X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis
上传者:法焕宝|上传时间:2015-05-07|密次下载
X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis
KristinaHaslinger1*,MadeleinePeschke1*,ClaraBrieke1,EgleMaximowitsch1&MaxJ.Cryle1
X-domainofpeptidesynthetasesrecruits
oxygenasescrucialforglycopeptidebiosynthesis
Non-ribosomalpeptidesynthetase(NRPS)mega-enzymecomplexesaremodularassemblylinesthatareinvolvedinthebiosynthesisofnumerouspeptidemetabolitesindependentlyoftheribosome1.ThemultipleinteractionsbetweencatalyticdomainswithintheNRPSmachineryarefurthercomplementedbyadditionalinteractionswithexternalenzymes,particularlyfocusedonthefinalpeptidematura-tionprocess.AnimportantclassofNRPSmetabolitesthatrequireextensiveexternalmodificationoftheNRPS-boundpeptidearetheglycopeptideantibiotics(GPAs),whichincludevancomycinandteicoplanin2,3.TheseclinicallyrelevantpeptideantibioticsundergocytochromeP450-catalysedoxidativecrosslinkingofaromaticsidechainstoachievetheirfinal,activeconformation4–12.However,themechanismunderlyingtherecruitmentofthecytochromeP450oxy-genasestotheNRPS-boundpeptidewaspreviouslyunknown.Hereweshow,throughinvitrostudies,thattheX-domain13,14,aconserveddomainofunknownfunctionpresentinthefinalmoduleofallGPANRPSmachineries,isresponsiblefortherecruitmentofoxygenasestotheNRPS-boundpeptidetoperformtheessentialside-chaincross-linking.X-raycrystallographyshowsthattheX-domainisstructurallyrelatedtocondensationdomains,butthatitsaminoacidsubstitu-tionsrenderitcatalyticallyinactive.WefoundthattheX-domainrecruitscytochromeP450oxygenasestotheNRPSanddeterminedtheinterfacebysolvingthestructureofaP450–X-domaincomplex.Additionally,wedemonstratedthatthemodificationofpeptidepre-cursorsbyoxygenasesinvitro—inparticulartheinstallationofthesecondcrosslinkinGPAbiosynthesis—occursonlyinthepresenceoftheX-domain.Ourresultsindicatethatthepresentationofpep-tidylcarrierprotein(PCP)-boundsubstratesforoxidationinGPAbiosynthesisrequiresthepresenceoftheNRPSX-domaintoensureconversionoftheprecursorpeptideintoamatureaglycone,andthatthecarrierproteindomainaloneisnotalwayssufficienttogenerateacompetentsubstrateforexternalcytochromeP450oxygenases.Fewcompoundclasseshavehadsuchapositiveeffectonhumanhealthasantibiotics15.Concernovertheriseofantibioticresistancemakesitessentialtodevelopnewchemotherapeutics,throughthediscoveryofnovelantibioticsandtherenewedexploitationofexistingones15,16.TheGPAsareagroupofcompoundsincurrentusethatarehighlyef-fectiveagainstGram-positivebacterialinfectionsresistanttootherclassesofantibiotics2:examplesarethenaturalproductsvancomycinandteico-planinandsemi-syntheticderivativesunderdevelopment16.TheGPAsarecomplexmolecules,comprisingheptapeptideaglyconeswithahighpercentageofnon-proteinogenicaminoacids,whicharecrosslinkedthroughmultiplearylandphenoliclinks.Theaglyconesarefurtherdecoratedthroughmanydifferentprocesses,includingglycosylationandsulfonation2.GPAsfunctionthroughtheformationofanon-covalentcomplexofmicromolaraffinitywithapeptidoglycanprecursor(lipidII).Thiscomplexisformedviahydrogenbondsfrombackboneamidegroupsoftheglycopeptideaglycone,andthecrosslinkedaromaticsidechainsarecrucialingivingtheaglyconethethree-dimensionalshaperequiredforbinding2.GPAsarebiosynthesizedwithouttheribosomebyalinearNRPS(Fig.1andExtendedDataFig.1)1,2.Inglycopeptide
1
biosynthesis,thematurationoftheheptapeptiderequirestheNRPSforinteractionwithexternaloxygenaseenzymes—cytochromesP450(OxyA,B,C,E)—thatcatalysethe(aryl/phenolic)crosslinkingofaromaticaminoacidsidechainsandprovidethefinal,rigidaglyconestructure3.ExtensiveinvivogenedisruptionexperimentshavesuggestedrolesforeachoftheOxyproteinsandalsoaspecificsequenceofoxidation,withOxyBintroducingthefirstcrosslink5–7,11,12.Invitroandinvivoexperi-mentshaveindicatedthatthepeptidesubstratesfortheseP450oxy-genasesremainboundtotheNRPSduringoxidation4,9,10.Ourrecentstudieshaveconcentratedonunderstandingthelater,crucial,stagesofglycopeptidebiosynthesis,inparticularthecyclizationofthelinearpep-tidethroughtheoxidativecrosslinkingofaromaticsidechainsbytheOxyproteins8,17.Wearenowfocusingontheroleofadomainofun-knownfunctionthatispresentinthefinalmoduleofallglycopeptide-typeNRPSmachineries14.Fromphylogeneticanalyses,thisdomainappearstoberelatedtothecondensation/epimerization(C/E)-domainsfoundinNRPSbiosynthesisandmostcloselytoanLCL-typecondensa-tiondomain.However,itseemstobecatalyticallyinactiveduetothemutationofresiduesofthehighlyconservedHHxxxDGmotifessentialforpeptidebondformationandepimerization13,andisreferredtoasthe‘X-domain’.
AsthefinalNRPSmodulesofGPAsallcontainanX-domain,wesoughttoclarifythemolecularfunctionofthisdomain.WedeterminedthecrystalstructureoftheX-domainfromthefinalNRPSmoduleof
?resolution(Fig.2aandExtendedteicoplaninbiosynthesis(Xtei)to2.9A
DataTable1)18–22.TheX-domainadoptsaC/E-typefold,whichischar-acterizedbyaV-shapedarrangementoftwosubdomainsthatbothbe-longtothechloramphenicol-acetyltransferase(CAT)fold.Crossoverelementsbetweenthesubdomainscomprisethe‘floor’oftheV-shapedcleft(I;Fig.2a,magenta)andthecrossover‘latch’(II;Fig.2a,orange).TheX-domainalsocontainsseveralinsertionregionscomparedwithotherstructurallycharacterizedC/E-domains(Fig.2a,red/yellow).Im-portantlyforthefunctionoftheX-domain,theacceptorentrysideoftheX-domainisblockedbytheorientationofseveralloopregions(Fig.2a,cyan)andnotunnelthroughtheX-domaincanbeobserved.Whilethestructuralactive-sitemotifresiduesH140andD145aremaintained,theresiduesmutatedfromthecanonicalC-domainactivesite(HRxxxDD;boldtextindicatesmutatedresidues)impactonthepotentialcatalyticfunctionofthisdomain:thesidechainsofbothresiduesR141andD146projectdirectlyintothepositionexpectedtobeoccupiedbythedonor49-phosphopantetheinegroupduringpeptidebondformationinanactiveC-domain(Fig.2candExtendedDataFig.4a).
SincethestructureoftheX-domainsuggestedthatitsfunctioninglycopeptidebiosynthesiswasunlikelytoberelatedtoamide-bondfor-mation,weconsidereditspossibleroleintheinteractionwithpeptide-modifyingproteinsintrans:theOxyproteinsresponsibleforside-chaincyclizationoftheNRPS-boundpeptide4–8.Invivoexperimentshadpre-viouslyindicatedtheprobableassociationoftheNRPSwiththeoxy-genaseenzymes4,andtheinitialoxidationinvancomycinbiosynthesisbyOxyBvanhasbeenshowntooccurinvitrothroughtheoxidationofsubstratesboundtocarrierproteins9,10.However,wehaverecently
MaxPlanckInstituteforMedicalResearch,Jahnstrasse29,69120Heidelberg,Germany.*Theseauthorscontributedequallytothiswork.
7MAY2015|VOL521|NATURE|105
G2015
MacmillanPublishersLimited.Allrightsreserved
RESEARCHLETTER
Tcp9
Module 1
D-Hpg
Tcp10Module 3
D-Dpg
Tcp11
Module 4
Tcp12
Module 6
内容需要下载文档才能查看Module 2
Module 5
D-Hpg
Module 7
L-Dpg
CD
E
B
A
F
G
Teicoplanin-type aglycone
Figure1|Structureoftheteicoplaninaglycone
andaschematicpathwayofteicoplanin
biosynthesisbynon-ribosomalpeptidesynthesis.DomainlabelsforNRPSproteins(Tcp9–12):A,adenylation(selectedaminoacidsindicatedabovethemodule:Hpg,4-hydroxyphenylglycine;Dpg,3,5-dihydroxyphenylglycine);C,condensation;E,epimerization;T,thiolation/peptidylcarrierprotein(PCP);TE,thioesterase;X,domainofunknownfunction.EssentialP450-catalysedaglyconerigidificationtakesplacethroughcrosslinkingofaromaticsidechains(OxyA–C,OxyE).EachcrosslinkingreactionisperformedbyaspecificOxyprotein,withtheproductsofeachOxyproteinindicatedschematically;standardringnomenclatureisindicatedontheteicoplaninaglyconeinredlettering.
Teicoplanin peptide
demonstratedthatOxyBvandisplaysapromiscuityinsubstrateselec-tion17notobservedfortheOxyBproteinfromteicoplanin23,24biosyn-thesis:forOxyBtei,thecarrierproteindomainisinsufficienttomediateefficientcrosslinkingoftheboundpeptide8.WethereforeinvestigatedseveralconstructsfromthelastteicoplaninNRPSmoduletoassesspotentialinteractionsoflargerNRPSconstructswithOxyBtei:toachievethisweusedbothgelfiltrationco-elutionexperimentsandnativepoly-acrylamidegelelectrophoresis(PAGE)mobilityshiftassay.Beginningwiththelargestconstruct,whichcontainsthreeNRPSdomains,PCP7–X–thioesterase(seeFig.1),weobservedco-elutionofOxyBteiwiththe
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看a
C-terminalsubdomain
b
X-domain
C-terminalsubdomain
N-terminalsubdomain
OxyBtei
c
Crossover II
D146
E391
2.3
3.32.9
D147
N-terminalsubdomain
Crossover I
N148
A303
D1452.8
2.9
2.8
β1
α4
β5
R141
A144
F302
d
α4
A158R167
2.7
e
A172
R64
α4
f
D294
I293
E290
3.1
2.7
2.7
2.5
A143
3.1
3.12.8
2.7
3.5
3.1
2.6
2.52.5
D161
2.6
R192
2.9
4.03.73.0β6
H140
I142
α1
R171
2.9
E291αG
E188
2.9
R181
E170
3.1
D162
Figure2|StructuresoftheX-domainandtheX-domain–OxyBteicomplex.a,IsolatedX-domain:thesecondarystructuredisplaysthetopologytypicalofC/E-domains.b,TheX-domain–OxyBteicomplex:selectedOxyBhelices
arelabelled.c,X-domainactivesiteshowingtheeffectsoftheresiduesmutatedfromthecanonicalC-domainactive-siteR141andD146.d–f,Selectedaminoacidsformingimportantinteractionsintheinterfaceareshown(OxyBtei
F-helixD161(d)andD162(e),OxyBteiG-helix(f)).Colourscheme:X-domain
106|NATURE|VOL521|7MAY2015
G2015
amino-terminalsubdomain,green;carboxy-terminalsubdomain,blue;
crossoverelementI,magenta,andII,orange;X-domaininsertionsa5/a6,red,andb12/b13,yellow;loopsoccludingtheacceptorsite,cyan;X-domain
proteinsurface,grey;OxyBtei,yellow;watermoleculesmediatinginteractionsbetweentheX-domainandOxyBteiareshownasbluespheres.Residuesdisplayedassticksarelabelled,asareselectedsecondarystructureelements;
?).hydrogenbondsareindicatedbydashedlineswithdistances(A
MacmillanPublishersLimited.Allrightsreserved
LETTERRESEARCH
NRPStri-domainbygelfiltration(ExtendedDataFig.2a).Thisasso-ciationwasconfirmedbytheappearanceofabandinthenative-PAGEassayoflowerelectrophoreticmobilitythatcontainedbothOxyBteiandtheNRPStri-domain(ExtendedDataFig.3a),asconfirmedbypeptidemassfingerprinting.RepetitionoftheseexperimentswithsmallerNRPSconstructsshowedthattheminimalconstructrequiredforOxyBteiin-teractionfromthefinalNRPSmoduleofteicoplaninwastheX-domainitself(Fig.3andExtendedDataFigs2a,3a).Native-PAGEanalysisofOxyBteiinthepresenceofincreasingconcentrationsofX-domainshowedthatatequimolarconcentrationsOxyBisfullyboundandthattheappar-entdissociationconstantisinthelowmicromolarrange(ExtendedDataFig.3c).ThisiswithintherangeobservedforotherP450–NRPSinter-actions—albeithereintheabsenceoftheactualP450substrate9,25–27.WiththeinteractionofOxyBteiandtheX-domainofteicoplanindem-onstrated,werepeatedtheseexperimentsforvancomycin-typesystemsandfoundcomparableresults(Fig.3andExtendedDataFig.3a).ThecrossoverexperimentwithalternateP450–NRPSpairsalsoindicatedthatOxyBvancaninteractwiththeteicoplanin-producingNRPSdomain(ExtendedDataFig.3a)—whichagreeswiththeinvivoactivityobservedforoxyBcross-complementationstudies11,12.Theseexperimentsindi-catethattheinteractionoftheX-domainwithOxyBisaconservedfeatureinglycopeptidebiosynthesis.
Wethendeterminedacrystalstructureoftheproteincomplexbe-?resolution(Fig.2b,ExtendedtweentheX-domainandOxyBteito2.5A
DataFigs4b,5aandExtendedDataTable1)Theorientationofthecom-plexplacestheuppersurfaceoftheP450(withthehaem-centredactivesite)facingtowardsthedonorsiteoftheX-domaincleft,http://wendang.chazidian.comparisonofthecomplexwiththeisolatedP450(ref.8)andX-domainstructuresindicatesthatthereislittlerearrangementofeither
?,proteinoninteraction(rootmeansquareddeviation1.1and0.9A
respectively);theinteractionismoreofarigidbodydockingandismediatedthroughapproximately20residuesoneachprotein.Thein-teractionsbetweenthetwoproteinsaremainlyviahydrogenbondsandsaltbridges;hydrophobicinteractions,asareoftenseeninintramole-cularNRPSdomaininteractions,arelimitedtoisolatedresiduesintheX-domain–OxyBinterface(Fig.2d–f).ThestartoftheF-helix(PRDD)isconservedintheOxyproteins(ExtendedDataFig.5b)andiscritical
a
Molecular mass (×105)
b
12345678
tei
c
1234567
cepNative PAGE1: GB1–X2: OxyA3: OxyB4: OxyC
5: OxyA+GB1–X6: OxyB+GB1–X7: OxyC+GB1–X8: OxyE+GB1–X
Elution profiles:
P450, 415 nm
P450–NRPS mix (1:3), 415 nmP450–NRPS mix (1:3), 280 nmNRPS, 280 nm
Molecular massdistributions:P450
P450–NRPS mix (1:3)NRPS
Figure3|InteractionoftheX-domainwithOxyproteins.a,Elutionprofilesofanalyticalsize-exclusionchromatography(solidlines415nm,dashedlines280nmdetection)andmolecularmassesoftheindividualspecies
observedbymulti-anglelightscatteringofindividuallysampledandco-elutedOxyBteiandXteifusedtoGB1(proteinG,B1domain;1:3mixture).AU,
arbitraryunits.b,NativePAGEofteicoplaninXtei-domainandOxyteiproteins(1–4)and3:1mixturesthereof(5–8;asterisksindicatethenewbandsoflowelectrophoreticmobility,triangleindicatesthebandofOxyEteithatdoesnotco-migratewithGB1–Xtei).c,NativePAGEofvancomycin-producingXcep-domainandOxyvanproteins(sampleorderasinbwiththesquareindicatingthebandofOxyCvanthatdoesnotco-migratewithGB1–Xcep).
G2015
forinteractionwiththeX-domain.TheB–B2loopregion(66–77),typ-icallydisorderedintheabsenceofaboundsubstrateinP450oxyge-nases,remainsunresolved,indicatingthatthebindingoftheX-domaindoesnotstimulateclosureoftheP450activesitebutratheractstodockontotheP450topresenttheneighbouringPCP7-peptidesubstrate.WemodelledthepositionofthePCP7-domainbasedonthecomplexstruc-tureofthetwoknownP450–carrierproteincomplexes;26,28thisindicatesthatthePCPorientationfromtheskyllamycinP450–PCPcomplexiscompatiblewiththeX–P450complexstructure(ExtendedDataFig.6).MutationofspecificresiduesineachofthethreeX-domaininteractionregionsrevealedthattheloopregionafterhelixa4thatcontainsresi-duesR167andR171(whichcontacttheconservedPRDDOxymotif)isessentialfortheinteraction(ExtendedDataFig.2b).
SincenoinvitroactivityforanyOxyproteinbeyondtheinitialcy-clizationstepcatalysedbyOxyBvanhasbeendescribedsofar9,10,17,weexaminedwhethertheX-domaininteractedwiththeremainingoxy-genases(OxyAtei,OxyCteiandOxyEtei)usingtheinteractionassaysde-scribedearlierforOxyB(Fig.3andExtendedDataFigs2c,3b).TheseexperimentsshowedthatbothOxyAteiandOxyCteiinteractwithamin-imalX-domainconstructfromteicoplaninbiosynthesis;thesameholdstrueforvancomycin-typesystems.TheaffinitiesoftheteicoplaninOxyenzymesfortheX-domain,asdeterminedbygelfiltration,appearedtobelowerthanthatofOxyB,withOxyAbindingmoretightlythanOxyC.DifferentialaffinityfortheX-domainimpliesthatadditionalselectivityforOxybindingisbasedonthestateofthecrosslinkingofthepeptide.Thus,theroleoftheX-domainintheglycopeptideNRPSistoactasageneralrecruitmentplatformforoxygenaseenzymesingly-copeptidetailoring:thisdiffersfromothercarrierprotein–P450sys-temssuchasthosefoundinaminoacyl-PCPoxidation25–27orbiotinbiosynthesis28—theserelyonthecarrierprotein–substratepairforsub-straterecognition.
Curiously,OxyE—theoxygenaseresponsiblefortheF-O-Gringin-stallationinteicoplaninbiosynthesis—didnotdisplayaninteractionwiththeteicoplaninX-domain(Fig.3andExtendedDataFig.2c).How-ever,asOxyEteicatalysesaphenoliccouplingstepwithminimalpeptidepenetrationintotheP450activesite(residues1and3),itisplausiblethatthisP450requiresthepresenceofthePCP7-boundpeptidetomain-tainatightinteractiontotheNRPS.AstheF-O-Gringisnotrequiredforantibioticactivitybutrathermoderatesselectivityagainstdifferentbacterialtargets2,16,alloxygenaseenzymescrucialforpeptidetailoringinGPAbiosynthesisarerecruitedtotheNRPS-boundheptapeptidebytheX-domain.
Thewell-studiedOxyBenzymefromthevancomycinsystem(OxyBvan)hasbeenshowntocatalysetheinvitrooxidationofheptapeptideswithdecreasedefficiencycomparedwithitsefficientturnoverofhexapep-tidespresentedbythePCP-domainfrommodulesevenoftheNRPS(PCP7),leavingthequestionofitsnaturalsubstrateunanswered9.WesoughttoreconstitutetheenzymaticactivityofOxyBvaninamorenat-uralcontext,comprisingasimplifiedheptapeptide(SupplementaryFig.1)presentedbyaPCP7-domainintheabsenceandpresenceoftheX-domain.WiththisapproachweobservedamoderateincreaseinturnoveryieldbyusingthePCP7–Xconstruct(Fig.4andExtendedDataFig.7c).TheeffectsoftheX-domainweremorepronouncedforOxyBteiduetothecomparativelylowactivityofOxyBteiintheinvitroturnoverofPCP7-boundmodelhexapeptides:8indeed,OxyBteiishighlyactiveincyclizingheptapeptidesboundtothePCP7–Xconstructs,whereasitisonlyabletocatalyse,25%C-O-DringformationinPCP7-boundteicoplanin-likeheptapeptidesunderthesameconditions(Fig.4andExtendedDataFig.7a).ActivityassaysperformedwiththePCP7–X-domaininterfacemutantsconfirmtheresultsfromtheinter-actionstudies(ExtendedDataFig.2b),withnoactivityobservedfortheX1variant(Fig.4andExtendedDataFig.8).MutantvariantsthatretaintheabilitytobindOxyBteiretainP450activitycomparablewiththewild-typePCP7–Xprotein,underpinningtheimportanceoftheX-domainfortheOxyBteiturnoverreaction.WeexaminedwhetherthedifferencesobservedinthepresenceoftheX-domaininthesesystemsweredueto
内容需要下载文档才能查看7MAY2015|VOL521|NATURE|107
MacmillanPublishersLimited.Allrightsreserved
RESEARCHLETTER
a
Tei7(Hpg3,7)a
MonocyclicOxyBtei
Bicyclic
OxyBtei + OxyAtei
b
Yield (%)
Yield (%)
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看Relative intensity
PCtei
P–XPCteP–iXPC1teiP–X2PCteiP–PCXP–3teiX
PCpPPCcepP–X
PCPPCcepP–X
PCPPCteiP–X
1–3tei
PCP
cep
tei
ce
X1: R167A, R171A X2: E290A, D291A X3: E377A, R382AX1–3: R167A, R171A, E290A, D291A, E377A, R382A
teitei
b
Figure5|CoupledinvitroactivityofOxyAteiandOxyBtei.a,TurnoverofheptapeptidesubstratesboundtoPCP7andPCP7–X(GB1fusionproteins)expressedasapercentageofthetotalpeptidedetectedandshownasstackedbars(averageoftriplicateexperiments,errorbarsindicates.d.).b,ESI-MS/MSanalysisofHPLC-purifiedbicyclicteicoplanin-likeOxyB/OxyAturnoverproduct,demonstratingtheanticipatedfragmentationforaC-O-D/D-O-Ebicyclicpeptidestructure(SupplementaryFig.6).
Relative intensity
内容需要下载文档才能查看Figure4|InvitroactivityofOxyBteianditshomologues.a,TurnoverofheptapeptidesubstratesboundtoPCP7andPCP7–X(GB1fusionproteins)fromtheteicoplaninandchloroerymomycinNRPSwithOxyBenzymesfromteicoplanin-likesystems(OxyBtei,StaH)andvancomycin-likesystems(OxyBvan,CepF)expressedasapercentageofthetotalpeptidedetected.HeptapeptidesubstratesloadedontothePCP7/PCP7–Xconstructsare
indicatedabovetherespectiveOxyBenzymes;X-domainvariantsX1–X3andX1–3oftheteicoplaninNRPS(describedbelowthegraph)showstronglyreducedactivityforconstructsX1andX1–3thatpossessR167AandR171AmutationscontactingtheconservedPRDDOxymotifinthewild-typeprotein(averageoftriplicateexperiments;errorbarsindicatestandarddeviation(s.d.)).b,Electrosprayionizationtandemmassspectrometry(ESI-MS/MS)analysisofhigh-performanceliquidchromatography(HPLC)-purifiedmonocyclicteicoplanin-likeOxyBturnoverproduct,demonstratingtheanticipated
fragmentationforaC-O-Dmonocyclicpeptidestructure(SupplementaryFig.5).
OnemajorhurdleinGPAbiosynthesishasbeenthelackofinvitroactivityofanyOxyproteinbeyondtheC-O-DringformationcatalysedbyOxyB.WithresultsindicatingthattheX-domainwasabletorecruitallessentialOxyenzymes(OxyA–C),weinvestigatedwhetherthepres-enceoftheX-domainwouldsupporttheactivityofadditionalOxyen-zymes.Incoupledassays,thecombinationofOxyBteiandOxyAteiwasnowabletoinstallbothC-O-DandD-O-EcrosslinksinaPCP7–X-boundheptapeptidesubstrate(Fig.5andExtendedDataFig.9a).Inagree-mentwiththereportedinvivooxidationorder11,12,thecombinationofOxyBteiandOxyCteididnotleadtothegenerationofabicyclicpeptideproduct(ExtendedDataFig.9b).However,thelackofactivityinthisassaycouldhavebeenduetothelimitedcatalyticcompetenceoftheOxyCteienzyme(P420signalfortheCO-complex);thisalsopreventedtherecreationoftheOxyA–Ccascade(ExtendedDataFig.9c).Inspiteofthis,ourdemonstrationofinvitroOxyAactivityclearlyindicatestheimportanceoftheX-domainasarecruitmentplatformintheOxy-catalysedinstallationofcrosslinksinGPAbiosynthesisandopensthedoortothereconstitutionofGPAaglyconebiosynthesisinvitro.Morebroadly,ourresultsshowthattherecruitmentofenzymestoNRPSsystemscanbemediatedbydomainsbeyondcarrierproteinsandthatsuchmechanismsmayhaveawiderroleinbiosynthesisbymegaen-zymesynthetasemachineriesthanhasbeenacknowledged.
OnlineContentMethods,alongwithanyadditionalExtendedDatadisplayitemsandSourceData,areavailableintheonlineversionofthepaper;referencesuniquetothesesectionsappearonlyintheonlinepaper.Received10July;accepted5December2014.Publishedonline9February2015.1.2.3.4.5.6.7.
Hur,G.H.,Vickery,C.R.&Burkart,M.D.Explorationsofcatalyticdomainsinnon-ribosomalpeptidesynthetaseenzymology.Nat.Prod.Rep.29,1074–1098(2012).Yim,G.,Thaker,M.N.,Koteva,K.&Wright,G.Glycopeptideantibioticbiosynthesis.J.Antibiot.(Tokyo)67,31–41(2014).
Cryle,M.J.,Brieke,C.&Haslinger,K.inAminoAcids,PeptidesandProteinsVol.38,1–36(TheRoyalSocietyofChemistry,2014).
Bischoff,D.etal.Thebiosynthesisofvancomycin-typeglycopeptideantibiotics-amodelforoxidativeside-chaincross-linkingbyoxygenasescoupledtotheactionofpeptidesynthetases.ChemBioChem6,267–272(2005).
Bischoff,D.etal.Thebiosynthesisofvancomycin-typeglycopeptideantibiotics-newinsightsintothecyclizationsteps.Angew.Chem.Int.Ed.Engl.40,1693–1696(2001).
Bischoff,D.etal.Thebiosynthesisofvancomycin-typeglycopeptideantibiotics—theorderofthecyclizationsteps.Angew.Chem.Int.Ed.Engl.40,4688–4691(2001).
¨ssmuth,R.D.etal.NewadvancesinthebiosynthesisofglycopeptideantibioticsSu
ofthevancomycintypefromAmycolatopsismediterranei.Angew.Chem.Int.Ed.Engl.38,1976–1979(1999).
内容需要下载文档才能查看 内容需要下载文档才能查看generaldifferencesbetweenthebiosynthesisofdifferentGPAclassesbyinvestigatingtheeffectoftheX-domainonOxyBactivityfromtworelatedglycopeptidebiosyntheticmachineries:thoseofchloroerymo-mycin(cep;van-type/type-I)29andA47934(sta;tei-type/type-IV)30GPAs.Theseresultswereevenmorepronouncedthanfortheteicoplaninsystem,witheffectiveOxyBactivityseenonlyinthepresenceoftheX-domain(Fig.4andExtendedDataFig.7b,d):thisindicatesthattheactivityofOxyBvanisatypicalandthatthegeneralmechanismforrecruitmentoftheOxyenzymesinGPAbiosynthesisrequirestheX-domain.
ToclarifyfurthertheroleoftheX-domaininOxyrecruitment,wetestedtheactivityofOxyBteionahexapeptideboundtothePCP-domainfrommodulesixoftheNRPS(PCP6):theseturnoversshowednoactiv-ityofOxyBtei(ExtendedDataFig.9d).Thisagreeswithpreviousinvivoexperimentsthatreportverylittleisolationofcrosslinkedhexapeptidescomparedwiththefinalaglycone11.Takentogether,theseresultsstronglysuggestthatcrosslinkedhexapeptideproductsonlyappearfromminorshuntpathwaysanddonotrepresentthenormalbiosynthesisrouteinvivo,whichinsteadreliesonX-domain-mediatedoxygenaserecruit-menttothemodule-seven-boundheptapeptide.
108|NATURE|VOL521|7MAY2015
G2015
MacmillanPublishersLimited.Allrightsreserved
LETTERRESEARCH
8.9.10.11.12.13.14.15.16.17.
Haslinger,K.,Maximowitsch,E.,Brieke,C.,Koch,A.&Cryle,M.J.CytochromeP450OxyBteicatalyzesthefirstphenoliccouplingstepinteicoplaninbiosynthesis.ChemBioChem15,2719–2728(2014).
Woithe,K.etal.OxidativephenolcouplingreactionscatalyzedbyOxyB:a
cytochromeP450fromthevancomycinproducingorganism.Implicationsforvancomycinbiosynthesis.J.Am.Chem.Soc.129,6887–6895(2007).Zerbe,K.etal.AnoxidativephenolcouplingreactioncatalyzedbyOxyB,a
cytochromeP450fromthevancomycin-producingmicroorganism.Angew.Chem.Int.Ed.Engl.43,6709–6713(2004).
Hadatsch,B.etal.Thebiosynthesisofteicoplanin-typeglycopeptideantibiotics:assignmentofP450mono-oxygenasestosidechaincyclizationsofglycopeptideA47934.Chem.Biol.14,1078–1089(2007).
Stegmann,E.etal.Geneticanalysisofthebalhimycin(vancomycin-type)oxygenasegenes.J.Biotechnol.124,640–653(2006).
Rausch,C.,Hoof,I.,Weber,T.,Wohlleben,W.&Huson,D.PhylogeneticanalysisofcondensationdomainsinNRPSshedslightontheirfunctionalevolution.BMCEvol.Biol.7,78(2007).
Stegmann,E.,Frasch,H.-J.&Wohlleben,W.Glycopeptidebiosynthesisinthecontextofbasiccellularfunctions.Curr.Opin.Microbiol.13,595–602(2010).Walsh,C.T.&Wencewicz,T.A.Prospectsfornewantibiotics:amolecule-centeredperspective.J.Antibiot.(Tokyo)67,7–22(2014).
Butler,M.S.etal.Glycopeptideantibiotics:backtothefuture.J.Antibiot.(Tokyo)67,631–644(2014).
Brieke,C.etal.RapidaccesstoglycopeptideantibioticprecursorpeptidescoupledwithcytochromeP450-mediatedcatalysis:towardsabiomimeticsynthesisofglycopeptideantibioticsOrg.Biomol.Chem.http://dx.doi/org/10.1039/C4OB02452D(2014).
Samel,S.A.,Czodrowski,P.&Essen,L.-O.StructureoftheepimerizationdomainoftyrocidinesynthetaseA.ActaCrystallogr.D70,1442–1452(2014).
Bloudoff,K.,Rodionov,D.&Schmeing,T.M.Crystalstructuresofthefirst
condensationdomainofCDAsynthetasesuggestconformationalchangesduringthesyntheticcycleofnonribosomalpeptidesynthetases.J.Mol.Biol.425,3137–3150(2013).
Tanovic,A.,Samel,S.A.,Essen,L.-O.&Marahiel,M.A.Crystalstructureoftheterminationmoduleofanonribosomalpeptidesynthetase.Science321,659–663(2008).
Samel,S.A.,Schoenafinger,G.,Knappe,T.A.,Marahiel,M.A.&Essen,L.-O.
Structuralandfunctionalinsightsintoapeptidebond-formingbidomainfromanonribosomalpeptidesynthetase.Structure15,781–792(2007).
Keating,T.A.,Marshall,C.G.,Walsh,C.T.&Keating,A.E.ThestructureofVibHrepresentsnonribosomalpeptidesynthetasecondensation,cyclizationandepimerizationdomains.NatureStruct.Mol.Biol.9,522–526(2002).
Sosio,http://wendang.chazidian.comanizationoftheteicoplaningeneclusterinActinoplanesteichomyceticus.Microbiology150,95–102(2004).
24.Li,T.-L.etal.Biosyntheticgeneclusteroftheglycopeptideantibioticteicoplanin:
characterizationoftwoglycosyltransferasesandthekeyacyltransferase.Chem.Biol.11,107–119(2004).
25.Haslinger,K.etal.Thestructureofatransientcomplexofanonribosomalpeptide
synthetaseandacytochromeP450monooxygenase.Angew.Chem.Int.Ed.Engl.53,8518–8522(2014).
¨ssmuth,R.D.&Cryle,M.J.CytochromeP450skyinteractsdirectly26.Uhlmann,S.,Su
withthenonribosomalpeptidesynthetasetogeneratethreeaminoacid
precursorsinskyllamycinbiosynthesis.ACSChem.Biol.8,2586–2596(2013).27.Cryle,M.J.,Meinhart,A.&Schlichting,I.StructuralcharacterizationofOxyD,a
cytochromeP450involvedinb-hydroxytyrosineformationinvancomycinbiosynthesis.J.Biol.Chem.285,24562–24574(2010).
28.Cryle,M.J.&Schlichting,I.StructuralinsightsfromaP450carrierproteincomplex
http://wendang.chazidian.comA105,15696–15701(2008).
29.vanWageningen,A.M.A.etal.Sequencingandanalysisofgenesinvolvedinthe
biosynthesisofavancomycingroupantibiotic.Chem.Biol.5,155–162(1998).30.Pootoolal,J.etal.Assemblingtheglycopeptideantibioticscaffold:thebiosynthesis
http://wendang.chazidian.comA99,8962–8967(2002).SupplementaryInformationisavailableintheonlineversionofthepaper.
AcknowledgementsTheauthorsthankA.Kochforassistancewithproteinexpression;S.Bellforredoxproteins;M.Gradlforassistancewithmassspectrometry;M.TarnawskiandA.Meinhartforassistancewithcrystalharvestinganddataprocessing;
¨ssmuthandI.SchlichtingandJ.Wrayfordiscussions;C.RoomeforITsupport;R.Su
A.Trumanforsharingunpublisheddata.DiffractiondatawerecollectedattheSwissLightSource,X10SAbeamline,PaulScherrerInstitute,Villigen,Switzerland.WethanktheHeidelbergteamfordatacollectionandthePXIIstafffortheirsupportinsettingupthebeamline.M.J.C.isgratefultoI.SchlichtingforconstantencouragementandtotheDeutscheForschungsgemeinschaft(Emmy2NoetherProgram,CR392/1-1)forfinancialsupport.
AuthorContributionsM.J.C.designedthestudy.K.H.,M.P.andE.M.performedthebiochemicalexperiments.C.B.performedthechemicalsynthesisandcompoundcharacterization.M.P.,K.H.andM.J.C.solvedthestructuresandperformedtheanalysis.M.J.C.wrotethemanuscripttogetherwithcontributionsfromK.H.,http://wendang.chazidian.com/reprints.Theauthorsdeclarenocompetingfinancialinterests.Readersarewelcometocommentontheonlineversionofthepaper.CorrespondenceandrequestsformaterialsshouldbeaddressedtoM.J.C.(Max.Cryle@mpimf-heidelberg.mpg.de).
18.19.
20.21.22.23.
7MAY2015|VOL521|NATURE|109
G2015
MacmillanPublishersLimited.Allrightsreserved
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 教师资格考试|小学教育知识与能力考点:教学反思
- 教师资格考试《小学教育心理学》核心考点十一:心理健康教育
- 2014年教师资格证考试:教学能力测试注意事项
- 教师资格考试《小学教育心理学》核心考点九:问题解决与创造性
- 教师资格考试《小学教育心理学》核心考点三:学习的基本理论
- 小学教育心理学考点命题:第十章 态度与品德形成
- 教资考试教育教学知识与能力重点一:历史上的教育学思想
- 小学教育学考点命题:3.3 教育在个人身心发展中的作用
- 小学教师资格证考试教育学辅导:情感教学理论
- 小学教育学考点命题:3.2 影响个体身心发展的主要因素
- 小学教师资格证考试教育学辅导:班级授课制
- 小学教育心理学考点命题:第九章 问题解决与创造性
- 教师资格之小学教育学考点命题:7.2教学组织形式
- 小学教师资格证考试教育学辅导:教育制度的特点
- 教师资格之小学教育学考点命题:7.1教学原则和教学方法
- 小学教师资格证考试教育学辅导:现代学校的危机与管理
- 教师资格考试《小学教育心理学》核心考点四:学习动机
- 小学教师资格证考试教育学辅导:教师劳动的特点
- 教师资格考试《小学教育心理学》核心考点十二:教学设计
- 教师资格考试《小学教育心理学》核心考点十三:课堂管理
- 教师资格考试|小学教育教学知识与能力高频考点:1.2小学的组织与运行
- 小学教师资格证考试教育学辅导:认知主义教学理论
- 教师资格考试《小学教育心理学》核心考点六:知识的学习
- 教师资格考试《小学教育心理学》核心考点八:学习策略
- 教师资格之小学教育学考点命题:6.2教学过程
- 小学教师资格证考试教育学辅导:教育的目的与教育方针的区别
- 小学教师资格证考试教育学辅导:开展课外校外教育的意义
- 教师资格之小学教育学考点命题:6.1教学的意义与任务
- 小学教育教学基本素质和能力考试知识点一
- 小学教育心理学考点命题:第八章 学习策略
网友关注视频
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
- 冀教版英语五年级下册第二课课程解读
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 外研版英语七年级下册module3 unit1第二课时
- 冀教版小学英语四年级下册Lesson2授课视频
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 小学英语单词
- 冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
- 苏教版二年级下册数学《认识东、南、西、北》
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 七年级英语下册 上海牛津版 Unit5
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 二年级下册数学第三课 搭一搭⚖⚖
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 外研版英语七年级下册module1unit3名词性物主代词讲解
- 3月2日小学二年级数学下册(数一数)
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理