X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis
上传者:法焕宝|上传时间:2015-05-07|密次下载
X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis
KristinaHaslinger1*,MadeleinePeschke1*,ClaraBrieke1,EgleMaximowitsch1&MaxJ.Cryle1
X-domainofpeptidesynthetasesrecruits
oxygenasescrucialforglycopeptidebiosynthesis
Non-ribosomalpeptidesynthetase(NRPS)mega-enzymecomplexesaremodularassemblylinesthatareinvolvedinthebiosynthesisofnumerouspeptidemetabolitesindependentlyoftheribosome1.ThemultipleinteractionsbetweencatalyticdomainswithintheNRPSmachineryarefurthercomplementedbyadditionalinteractionswithexternalenzymes,particularlyfocusedonthefinalpeptidematura-tionprocess.AnimportantclassofNRPSmetabolitesthatrequireextensiveexternalmodificationoftheNRPS-boundpeptidearetheglycopeptideantibiotics(GPAs),whichincludevancomycinandteicoplanin2,3.TheseclinicallyrelevantpeptideantibioticsundergocytochromeP450-catalysedoxidativecrosslinkingofaromaticsidechainstoachievetheirfinal,activeconformation4–12.However,themechanismunderlyingtherecruitmentofthecytochromeP450oxy-genasestotheNRPS-boundpeptidewaspreviouslyunknown.Hereweshow,throughinvitrostudies,thattheX-domain13,14,aconserveddomainofunknownfunctionpresentinthefinalmoduleofallGPANRPSmachineries,isresponsiblefortherecruitmentofoxygenasestotheNRPS-boundpeptidetoperformtheessentialside-chaincross-linking.X-raycrystallographyshowsthattheX-domainisstructurallyrelatedtocondensationdomains,butthatitsaminoacidsubstitu-tionsrenderitcatalyticallyinactive.WefoundthattheX-domainrecruitscytochromeP450oxygenasestotheNRPSanddeterminedtheinterfacebysolvingthestructureofaP450–X-domaincomplex.Additionally,wedemonstratedthatthemodificationofpeptidepre-cursorsbyoxygenasesinvitro—inparticulartheinstallationofthesecondcrosslinkinGPAbiosynthesis—occursonlyinthepresenceoftheX-domain.Ourresultsindicatethatthepresentationofpep-tidylcarrierprotein(PCP)-boundsubstratesforoxidationinGPAbiosynthesisrequiresthepresenceoftheNRPSX-domaintoensureconversionoftheprecursorpeptideintoamatureaglycone,andthatthecarrierproteindomainaloneisnotalwayssufficienttogenerateacompetentsubstrateforexternalcytochromeP450oxygenases.Fewcompoundclasseshavehadsuchapositiveeffectonhumanhealthasantibiotics15.Concernovertheriseofantibioticresistancemakesitessentialtodevelopnewchemotherapeutics,throughthediscoveryofnovelantibioticsandtherenewedexploitationofexistingones15,16.TheGPAsareagroupofcompoundsincurrentusethatarehighlyef-fectiveagainstGram-positivebacterialinfectionsresistanttootherclassesofantibiotics2:examplesarethenaturalproductsvancomycinandteico-planinandsemi-syntheticderivativesunderdevelopment16.TheGPAsarecomplexmolecules,comprisingheptapeptideaglyconeswithahighpercentageofnon-proteinogenicaminoacids,whicharecrosslinkedthroughmultiplearylandphenoliclinks.Theaglyconesarefurtherdecoratedthroughmanydifferentprocesses,includingglycosylationandsulfonation2.GPAsfunctionthroughtheformationofanon-covalentcomplexofmicromolaraffinitywithapeptidoglycanprecursor(lipidII).Thiscomplexisformedviahydrogenbondsfrombackboneamidegroupsoftheglycopeptideaglycone,andthecrosslinkedaromaticsidechainsarecrucialingivingtheaglyconethethree-dimensionalshaperequiredforbinding2.GPAsarebiosynthesizedwithouttheribosomebyalinearNRPS(Fig.1andExtendedDataFig.1)1,2.Inglycopeptide
1
biosynthesis,thematurationoftheheptapeptiderequirestheNRPSforinteractionwithexternaloxygenaseenzymes—cytochromesP450(OxyA,B,C,E)—thatcatalysethe(aryl/phenolic)crosslinkingofaromaticaminoacidsidechainsandprovidethefinal,rigidaglyconestructure3.ExtensiveinvivogenedisruptionexperimentshavesuggestedrolesforeachoftheOxyproteinsandalsoaspecificsequenceofoxidation,withOxyBintroducingthefirstcrosslink5–7,11,12.Invitroandinvivoexperi-mentshaveindicatedthatthepeptidesubstratesfortheseP450oxy-genasesremainboundtotheNRPSduringoxidation4,9,10.Ourrecentstudieshaveconcentratedonunderstandingthelater,crucial,stagesofglycopeptidebiosynthesis,inparticularthecyclizationofthelinearpep-tidethroughtheoxidativecrosslinkingofaromaticsidechainsbytheOxyproteins8,17.Wearenowfocusingontheroleofadomainofun-knownfunctionthatispresentinthefinalmoduleofallglycopeptide-typeNRPSmachineries14.Fromphylogeneticanalyses,thisdomainappearstoberelatedtothecondensation/epimerization(C/E)-domainsfoundinNRPSbiosynthesisandmostcloselytoanLCL-typecondensa-tiondomain.However,itseemstobecatalyticallyinactiveduetothemutationofresiduesofthehighlyconservedHHxxxDGmotifessentialforpeptidebondformationandepimerization13,andisreferredtoasthe‘X-domain’.
AsthefinalNRPSmodulesofGPAsallcontainanX-domain,wesoughttoclarifythemolecularfunctionofthisdomain.WedeterminedthecrystalstructureoftheX-domainfromthefinalNRPSmoduleof
?resolution(Fig.2aandExtendedteicoplaninbiosynthesis(Xtei)to2.9A
DataTable1)18–22.TheX-domainadoptsaC/E-typefold,whichischar-acterizedbyaV-shapedarrangementoftwosubdomainsthatbothbe-longtothechloramphenicol-acetyltransferase(CAT)fold.Crossoverelementsbetweenthesubdomainscomprisethe‘floor’oftheV-shapedcleft(I;Fig.2a,magenta)andthecrossover‘latch’(II;Fig.2a,orange).TheX-domainalsocontainsseveralinsertionregionscomparedwithotherstructurallycharacterizedC/E-domains(Fig.2a,red/yellow).Im-portantlyforthefunctionoftheX-domain,theacceptorentrysideoftheX-domainisblockedbytheorientationofseveralloopregions(Fig.2a,cyan)andnotunnelthroughtheX-domaincanbeobserved.Whilethestructuralactive-sitemotifresiduesH140andD145aremaintained,theresiduesmutatedfromthecanonicalC-domainactivesite(HRxxxDD;boldtextindicatesmutatedresidues)impactonthepotentialcatalyticfunctionofthisdomain:thesidechainsofbothresiduesR141andD146projectdirectlyintothepositionexpectedtobeoccupiedbythedonor49-phosphopantetheinegroupduringpeptidebondformationinanactiveC-domain(Fig.2candExtendedDataFig.4a).
SincethestructureoftheX-domainsuggestedthatitsfunctioninglycopeptidebiosynthesiswasunlikelytoberelatedtoamide-bondfor-mation,weconsidereditspossibleroleintheinteractionwithpeptide-modifyingproteinsintrans:theOxyproteinsresponsibleforside-chaincyclizationoftheNRPS-boundpeptide4–8.Invivoexperimentshadpre-viouslyindicatedtheprobableassociationoftheNRPSwiththeoxy-genaseenzymes4,andtheinitialoxidationinvancomycinbiosynthesisbyOxyBvanhasbeenshowntooccurinvitrothroughtheoxidationofsubstratesboundtocarrierproteins9,10.However,wehaverecently
MaxPlanckInstituteforMedicalResearch,Jahnstrasse29,69120Heidelberg,Germany.*Theseauthorscontributedequallytothiswork.
7MAY2015|VOL521|NATURE|105
G2015
MacmillanPublishersLimited.Allrightsreserved
RESEARCHLETTER
Tcp9
Module 1
D-Hpg
Tcp10Module 3
D-Dpg
Tcp11
Module 4
Tcp12
Module 6
内容需要下载文档才能查看Module 2
Module 5
D-Hpg
Module 7
L-Dpg
CD
E
B
A
F
G
Teicoplanin-type aglycone
Figure1|Structureoftheteicoplaninaglycone
andaschematicpathwayofteicoplanin
biosynthesisbynon-ribosomalpeptidesynthesis.DomainlabelsforNRPSproteins(Tcp9–12):A,adenylation(selectedaminoacidsindicatedabovethemodule:Hpg,4-hydroxyphenylglycine;Dpg,3,5-dihydroxyphenylglycine);C,condensation;E,epimerization;T,thiolation/peptidylcarrierprotein(PCP);TE,thioesterase;X,domainofunknownfunction.EssentialP450-catalysedaglyconerigidificationtakesplacethroughcrosslinkingofaromaticsidechains(OxyA–C,OxyE).EachcrosslinkingreactionisperformedbyaspecificOxyprotein,withtheproductsofeachOxyproteinindicatedschematically;standardringnomenclatureisindicatedontheteicoplaninaglyconeinredlettering.
Teicoplanin peptide
demonstratedthatOxyBvandisplaysapromiscuityinsubstrateselec-tion17notobservedfortheOxyBproteinfromteicoplanin23,24biosyn-thesis:forOxyBtei,thecarrierproteindomainisinsufficienttomediateefficientcrosslinkingoftheboundpeptide8.WethereforeinvestigatedseveralconstructsfromthelastteicoplaninNRPSmoduletoassesspotentialinteractionsoflargerNRPSconstructswithOxyBtei:toachievethisweusedbothgelfiltrationco-elutionexperimentsandnativepoly-acrylamidegelelectrophoresis(PAGE)mobilityshiftassay.Beginningwiththelargestconstruct,whichcontainsthreeNRPSdomains,PCP7–X–thioesterase(seeFig.1),weobservedco-elutionofOxyBteiwiththe
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看a
C-terminalsubdomain
b
X-domain
C-terminalsubdomain
N-terminalsubdomain
OxyBtei
c
Crossover II
D146
E391
2.3
3.32.9
D147
N-terminalsubdomain
Crossover I
N148
A303
D1452.8
2.9
2.8
β1
α4
β5
R141
A144
F302
d
α4
A158R167
2.7
e
A172
R64
α4
f
D294
I293
E290
3.1
2.7
2.7
2.5
A143
3.1
3.12.8
2.7
3.5
3.1
2.6
2.52.5
D161
2.6
R192
2.9
4.03.73.0β6
H140
I142
α1
R171
2.9
E291αG
E188
2.9
R181
E170
3.1
D162
Figure2|StructuresoftheX-domainandtheX-domain–OxyBteicomplex.a,IsolatedX-domain:thesecondarystructuredisplaysthetopologytypicalofC/E-domains.b,TheX-domain–OxyBteicomplex:selectedOxyBhelices
arelabelled.c,X-domainactivesiteshowingtheeffectsoftheresiduesmutatedfromthecanonicalC-domainactive-siteR141andD146.d–f,Selectedaminoacidsformingimportantinteractionsintheinterfaceareshown(OxyBtei
F-helixD161(d)andD162(e),OxyBteiG-helix(f)).Colourscheme:X-domain
106|NATURE|VOL521|7MAY2015
G2015
amino-terminalsubdomain,green;carboxy-terminalsubdomain,blue;
crossoverelementI,magenta,andII,orange;X-domaininsertionsa5/a6,red,andb12/b13,yellow;loopsoccludingtheacceptorsite,cyan;X-domain
proteinsurface,grey;OxyBtei,yellow;watermoleculesmediatinginteractionsbetweentheX-domainandOxyBteiareshownasbluespheres.Residuesdisplayedassticksarelabelled,asareselectedsecondarystructureelements;
?).hydrogenbondsareindicatedbydashedlineswithdistances(A
MacmillanPublishersLimited.Allrightsreserved
LETTERRESEARCH
NRPStri-domainbygelfiltration(ExtendedDataFig.2a).Thisasso-ciationwasconfirmedbytheappearanceofabandinthenative-PAGEassayoflowerelectrophoreticmobilitythatcontainedbothOxyBteiandtheNRPStri-domain(ExtendedDataFig.3a),asconfirmedbypeptidemassfingerprinting.RepetitionoftheseexperimentswithsmallerNRPSconstructsshowedthattheminimalconstructrequiredforOxyBteiin-teractionfromthefinalNRPSmoduleofteicoplaninwastheX-domainitself(Fig.3andExtendedDataFigs2a,3a).Native-PAGEanalysisofOxyBteiinthepresenceofincreasingconcentrationsofX-domainshowedthatatequimolarconcentrationsOxyBisfullyboundandthattheappar-entdissociationconstantisinthelowmicromolarrange(ExtendedDataFig.3c).ThisiswithintherangeobservedforotherP450–NRPSinter-actions—albeithereintheabsenceoftheactualP450substrate9,25–27.WiththeinteractionofOxyBteiandtheX-domainofteicoplanindem-onstrated,werepeatedtheseexperimentsforvancomycin-typesystemsandfoundcomparableresults(Fig.3andExtendedDataFig.3a).ThecrossoverexperimentwithalternateP450–NRPSpairsalsoindicatedthatOxyBvancaninteractwiththeteicoplanin-producingNRPSdomain(ExtendedDataFig.3a)—whichagreeswiththeinvivoactivityobservedforoxyBcross-complementationstudies11,12.Theseexperimentsindi-catethattheinteractionoftheX-domainwithOxyBisaconservedfeatureinglycopeptidebiosynthesis.
Wethendeterminedacrystalstructureoftheproteincomplexbe-?resolution(Fig.2b,ExtendedtweentheX-domainandOxyBteito2.5A
DataFigs4b,5aandExtendedDataTable1)Theorientationofthecom-plexplacestheuppersurfaceoftheP450(withthehaem-centredactivesite)facingtowardsthedonorsiteoftheX-domaincleft,http://wendang.chazidian.comparisonofthecomplexwiththeisolatedP450(ref.8)andX-domainstructuresindicatesthatthereislittlerearrangementofeither
?,proteinoninteraction(rootmeansquareddeviation1.1and0.9A
respectively);theinteractionismoreofarigidbodydockingandismediatedthroughapproximately20residuesoneachprotein.Thein-teractionsbetweenthetwoproteinsaremainlyviahydrogenbondsandsaltbridges;hydrophobicinteractions,asareoftenseeninintramole-cularNRPSdomaininteractions,arelimitedtoisolatedresiduesintheX-domain–OxyBinterface(Fig.2d–f).ThestartoftheF-helix(PRDD)isconservedintheOxyproteins(ExtendedDataFig.5b)andiscritical
a
Molecular mass (×105)
b
12345678
tei
c
1234567
cepNative PAGE1: GB1–X2: OxyA3: OxyB4: OxyC
5: OxyA+GB1–X6: OxyB+GB1–X7: OxyC+GB1–X8: OxyE+GB1–X
Elution profiles:
P450, 415 nm
P450–NRPS mix (1:3), 415 nmP450–NRPS mix (1:3), 280 nmNRPS, 280 nm
Molecular massdistributions:P450
P450–NRPS mix (1:3)NRPS
Figure3|InteractionoftheX-domainwithOxyproteins.a,Elutionprofilesofanalyticalsize-exclusionchromatography(solidlines415nm,dashedlines280nmdetection)andmolecularmassesoftheindividualspecies
observedbymulti-anglelightscatteringofindividuallysampledandco-elutedOxyBteiandXteifusedtoGB1(proteinG,B1domain;1:3mixture).AU,
arbitraryunits.b,NativePAGEofteicoplaninXtei-domainandOxyteiproteins(1–4)and3:1mixturesthereof(5–8;asterisksindicatethenewbandsoflowelectrophoreticmobility,triangleindicatesthebandofOxyEteithatdoesnotco-migratewithGB1–Xtei).c,NativePAGEofvancomycin-producingXcep-domainandOxyvanproteins(sampleorderasinbwiththesquareindicatingthebandofOxyCvanthatdoesnotco-migratewithGB1–Xcep).
G2015
forinteractionwiththeX-domain.TheB–B2loopregion(66–77),typ-icallydisorderedintheabsenceofaboundsubstrateinP450oxyge-nases,remainsunresolved,indicatingthatthebindingoftheX-domaindoesnotstimulateclosureoftheP450activesitebutratheractstodockontotheP450topresenttheneighbouringPCP7-peptidesubstrate.WemodelledthepositionofthePCP7-domainbasedonthecomplexstruc-tureofthetwoknownP450–carrierproteincomplexes;26,28thisindicatesthatthePCPorientationfromtheskyllamycinP450–PCPcomplexiscompatiblewiththeX–P450complexstructure(ExtendedDataFig.6).MutationofspecificresiduesineachofthethreeX-domaininteractionregionsrevealedthattheloopregionafterhelixa4thatcontainsresi-duesR167andR171(whichcontacttheconservedPRDDOxymotif)isessentialfortheinteraction(ExtendedDataFig.2b).
SincenoinvitroactivityforanyOxyproteinbeyondtheinitialcy-clizationstepcatalysedbyOxyBvanhasbeendescribedsofar9,10,17,weexaminedwhethertheX-domaininteractedwiththeremainingoxy-genases(OxyAtei,OxyCteiandOxyEtei)usingtheinteractionassaysde-scribedearlierforOxyB(Fig.3andExtendedDataFigs2c,3b).TheseexperimentsshowedthatbothOxyAteiandOxyCteiinteractwithamin-imalX-domainconstructfromteicoplaninbiosynthesis;thesameholdstrueforvancomycin-typesystems.TheaffinitiesoftheteicoplaninOxyenzymesfortheX-domain,asdeterminedbygelfiltration,appearedtobelowerthanthatofOxyB,withOxyAbindingmoretightlythanOxyC.DifferentialaffinityfortheX-domainimpliesthatadditionalselectivityforOxybindingisbasedonthestateofthecrosslinkingofthepeptide.Thus,theroleoftheX-domainintheglycopeptideNRPSistoactasageneralrecruitmentplatformforoxygenaseenzymesingly-copeptidetailoring:thisdiffersfromothercarrierprotein–P450sys-temssuchasthosefoundinaminoacyl-PCPoxidation25–27orbiotinbiosynthesis28—theserelyonthecarrierprotein–substratepairforsub-straterecognition.
Curiously,OxyE—theoxygenaseresponsiblefortheF-O-Gringin-stallationinteicoplaninbiosynthesis—didnotdisplayaninteractionwiththeteicoplaninX-domain(Fig.3andExtendedDataFig.2c).How-ever,asOxyEteicatalysesaphenoliccouplingstepwithminimalpeptidepenetrationintotheP450activesite(residues1and3),itisplausiblethatthisP450requiresthepresenceofthePCP7-boundpeptidetomain-tainatightinteractiontotheNRPS.AstheF-O-Gringisnotrequiredforantibioticactivitybutrathermoderatesselectivityagainstdifferentbacterialtargets2,16,alloxygenaseenzymescrucialforpeptidetailoringinGPAbiosynthesisarerecruitedtotheNRPS-boundheptapeptidebytheX-domain.
Thewell-studiedOxyBenzymefromthevancomycinsystem(OxyBvan)hasbeenshowntocatalysetheinvitrooxidationofheptapeptideswithdecreasedefficiencycomparedwithitsefficientturnoverofhexapep-tidespresentedbythePCP-domainfrommodulesevenoftheNRPS(PCP7),leavingthequestionofitsnaturalsubstrateunanswered9.WesoughttoreconstitutetheenzymaticactivityofOxyBvaninamorenat-uralcontext,comprisingasimplifiedheptapeptide(SupplementaryFig.1)presentedbyaPCP7-domainintheabsenceandpresenceoftheX-domain.WiththisapproachweobservedamoderateincreaseinturnoveryieldbyusingthePCP7–Xconstruct(Fig.4andExtendedDataFig.7c).TheeffectsoftheX-domainweremorepronouncedforOxyBteiduetothecomparativelylowactivityofOxyBteiintheinvitroturnoverofPCP7-boundmodelhexapeptides:8indeed,OxyBteiishighlyactiveincyclizingheptapeptidesboundtothePCP7–Xconstructs,whereasitisonlyabletocatalyse,25%C-O-DringformationinPCP7-boundteicoplanin-likeheptapeptidesunderthesameconditions(Fig.4andExtendedDataFig.7a).ActivityassaysperformedwiththePCP7–X-domaininterfacemutantsconfirmtheresultsfromtheinter-actionstudies(ExtendedDataFig.2b),withnoactivityobservedfortheX1variant(Fig.4andExtendedDataFig.8).MutantvariantsthatretaintheabilitytobindOxyBteiretainP450activitycomparablewiththewild-typePCP7–Xprotein,underpinningtheimportanceoftheX-domainfortheOxyBteiturnoverreaction.WeexaminedwhetherthedifferencesobservedinthepresenceoftheX-domaininthesesystemsweredueto
内容需要下载文档才能查看7MAY2015|VOL521|NATURE|107
MacmillanPublishersLimited.Allrightsreserved
RESEARCHLETTER
a
Tei7(Hpg3,7)a
MonocyclicOxyBtei
Bicyclic
OxyBtei + OxyAtei
b
Yield (%)
Yield (%)
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看Relative intensity
PCtei
P–XPCteP–iXPC1teiP–X2PCteiP–PCXP–3teiX
PCpPPCcepP–X
PCPPCcepP–X
PCPPCteiP–X
1–3tei
PCP
cep
tei
ce
X1: R167A, R171A X2: E290A, D291A X3: E377A, R382AX1–3: R167A, R171A, E290A, D291A, E377A, R382A
teitei
b
Figure5|CoupledinvitroactivityofOxyAteiandOxyBtei.a,TurnoverofheptapeptidesubstratesboundtoPCP7andPCP7–X(GB1fusionproteins)expressedasapercentageofthetotalpeptidedetectedandshownasstackedbars(averageoftriplicateexperiments,errorbarsindicates.d.).b,ESI-MS/MSanalysisofHPLC-purifiedbicyclicteicoplanin-likeOxyB/OxyAturnoverproduct,demonstratingtheanticipatedfragmentationforaC-O-D/D-O-Ebicyclicpeptidestructure(SupplementaryFig.6).
Relative intensity
内容需要下载文档才能查看Figure4|InvitroactivityofOxyBteianditshomologues.a,TurnoverofheptapeptidesubstratesboundtoPCP7andPCP7–X(GB1fusionproteins)fromtheteicoplaninandchloroerymomycinNRPSwithOxyBenzymesfromteicoplanin-likesystems(OxyBtei,StaH)andvancomycin-likesystems(OxyBvan,CepF)expressedasapercentageofthetotalpeptidedetected.HeptapeptidesubstratesloadedontothePCP7/PCP7–Xconstructsare
indicatedabovetherespectiveOxyBenzymes;X-domainvariantsX1–X3andX1–3oftheteicoplaninNRPS(describedbelowthegraph)showstronglyreducedactivityforconstructsX1andX1–3thatpossessR167AandR171AmutationscontactingtheconservedPRDDOxymotifinthewild-typeprotein(averageoftriplicateexperiments;errorbarsindicatestandarddeviation(s.d.)).b,Electrosprayionizationtandemmassspectrometry(ESI-MS/MS)analysisofhigh-performanceliquidchromatography(HPLC)-purifiedmonocyclicteicoplanin-likeOxyBturnoverproduct,demonstratingtheanticipated
fragmentationforaC-O-Dmonocyclicpeptidestructure(SupplementaryFig.5).
OnemajorhurdleinGPAbiosynthesishasbeenthelackofinvitroactivityofanyOxyproteinbeyondtheC-O-DringformationcatalysedbyOxyB.WithresultsindicatingthattheX-domainwasabletorecruitallessentialOxyenzymes(OxyA–C),weinvestigatedwhetherthepres-enceoftheX-domainwouldsupporttheactivityofadditionalOxyen-zymes.Incoupledassays,thecombinationofOxyBteiandOxyAteiwasnowabletoinstallbothC-O-DandD-O-EcrosslinksinaPCP7–X-boundheptapeptidesubstrate(Fig.5andExtendedDataFig.9a).Inagree-mentwiththereportedinvivooxidationorder11,12,thecombinationofOxyBteiandOxyCteididnotleadtothegenerationofabicyclicpeptideproduct(ExtendedDataFig.9b).However,thelackofactivityinthisassaycouldhavebeenduetothelimitedcatalyticcompetenceoftheOxyCteienzyme(P420signalfortheCO-complex);thisalsopreventedtherecreationoftheOxyA–Ccascade(ExtendedDataFig.9c).Inspiteofthis,ourdemonstrationofinvitroOxyAactivityclearlyindicatestheimportanceoftheX-domainasarecruitmentplatformintheOxy-catalysedinstallationofcrosslinksinGPAbiosynthesisandopensthedoortothereconstitutionofGPAaglyconebiosynthesisinvitro.Morebroadly,ourresultsshowthattherecruitmentofenzymestoNRPSsystemscanbemediatedbydomainsbeyondcarrierproteinsandthatsuchmechanismsmayhaveawiderroleinbiosynthesisbymegaen-zymesynthetasemachineriesthanhasbeenacknowledged.
OnlineContentMethods,alongwithanyadditionalExtendedDatadisplayitemsandSourceData,areavailableintheonlineversionofthepaper;referencesuniquetothesesectionsappearonlyintheonlinepaper.Received10July;accepted5December2014.Publishedonline9February2015.1.2.3.4.5.6.7.
Hur,G.H.,Vickery,C.R.&Burkart,M.D.Explorationsofcatalyticdomainsinnon-ribosomalpeptidesynthetaseenzymology.Nat.Prod.Rep.29,1074–1098(2012).Yim,G.,Thaker,M.N.,Koteva,K.&Wright,G.Glycopeptideantibioticbiosynthesis.J.Antibiot.(Tokyo)67,31–41(2014).
Cryle,M.J.,Brieke,C.&Haslinger,K.inAminoAcids,PeptidesandProteinsVol.38,1–36(TheRoyalSocietyofChemistry,2014).
Bischoff,D.etal.Thebiosynthesisofvancomycin-typeglycopeptideantibiotics-amodelforoxidativeside-chaincross-linkingbyoxygenasescoupledtotheactionofpeptidesynthetases.ChemBioChem6,267–272(2005).
Bischoff,D.etal.Thebiosynthesisofvancomycin-typeglycopeptideantibiotics-newinsightsintothecyclizationsteps.Angew.Chem.Int.Ed.Engl.40,1693–1696(2001).
Bischoff,D.etal.Thebiosynthesisofvancomycin-typeglycopeptideantibiotics—theorderofthecyclizationsteps.Angew.Chem.Int.Ed.Engl.40,4688–4691(2001).
¨ssmuth,R.D.etal.NewadvancesinthebiosynthesisofglycopeptideantibioticsSu
ofthevancomycintypefromAmycolatopsismediterranei.Angew.Chem.Int.Ed.Engl.38,1976–1979(1999).
内容需要下载文档才能查看 内容需要下载文档才能查看generaldifferencesbetweenthebiosynthesisofdifferentGPAclassesbyinvestigatingtheeffectoftheX-domainonOxyBactivityfromtworelatedglycopeptidebiosyntheticmachineries:thoseofchloroerymo-mycin(cep;van-type/type-I)29andA47934(sta;tei-type/type-IV)30GPAs.Theseresultswereevenmorepronouncedthanfortheteicoplaninsystem,witheffectiveOxyBactivityseenonlyinthepresenceoftheX-domain(Fig.4andExtendedDataFig.7b,d):thisindicatesthattheactivityofOxyBvanisatypicalandthatthegeneralmechanismforrecruitmentoftheOxyenzymesinGPAbiosynthesisrequirestheX-domain.
ToclarifyfurthertheroleoftheX-domaininOxyrecruitment,wetestedtheactivityofOxyBteionahexapeptideboundtothePCP-domainfrommodulesixoftheNRPS(PCP6):theseturnoversshowednoactiv-ityofOxyBtei(ExtendedDataFig.9d).Thisagreeswithpreviousinvivoexperimentsthatreportverylittleisolationofcrosslinkedhexapeptidescomparedwiththefinalaglycone11.Takentogether,theseresultsstronglysuggestthatcrosslinkedhexapeptideproductsonlyappearfromminorshuntpathwaysanddonotrepresentthenormalbiosynthesisrouteinvivo,whichinsteadreliesonX-domain-mediatedoxygenaserecruit-menttothemodule-seven-boundheptapeptide.
108|NATURE|VOL521|7MAY2015
G2015
MacmillanPublishersLimited.Allrightsreserved
LETTERRESEARCH
8.9.10.11.12.13.14.15.16.17.
Haslinger,K.,Maximowitsch,E.,Brieke,C.,Koch,A.&Cryle,M.J.CytochromeP450OxyBteicatalyzesthefirstphenoliccouplingstepinteicoplaninbiosynthesis.ChemBioChem15,2719–2728(2014).
Woithe,K.etal.OxidativephenolcouplingreactionscatalyzedbyOxyB:a
cytochromeP450fromthevancomycinproducingorganism.Implicationsforvancomycinbiosynthesis.J.Am.Chem.Soc.129,6887–6895(2007).Zerbe,K.etal.AnoxidativephenolcouplingreactioncatalyzedbyOxyB,a
cytochromeP450fromthevancomycin-producingmicroorganism.Angew.Chem.Int.Ed.Engl.43,6709–6713(2004).
Hadatsch,B.etal.Thebiosynthesisofteicoplanin-typeglycopeptideantibiotics:assignmentofP450mono-oxygenasestosidechaincyclizationsofglycopeptideA47934.Chem.Biol.14,1078–1089(2007).
Stegmann,E.etal.Geneticanalysisofthebalhimycin(vancomycin-type)oxygenasegenes.J.Biotechnol.124,640–653(2006).
Rausch,C.,Hoof,I.,Weber,T.,Wohlleben,W.&Huson,D.PhylogeneticanalysisofcondensationdomainsinNRPSshedslightontheirfunctionalevolution.BMCEvol.Biol.7,78(2007).
Stegmann,E.,Frasch,H.-J.&Wohlleben,W.Glycopeptidebiosynthesisinthecontextofbasiccellularfunctions.Curr.Opin.Microbiol.13,595–602(2010).Walsh,C.T.&Wencewicz,T.A.Prospectsfornewantibiotics:amolecule-centeredperspective.J.Antibiot.(Tokyo)67,7–22(2014).
Butler,M.S.etal.Glycopeptideantibiotics:backtothefuture.J.Antibiot.(Tokyo)67,631–644(2014).
Brieke,C.etal.RapidaccesstoglycopeptideantibioticprecursorpeptidescoupledwithcytochromeP450-mediatedcatalysis:towardsabiomimeticsynthesisofglycopeptideantibioticsOrg.Biomol.Chem.http://dx.doi/org/10.1039/C4OB02452D(2014).
Samel,S.A.,Czodrowski,P.&Essen,L.-O.StructureoftheepimerizationdomainoftyrocidinesynthetaseA.ActaCrystallogr.D70,1442–1452(2014).
Bloudoff,K.,Rodionov,D.&Schmeing,T.M.Crystalstructuresofthefirst
condensationdomainofCDAsynthetasesuggestconformationalchangesduringthesyntheticcycleofnonribosomalpeptidesynthetases.J.Mol.Biol.425,3137–3150(2013).
Tanovic,A.,Samel,S.A.,Essen,L.-O.&Marahiel,M.A.Crystalstructureoftheterminationmoduleofanonribosomalpeptidesynthetase.Science321,659–663(2008).
Samel,S.A.,Schoenafinger,G.,Knappe,T.A.,Marahiel,M.A.&Essen,L.-O.
Structuralandfunctionalinsightsintoapeptidebond-formingbidomainfromanonribosomalpeptidesynthetase.Structure15,781–792(2007).
Keating,T.A.,Marshall,C.G.,Walsh,C.T.&Keating,A.E.ThestructureofVibHrepresentsnonribosomalpeptidesynthetasecondensation,cyclizationandepimerizationdomains.NatureStruct.Mol.Biol.9,522–526(2002).
Sosio,http://wendang.chazidian.comanizationoftheteicoplaningeneclusterinActinoplanesteichomyceticus.Microbiology150,95–102(2004).
24.Li,T.-L.etal.Biosyntheticgeneclusteroftheglycopeptideantibioticteicoplanin:
characterizationoftwoglycosyltransferasesandthekeyacyltransferase.Chem.Biol.11,107–119(2004).
25.Haslinger,K.etal.Thestructureofatransientcomplexofanonribosomalpeptide
synthetaseandacytochromeP450monooxygenase.Angew.Chem.Int.Ed.Engl.53,8518–8522(2014).
¨ssmuth,R.D.&Cryle,M.J.CytochromeP450skyinteractsdirectly26.Uhlmann,S.,Su
withthenonribosomalpeptidesynthetasetogeneratethreeaminoacid
precursorsinskyllamycinbiosynthesis.ACSChem.Biol.8,2586–2596(2013).27.Cryle,M.J.,Meinhart,A.&Schlichting,I.StructuralcharacterizationofOxyD,a
cytochromeP450involvedinb-hydroxytyrosineformationinvancomycinbiosynthesis.J.Biol.Chem.285,24562–24574(2010).
28.Cryle,M.J.&Schlichting,I.StructuralinsightsfromaP450carrierproteincomplex
http://wendang.chazidian.comA105,15696–15701(2008).
29.vanWageningen,A.M.A.etal.Sequencingandanalysisofgenesinvolvedinthe
biosynthesisofavancomycingroupantibiotic.Chem.Biol.5,155–162(1998).30.Pootoolal,J.etal.Assemblingtheglycopeptideantibioticscaffold:thebiosynthesis
http://wendang.chazidian.comA99,8962–8967(2002).SupplementaryInformationisavailableintheonlineversionofthepaper.
AcknowledgementsTheauthorsthankA.Kochforassistancewithproteinexpression;S.Bellforredoxproteins;M.Gradlforassistancewithmassspectrometry;M.TarnawskiandA.Meinhartforassistancewithcrystalharvestinganddataprocessing;
¨ssmuthandI.SchlichtingandJ.Wrayfordiscussions;C.RoomeforITsupport;R.Su
A.Trumanforsharingunpublisheddata.DiffractiondatawerecollectedattheSwissLightSource,X10SAbeamline,PaulScherrerInstitute,Villigen,Switzerland.WethanktheHeidelbergteamfordatacollectionandthePXIIstafffortheirsupportinsettingupthebeamline.M.J.C.isgratefultoI.SchlichtingforconstantencouragementandtotheDeutscheForschungsgemeinschaft(Emmy2NoetherProgram,CR392/1-1)forfinancialsupport.
AuthorContributionsM.J.C.designedthestudy.K.H.,M.P.andE.M.performedthebiochemicalexperiments.C.B.performedthechemicalsynthesisandcompoundcharacterization.M.P.,K.H.andM.J.C.solvedthestructuresandperformedtheanalysis.M.J.C.wrotethemanuscripttogetherwithcontributionsfromK.H.,http://wendang.chazidian.com/reprints.Theauthorsdeclarenocompetingfinancialinterests.Readersarewelcometocommentontheonlineversionofthepaper.CorrespondenceandrequestsformaterialsshouldbeaddressedtoM.J.C.(Max.Cryle@mpimf-heidelberg.mpg.de).
18.19.
20.21.22.23.
7MAY2015|VOL521|NATURE|109
G2015
MacmillanPublishersLimited.Allrightsreserved
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 养身保健小知识
- 耳穴按摩降血压
- 养身保健小知识
- 第八章 健康评价与健康管理
- 斜视 技术总结
- 首长的保健参考
- 改掉4种坏习惯可延年益寿
- IMA管理会计
- 秋季家庭养生食谱
- 日常饮食搭配
- 养身保健小知识
- 维生素D检测与老年人群健康
- 养身保健小知识
- 健身
- 五音、六字、八卦与五行五脏(六腑)对应表
- 高血压中医健康管理
- 白领健康 pdf
- 二十四节气养生大全
- 夏季女性健身最佳方案
- 健康体检资料_0
- 养老产业发展调查
- 养生保健注意事项-身体各器官工作表一览
- 倡导健康文明的生活方式
- 休闲养生产业
- 合理健康减肥计划表
- 垃圾食品、健康饮食,junk food、healthy diet
- 养身之道之老年人爬楼
- 【doc】八卦蹬泥步,肝脾肾全补
- 职业生涯中的养生计划!
- 二十四节气养生大全
网友关注视频
- 七年级英语下册 上海牛津版 Unit9
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 二年级下册数学第三课 搭一搭⚖⚖
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 冀教版小学数学二年级下册第二单元《租船问题》
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 外研版八年级英语下学期 Module3
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 冀教版英语三年级下册第二课
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 外研版英语七年级下册module3 unit2第一课时
- 北师大版数学四年级下册3.4包装
- 二年级下册数学第二课
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 河南省名校课堂七年级下册英语第一课(2020年2月10日)
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 苏科版八年级数学下册7.2《统计图的选用》
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理