(OxyA–C),weinvestigatedwhetherthepres-enceoftheX-domainwouldsupporttheactivityofadditionalOxyen-zymes.Incoupledassays,thecombinationofOxyBteiandOxyAteiwasnowabletoinstallbothC-O-DandD-O-EcrosslinksinaPCP7–X-boundheptapeptidesubstrate(Fig.5andExtendedDataFig.9a).Inagree-mentwiththereportedinvivooxidationorder11,12,thecombinationofOxyBteiandOxyCteididnotleadtothegenerationofabicyclicpeptideproduct(ExtendedDataFig.9b).However,thelackofactivityinthisassaycouldhavebeenduetothelimitedcatalyticcompetenceoftheOxyCteienzyme(P420signalfortheCO-complex);thisalsopreventedtherecreationoftheOxyA–Ccascade(ExtendedDataFig.9c).Inspiteofthis,ourdemonstrationofinvitroOxyAactivityclearlyindicatestheimportanceoftheX-domainasarecruitmentplatformintheOxy-catalysedinstallationofcrosslinksinGPAbiosynthesisandopensthedoortothereconstitutionofGPAaglyconebiosynthesisinvitro.Morebroadly,ourresultsshowthattherecruitmentofenzymestoNRPSsystemscanbemediatedbydomainsbeyondcarrierproteinsandthatsuchmechanismsmayhaveawiderroleinbiosynthesisbymegaen-zymesynthetasemachineriesthanhasbeenacknowledged.
OnlineContentMethods,alongwithanyadditionalExtendedDatadisplayitemsandSourceData,areavailableintheonlineversionofthepaper;referencesuniquetothesesectionsappearonlyintheonlinepaper.Received10July;accepted5December2014.Publishedonline9February2015.1.2.3.4.5.6.7.
Hur,G.H.,Vickery,C.R.&Burkart,M.D.Explorationsofcatalyticdomainsinnon-ribosomalpeptidesynthetaseenzymology.Nat.Prod.Rep.29,1074–1098(2012).Yim,G.,Thaker,M.N.,Koteva,K.&Wright,G.Glycopeptideantibioticbiosynthesis.J.Antibiot.(Tokyo)67,31–41(2014).
Cryle,M.J.,Brieke,C.&Haslinger,K.inAminoAcids,PeptidesandProteinsVol.38,1–36(TheRoyalSocietyofChemistry,2014).
Bischoff,D.etal.Thebiosynthesisofvancomycin-typeglycopeptideantibiotics-amodelforoxidativeside-chaincross-linkingbyoxygenasescoupledtotheactionofpeptidesynthetases.ChemBioChem6,267–272(2005).
Bischoff,D.etal.Thebiosynthesisofvancomycin-typeglycopeptideantibiotics-newinsightsintothecyclizationsteps.Angew.Chem.Int.Ed.Engl.40,1693–1696(2001).
Bischoff,D.etal.Thebiosynthesisofvancomycin-typeglycopeptideantibiotics—theorderofthecyclizationsteps.Angew.Chem.Int.Ed.Engl.40,4688–4691(2001).
¨ssmuth,R.D.etal.NewadvancesinthebiosynthesisofglycopeptideantibioticsSu
ofthevancomycintypefromAmycolatopsismediterranei.Angew.Chem.Int.Ed.Engl.38,1976–1979(1999).
内容需要下载文档才能查看 内容需要下载文档才能查看generaldifferencesbetweenthebiosynthesisofdifferentGPAclassesbyinvestigatingtheeffectoftheX-domainonOxyBactivityfromtworelatedglycopeptidebiosyntheticmachineries:thoseofchloroerymo-mycin(cep;van-type/type-I)29andA47934(sta;tei-type/type-IV)30GPAs.Theseresultswereevenmorepronouncedthanfortheteicoplaninsystem,witheffectiveOxyBactivityseenonlyinthepresenceoftheX-domain(Fig.4andExtendedDataFig.7b,d):thisindicatesthattheactivityofOxyBvanisatypicalandthatthegeneralmechanismforrecruitmentoftheOxyenzymesinGPAbiosynthesisrequirestheX-domain.
ToclarifyfurthertheroleoftheX-domaininOxyrecruitment,wetestedtheactivityofOxyBteionahexapeptideboundtothePCP-domainfrommodulesixoftheNRPS(PCP6):theseturnoversshowednoactiv-ityofOxyBtei(ExtendedDataFig.9d).Thisagreeswithpreviousinvivoexperimentsthatreportverylittleisolationofcrosslinkedhexapeptidescomparedwiththefinalaglycone11.Takentogether,theseresultsstronglysuggestthatcrosslinkedhexapeptideproductsonlyappearfromminorshuntpathwaysanddonotrepresentthenormalbiosynthesisrouteinvivo,whichinsteadreliesonX-domain-mediatedoxygenaserecruit-menttothemodule-seven-boundheptapeptide.
108|NATURE|VOL521|7MAY2015
G2015
MacmillanPublishersLimited.Allrightsreserved
LETTERRESEARCH
8.9.10.11.12.13.14.15.16.17.
Haslinger,K.,Maximowitsch,E.,Brieke,C.,Koch,A.&Cryle,M.J.CytochromeP450OxyBteicatalyzesthefirstphenoliccouplingstepinteicoplaninbiosynthesis.ChemBioChem15,2719–2728(2014).
Woithe,K.etal.OxidativephenolcouplingreactionscatalyzedbyOxyB:a
cytochromeP450fromthevancomycinproducingorganism.Implicationsforvancomycinbiosynthesis.J.Am.Chem.Soc.129,6887–6895(2007).Zerbe,K.etal.AnoxidativephenolcouplingreactioncatalyzedbyOxyB,a
cytochromeP450fromthevancomycin-producingmicroorganism.Angew.Chem.Int.Ed.Engl.43,6709–6713(2004).
Hadatsch,B.etal.Thebiosynthesisofteicoplanin-typeglycopeptideantibiotics:assignmentofP450mono-oxygenasestosidechaincyclizationsofglycopeptideA47934.Chem.Biol.14,1078–1089(2007).
Stegmann,E.etal.Geneticanalysisofthebalhimycin(vancomycin-type)oxygenasegenes.J.Biotechnol.124,640–653(2006).
Rausch,C.,Hoof,I.,Weber,T.,Wohlleben,W.&Huson,D.PhylogeneticanalysisofcondensationdomainsinNRPSshedslightontheirfunctionalevolution.BMCEvol.Biol.7,78(2007).
Stegmann,E.,Frasch,H.-J.&Wohlleben,W.Glycopeptidebiosynthesisinthecontextofbasiccellularfunctions.Curr.Opin.Microbiol.13,595–602(2010).Walsh,C.T.&Wencewicz,T.A.Prospectsfornewantibiotics:amolecule-centeredperspective.J.Antibiot.(Tokyo)67,7–22(2014).
Butler,M.S.etal.Glycopeptideantibiotics:backtothefuture.J.Antibiot.(Tokyo)67,631–644(2014).
Brieke,C.etal.RapidaccesstoglycopeptideantibioticprecursorpeptidescoupledwithcytochromeP450-mediatedcatalysis:towardsabiomimeticsynthesisofglycopeptideantibioticsOrg.Biomol.Chem.http://dx.doi/org/10.1039/C4OB02452D(2014).
Samel,S.A.,Czodrowski,P.&Essen,L.-O.StructureoftheepimerizationdomainoftyrocidinesynthetaseA.ActaCrystallogr.D70,1442–1452(2014).
Bloudoff,K.,Rodionov,D.&Schmeing,T.M.Crystalstructuresofthefirst
condensationdomainofCDAsynthetasesuggestconformationalchangesduringthesyntheticcycleofnonribosomalpeptidesynthetases.J.Mol.Biol.425,3137–3150(2013).
Tanovic,A.,Samel,S.A.,Essen,L.-O.&Marahiel,M.A.Crystalstructureoftheterminationmoduleofanonribosomalpeptidesynthetase.Science321,659–663(2008).
Samel,S.A.,Schoenafinger,G.,Knappe,T.A.,Marahiel,M.A.&Essen,L.-O.
Structuralandfunctionalinsightsintoapeptidebond-formingbidomainfromanonribosomalpeptidesynthetase.Structure15,781–792(2007).
Keating,T.A.,Marshall,C.G.,Walsh,C.T.&Keating,A.E.ThestructureofVibHrepresentsnonribosomalpeptidesynthetasecondensation,cyclizationandepimerizationdomains.NatureStruct.Mol.Biol.9,522–526(2002).
Sosio,http://wendang.chazidian.comanizationoftheteicoplaningeneclusterinActinoplanesteichomyceticus.Microbiology150,95–102(2004).
24.Li,T.-L.etal.Biosyntheticgeneclusteroftheglycopeptideantibioticteicoplanin:
characterizationoftwoglycosyltransferasesandthekeyacyltransferase.Chem.Biol.11,107–119(2004).
25.Haslinger,K.etal.Thestructureofatransientcomplexofanonribosomalpeptide
synthetaseandacytochromeP450monooxygenase.Angew.Chem.Int.Ed.Engl.53,8518–8522(2014).
¨ssmuth,R.D.&Cryle,M.J.CytochromeP450skyinteractsdirectly26.Uhlmann,S.,Su
withthenonribosomalpeptidesynthetasetogeneratethreeaminoacid
precursorsinskyllamycinbiosynthesis.ACSChem.Biol.8,2586–2596(2013).27.Cryle,M.J.,Meinhart,A.&Schlichting,I.StructuralcharacterizationofOxyD,a
cytochromeP450involvedinb-hydroxytyrosineformationinvancomycinbiosynthesis.J.Biol.Chem.285,24562–24574(2010).
28.Cryle,M.J.&Schlichting,I.StructuralinsightsfromaP450carrierproteincomplex
http://wendang.chazidian.comA105,15696–15701(2008).
29.vanWageningen,A.M.A.etal.Sequencingandanalysisofgenesinvolvedinthe
biosynthesisofavancomycingroupantibiotic.Chem.Biol.5,155–162(1998).30.Pootoolal,J.etal.Assemblingtheglycopeptideantibioticscaffold:thebiosynthesis
http://wendang.chazidian.comA99,8962–8967(2002).SupplementaryInformationisavailableintheonlineversionofthepaper.
AcknowledgementsTheauthorsthankA.Kochforassistancewithproteinexpression;S.Bellforredoxproteins;M.Gradlforassistancewithmassspectrometry;M.TarnawskiandA.Meinhartforassistancewithcrystalharvestinganddataprocessing;
¨ssmuthandI.SchlichtingandJ.Wrayfordiscussions;C.RoomeforITsupport;R.Su
A.Trumanforsharingunpublisheddata.DiffractiondatawerecollectedattheSwissLightSource,X10SAbeamline,PaulScherrerInstitute,Villigen,Switzerland.WethanktheHeidelbergteamfordatacollectionandthePXIIstafffortheirsupportinsettingupthebeamline.M.J.C.isgratefultoI.SchlichtingforconstantencouragementandtotheDeutscheForschungsgemeinschaft(Emmy2NoetherProgram,CR392/1-1)forfinancialsupport.
AuthorContributionsM.J.C.designedthestudy.K.H.,M.P.andE.M.performedthebiochemicalexperiments.C.B.performedthechemicalsynthesisandcompoundcharacterization.M.P.,K.H.andM.J.C.solvedthestructuresandperformedtheanalysis.M.J.C.wrotethemanuscripttogetherwithcontributionsfromK.H.,http://wendang.chazidian.com/reprints.Theauthorsdeclarenocompetingfinancialinterests.Readersarewelcometocommentontheonlineversionofthepaper.CorrespondenceandrequestsformaterialsshouldbeaddressedtoM.J.C.(Max.Cryle@mpimf-heidelberg.mpg.de).
18.19.
20.21.22.23.
7MAY2015|VOL521|NATURE|109
G2015
MacmillanPublishersLimited.Allrightsreserved
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 2016年四年级数学上1.1 认识升和毫升练习题(冀教版附答案)
- 2016年国家宪法日暨全国法制宣传日系列宣传活动方案
- 魏晋夏侯玄的玄学理论探析
- 朱熹哲学中有关的科学事实和价值
- 2016年四年级语文上册第五单元提升测试题(冀教版带答案)
- 菱形的性质Word
- 经济法律法规第二章教案Word
- 2016年最新互联网+众筹融资金融商业计划书Word
- 小升初英语必备词汇
- 大学生UI培训班哪个好
- 青海省2016年注册会计师考试《审计》:审计工作底稿考试题答案
- 100句少儿英语口语让孩子英语顺溜溜
- 大四学生学H5好不好
- 职业病防治法Word
- 07线粒体疾病的遗传Word
- 空间哲学视域下解析山水文化框架结构
- 慢就业才能找好工作
- 宜昌雅思:2017英美热门专业榜单及雅思分数要求
- 天人合一政治论探究
- 每日一练英语
- 2016年最新O2O电商物流园区规划设计方案Word
- 900MHz的GSM手机射频辐射的可能的生物积极的认知效果毕业论文外文文献翻译及原文
- 习近平创造性运用马克思主义哲学的体现
- 首尾Word
- 最新如何成为一名优秀的党员范文
- 西方人眼里的尊重
- 开题报告
- 韩国概况Word
- 110KV降压变电站设计毕业论文外文文献翻译及原文
- 考题(现象)反映知识点(本质)
网友关注视频
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
- 北师大版数学四年级下册3.4包装
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 外研版英语三起6年级下册(14版)Module3 Unit1
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 二年级下册数学第二课
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 外研版英语七年级下册module3 unit2第二课时
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 《空中课堂》二年级下册 数学第一单元第1课时
- 六年级英语下册上海牛津版教材讲解 U1单词
- 二年级下册数学第三课 搭一搭⚖⚖
- 小学英语单词
- 苏教版二年级下册数学《认识东、南、西、北》
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理