教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 高等教育> 生物学> X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis

X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis

KristinaHaslinger1*,MadeleinePeschke1*,ClaraBrieke1,EgleMaximowitsch1&MaxJ.Cryle1

X-domainofpeptidesynthetasesrecruits

oxygenasescrucialforglycopeptidebiosynthesis

Non-ribosomalpeptidesynthetase(NRPS)mega-enzymecomplexesaremodularassemblylinesthatareinvolvedinthebiosynthesisofnumerouspeptidemetabolitesindependentlyoftheribosome1.ThemultipleinteractionsbetweencatalyticdomainswithintheNRPSmachineryarefurthercomplementedbyadditionalinteractionswithexternalenzymes,particularlyfocusedonthefinalpeptidematura-tionprocess.AnimportantclassofNRPSmetabolitesthatrequireextensiveexternalmodificationoftheNRPS-boundpeptidearetheglycopeptideantibiotics(GPAs),whichincludevancomycinandteicoplanin2,3.TheseclinicallyrelevantpeptideantibioticsundergocytochromeP450-catalysedoxidativecrosslinkingofaromaticsidechainstoachievetheirfinal,activeconformation4–12.However,themechanismunderlyingtherecruitmentofthecytochromeP450oxy-genasestotheNRPS-boundpeptidewaspreviouslyunknown.Hereweshow,throughinvitrostudies,thattheX-domain13,14,aconserveddomainofunknownfunctionpresentinthefinalmoduleofallGPANRPSmachineries,isresponsiblefortherecruitmentofoxygenasestotheNRPS-boundpeptidetoperformtheessentialside-chaincross-linking.X-raycrystallographyshowsthattheX-domainisstructurallyrelatedtocondensationdomains,butthatitsaminoacidsubstitu-tionsrenderitcatalyticallyinactive.WefoundthattheX-domainrecruitscytochromeP450oxygenasestotheNRPSanddeterminedtheinterfacebysolvingthestructureofaP450–X-domaincomplex.Additionally,wedemonstratedthatthemodificationofpeptidepre-cursorsbyoxygenasesinvitro—inparticulartheinstallationofthesecondcrosslinkinGPAbiosynthesis—occursonlyinthepresenceoftheX-domain.Ourresultsindicatethatthepresentationofpep-tidylcarrierprotein(PCP)-boundsubstratesforoxidationinGPAbiosynthesisrequiresthepresenceoftheNRPSX-domaintoensureconversionoftheprecursorpeptideintoamatureaglycone,andthatthecarrierproteindomainaloneisnotalwayssufficienttogenerateacompetentsubstrateforexternalcytochromeP450oxygenases.Fewcompoundclasseshavehadsuchapositiveeffectonhumanhealthasantibiotics15.Concernovertheriseofantibioticresistancemakesitessentialtodevelopnewchemotherapeutics,throughthediscoveryofnovelantibioticsandtherenewedexploitationofexistingones15,16.TheGPAsareagroupofcompoundsincurrentusethatarehighlyef-fectiveagainstGram-positivebacterialinfectionsresistanttootherclassesofantibiotics2:examplesarethenaturalproductsvancomycinandteico-planinandsemi-syntheticderivativesunderdevelopment16.TheGPAsarecomplexmolecules,comprisingheptapeptideaglyconeswithahighpercentageofnon-proteinogenicaminoacids,whicharecrosslinkedthroughmultiplearylandphenoliclinks.Theaglyconesarefurtherdecoratedthroughmanydifferentprocesses,includingglycosylationandsulfonation2.GPAsfunctionthroughtheformationofanon-covalentcomplexofmicromolaraffinitywithapeptidoglycanprecursor(lipidII).Thiscomplexisformedviahydrogenbondsfrombackboneamidegroupsoftheglycopeptideaglycone,andthecrosslinkedaromaticsidechainsarecrucialingivingtheaglyconethethree-dimensionalshaperequiredforbinding2.GPAsarebiosynthesizedwithouttheribosomebyalinearNRPS(Fig.1andExtendedDataFig.1)1,2.Inglycopeptide

1

biosynthesis,thematurationoftheheptapeptiderequirestheNRPSforinteractionwithexternaloxygenaseenzymes—cytochromesP450(OxyA,B,C,E)—thatcatalysethe(aryl/phenolic)crosslinkingofaromaticaminoacidsidechainsandprovidethefinal,rigidaglyconestructure3.ExtensiveinvivogenedisruptionexperimentshavesuggestedrolesforeachoftheOxyproteinsandalsoaspecificsequenceofoxidation,withOxyBintroducingthefirstcrosslink5–7,11,12.Invitroandinvivoexperi-mentshaveindicatedthatthepeptidesubstratesfortheseP450oxy-genasesremainboundtotheNRPSduringoxidation4,9,10.Ourrecentstudieshaveconcentratedonunderstandingthelater,crucial,stagesofglycopeptidebiosynthesis,inparticularthecyclizationofthelinearpep-tidethroughtheoxidativecrosslinkingofaromaticsidechainsbytheOxyproteins8,17.Wearenowfocusingontheroleofadomainofun-knownfunctionthatispresentinthefinalmoduleofallglycopeptide-typeNRPSmachineries14.Fromphylogeneticanalyses,thisdomainappearstoberelatedtothecondensation/epimerization(C/E)-domainsfoundinNRPSbiosynthesisandmostcloselytoanLCL-typecondensa-tiondomain.However,itseemstobecatalyticallyinactiveduetothemutationofresiduesofthehighlyconservedHHxxxDGmotifessentialforpeptidebondformationandepimerization13,andisreferredtoasthe‘X-domain’.

AsthefinalNRPSmodulesofGPAsallcontainanX-domain,wesoughttoclarifythemolecularfunctionofthisdomain.WedeterminedthecrystalstructureoftheX-domainfromthefinalNRPSmoduleof

?resolution(Fig.2aandExtendedteicoplaninbiosynthesis(Xtei)to2.9A

DataTable1)18–22.TheX-domainadoptsaC/E-typefold,whichischar-acterizedbyaV-shapedarrangementoftwosubdomainsthatbothbe-longtothechloramphenicol-acetyltransferase(CAT)fold.Crossoverelementsbetweenthesubdomainscomprisethe‘floor’oftheV-shapedcleft(I;Fig.2a,magenta)andthecrossover‘latch’(II;Fig.2a,orange).TheX-domainalsocontainsseveralinsertionregionscomparedwithotherstructurallycharacterizedC/E-domains(Fig.2a,red/yellow).Im-portantlyforthefunctionoftheX-domain,theacceptorentrysideoftheX-domainisblockedbytheorientationofseveralloopregions(Fig.2a,cyan)andnotunnelthroughtheX-domaincanbeobserved.Whilethestructuralactive-sitemotifresiduesH140andD145aremaintained,theresiduesmutatedfromthecanonicalC-domainactivesite(HRxxxDD;boldtextindicatesmutatedresidues)impactonthepotentialcatalyticfunctionofthisdomain:thesidechainsofbothresiduesR141andD146projectdirectlyintothepositionexpectedtobeoccupiedbythedonor49-phosphopantetheinegroupduringpeptidebondformationinanactiveC-domain(Fig.2candExtendedDataFig.4a).

SincethestructureoftheX-domainsuggestedthatitsfunctioninglycopeptidebiosynthesiswasunlikelytoberelatedtoamide-bondfor-mation,weconsidereditspossibleroleintheinteractionwithpeptide-modifyingproteinsintrans:theOxyproteinsresponsibleforside-chaincyclizationoftheNRPS-boundpeptide4–8.Invivoexperimentshadpre-viouslyindicatedtheprobableassociationoftheNRPSwiththeoxy-genaseenzymes4,andtheinitialoxidationinvancomycinbiosynthesisbyOxyBvanhasbeenshowntooccurinvitrothroughtheoxidationofsubstratesboundtocarrierproteins9,10.However,wehaverecently

MaxPlanckInstituteforMedicalResearch,Jahnstrasse29,69120Heidelberg,Germany.*Theseauthorscontributedequallytothiswork.

7MAY2015|VOL521|NATURE|105

G2015

MacmillanPublishersLimited.Allrightsreserved

RESEARCHLETTER

Tcp9

Module 1

D-Hpg

Tcp10Module 3

D-Dpg

Tcp11

Module 4

Tcp12

Module 6

内容需要下载文档才能查看

Module 2

Module 5

D-Hpg

Module 7

L-Dpg

CD

E

B

A

F

G

Teicoplanin-type aglycone

Figure1|Structureoftheteicoplaninaglycone

andaschematicpathwayofteicoplanin

biosynthesisbynon-ribosomalpeptidesynthesis.DomainlabelsforNRPSproteins(Tcp9–12):A,adenylation(selectedaminoacidsindicatedabovethemodule:Hpg,4-hydroxyphenylglycine;Dpg,3,5-dihydroxyphenylglycine);C,condensation;E,epimerization;T,thiolation/peptidylcarrierprotein(PCP);TE,thioesterase;X,domainofunknownfunction.EssentialP450-catalysedaglyconerigidificationtakesplacethroughcrosslinkingofaromaticsidechains(OxyA–C,OxyE).EachcrosslinkingreactionisperformedbyaspecificOxyprotein,withtheproductsofeachOxyproteinindicatedschematically;standardringnomenclatureisindicatedontheteicoplaninaglyconeinredlettering.

Teicoplanin peptide

demonstratedthatOxyBvandisplaysapromiscuityinsubstrateselec-tion17notobservedfortheOxyBproteinfromteicoplanin23,24biosyn-thesis:forOxyBtei,thecarrierproteindomainisinsufficienttomediateefficientcrosslinkingoftheboundpeptide8.WethereforeinvestigatedseveralconstructsfromthelastteicoplaninNRPSmoduletoassesspotentialinteractionsoflargerNRPSconstructswithOxyBtei:toachievethisweusedbothgelfiltrationco-elutionexperimentsandnativepoly-acrylamidegelelectrophoresis(PAGE)mobilityshiftassay.Beginningwiththelargestconstruct,whichcontainsthreeNRPSdomains,PCP7–X–thioesterase(seeFig.1),weobservedco-elutionofOxyBteiwiththe

内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看

a

C-terminalsubdomain

b

X-domain

C-terminalsubdomain

N-terminalsubdomain

OxyBtei

c

Crossover II

D146

E391

2.3

3.32.9

D147

N-terminalsubdomain

Crossover I

N148

A303

D1452.8

2.9

2.8

β1

α4

β5

R141

A144

F302

d

α4

A158R167

2.7

e

A172

R64

α4

f

D294

I293

E290

3.1

2.7

2.7

2.5

A143

3.1

3.12.8

2.7

3.5

3.1

2.6

2.52.5

D161

2.6

R192

2.9

4.03.73.0β6

H140

I142

α1

R171

2.9

E291αG

E188

2.9

R181

E170

3.1

D162

Figure2|StructuresoftheX-domainandtheX-domain–OxyBteicomplex.a,IsolatedX-domain:thesecondarystructuredisplaysthetopologytypicalofC/E-domains.b,TheX-domain–OxyBteicomplex:selectedOxyBhelices

arelabelled.c,X-domainactivesiteshowingtheeffectsoftheresiduesmutatedfromthecanonicalC-domainactive-siteR141andD146.d–f,Selectedaminoacidsformingimportantinteractionsintheinterfaceareshown(OxyBtei

F-helixD161(d)andD162(e),OxyBteiG-helix(f)).Colourscheme:X-domain

106|NATURE|VOL521|7MAY2015

G2015

amino-terminalsubdomain,green;carboxy-terminalsubdomain,blue;

crossoverelementI,magenta,andII,orange;X-domaininsertionsa5/a6,red,andb12/b13,yellow;loopsoccludingtheacceptorsite,cyan;X-domain

proteinsurface,grey;OxyBtei,yellow;watermoleculesmediatinginteractionsbetweentheX-domainandOxyBteiareshownasbluespheres.Residuesdisplayedassticksarelabelled,asareselectedsecondarystructureelements;

?).hydrogenbondsareindicatedbydashedlineswithdistances(A

MacmillanPublishersLimited.Allrightsreserved

LETTERRESEARCH

NRPStri-domainbygelfiltration(ExtendedDataFig.2a).Thisasso-ciationwasconfirmedbytheappearanceofabandinthenative-PAGEassayoflowerelectrophoreticmobilitythatcontainedbothOxyBteiandtheNRPStri-domain(ExtendedDataFig.3a),asconfirmedbypeptidemassfingerprinting.RepetitionoftheseexperimentswithsmallerNRPSconstructsshowedthattheminimalconstructrequiredforOxyBteiin-teractionfromthefinalNRPSmoduleofteicoplaninwastheX-domainitself(Fig.3andExtendedDataFigs2a,3a).Native-PAGEanalysisofOxyBteiinthepresenceofincreasingconcentrationsofX-domainshowedthatatequimolarconcentrationsOxyBisfullyboundandthattheappar-entdissociationconstantisinthelowmicromolarrange(ExtendedDataFig.3c).ThisiswithintherangeobservedforotherP450–NRPSinter-actions—albeithereintheabsenceoftheactualP450substrate9,25–27.WiththeinteractionofOxyBteiandtheX-domainofteicoplanindem-onstrated,werepeatedtheseexperimentsforvancomycin-typesystemsandfoundcomparableresults(Fig.3andExtendedDataFig.3a).ThecrossoverexperimentwithalternateP450–NRPSpairsalsoindicatedthatOxyBvancaninteractwiththeteicoplanin-producingNRPSdomain(ExtendedDataFig.3a)—whichagreeswiththeinvivoactivityobservedforoxyBcross-complementationstudies11,12.Theseexperimentsindi-catethattheinteractionoftheX-domainwithOxyBisaconservedfeatureinglycopeptidebiosynthesis.

Wethendeterminedacrystalstructureoftheproteincomplexbe-?resolution(Fig.2b,ExtendedtweentheX-domainandOxyBteito2.5A

DataFigs4b,5aandExtendedDataTable1)Theorientationofthecom-plexplacestheuppersurfaceoftheP450(withthehaem-centredactivesite)facingtowardsthedonorsiteoftheX-domaincleft,http://wendang.chazidian.comparisonofthecomplexwiththeisolatedP450(ref.8)andX-domainstructuresindicatesthatthereislittlerearrangementofeither

?,proteinoninteraction(rootmeansquareddeviation1.1and0.9A

respectively);theinteractionismoreofarigidbodydockingandismediatedthroughapproximately20residuesoneachprotein.Thein-teractionsbetweenthetwoproteinsaremainlyviahydrogenbondsandsaltbridges;hydrophobicinteractions,asareoftenseeninintramole-cularNRPSdomaininteractions,arelimitedtoisolatedresiduesintheX-domain–OxyBinterface(Fig.2d–f).ThestartoftheF-helix(PRDD)isconservedintheOxyproteins(ExtendedDataFig.5b)andiscritical

a

Molecular mass (×105)

b

12345678

tei

c

1234567

cepNative PAGE1: GB1–X2: OxyA3: OxyB4: OxyC

5: OxyA+GB1–X6: OxyB+GB1–X7: OxyC+GB1–X8: OxyE+GB1–X

Elution profiles:

P450, 415 nm

P450–NRPS mix (1:3), 415 nmP450–NRPS mix (1:3), 280 nmNRPS, 280 nm

Molecular massdistributions:P450

P450–NRPS mix (1:3)NRPS

Figure3|InteractionoftheX-domainwithOxyproteins.a,Elutionprofilesofanalyticalsize-exclusionchromatography(solidlines415nm,dashedlines280nmdetection)andmolecularmassesoftheindividualspecies

observedbymulti-anglelightscatteringofindividuallysampledandco-elutedOxyBteiandXteifusedtoGB1(proteinG,B1domain;1:3mixture).AU,

arbitraryunits.b,NativePAGEofteicoplaninXtei-domainandOxyteiproteins(1–4)and3:1mixturesthereof(5–8;asterisksindicatethenewbandsoflowelectrophoreticmobility,triangleindicatesthebandofOxyEteithatdoesnotco-migratewithGB1–Xtei).c,NativePAGEofvancomycin-producingXcep-domainandOxyvanproteins(sampleorderasinbwiththesquareindicatingthebandofOxyCvanthatdoesnotco-migratewithGB1–Xcep).

G2015

forinteractionwiththeX-domain.TheB–B2loopregion(66–77),typ-icallydisorderedintheabsenceofaboundsubstrateinP450oxyge-nases,remainsunresolved,indicatingthatthebindingoftheX-domaindoesnotstimulateclosureoftheP450activesitebutratheractstodockontotheP450topresenttheneighbouringPCP7-peptidesubstrate.WemodelledthepositionofthePCP7-domainbasedonthecomplexstruc-tureofthetwoknownP450–carrierproteincomplexes;26,28thisindicatesthatthePCPorientationfromtheskyllamycinP450–PCPcomplexiscompatiblewiththeX–P450complexstructure(ExtendedDataFig.6).MutationofspecificresiduesineachofthethreeX-domaininteractionregionsrevealedthattheloopregionafterhelixa4thatcontainsresi-duesR167andR171(whichcontacttheconservedPRDDOxymotif)isessentialfortheinteraction(ExtendedDataFig.2b).

SincenoinvitroactivityforanyOxyproteinbeyondtheinitialcy-clizationstepcatalysedbyOxyBvanhasbeendescribedsofar9,10,17,weexaminedwhethertheX-domaininteractedwiththeremainingoxy-genases(OxyAtei,OxyCteiandOxyEtei)usingtheinteractionassaysde-scribedearlierforOxyB(Fig.3andExtendedDataFigs2c,3b).TheseexperimentsshowedthatbothOxyAteiandOxyCteiinteractwithamin-imalX-domainconstructfromteicoplaninbiosynthesis;thesameholdstrueforvancomycin-typesystems.TheaffinitiesoftheteicoplaninOxyenzymesfortheX-domain,asdeterminedbygelfiltration,appearedtobelowerthanthatofOxyB,withOxyAbindingmoretightlythanOxyC.DifferentialaffinityfortheX-domainimpliesthatadditionalselectivityforOxybindingisbasedonthestateofthecrosslinkingofthepeptide.Thus,theroleoftheX-domainintheglycopeptideNRPSistoactasageneralrecruitmentplatformforoxygenaseenzymesingly-copeptidetailoring:thisdiffersfromothercarrierprotein–P450sys-temssuchasthosefoundinaminoacyl-PCPoxidation25–27orbiotinbiosynthesis28—theserelyonthecarrierprotein–substratepairforsub-straterecognition.

Curiously,OxyE—theoxygenaseresponsiblefortheF-O-Gringin-stallationinteicoplaninbiosynthesis—didnotdisplayaninteractionwiththeteicoplaninX-domain(Fig.3andExtendedDataFig.2c).How-ever,asOxyEteicatalysesaphenoliccouplingstepwithminimalpeptidepenetrationintotheP450activesite(residues1and3),itisplausiblethatthisP450requiresthepresenceofthePCP7-boundpeptidetomain-tainatightinteractiontotheNRPS.AstheF-O-Gringisnotrequiredforantibioticactivitybutrathermoderatesselectivityagainstdifferentbacterialtargets2,16,alloxygenaseenzymescrucialforpeptidetailoringinGPAbiosynthesisarerecruitedtotheNRPS-boundheptapeptidebytheX-domain.

Thewell-studiedOxyBenzymefromthevancomycinsystem(OxyBvan)hasbeenshowntocatalysetheinvitrooxidationofheptapeptideswithdecreasedefficiencycomparedwithitsefficientturnoverofhexapep-tidespresentedbythePCP-domainfrommodulesevenoftheNRPS(PCP7),leavingthequestionofitsnaturalsubstrateunanswered9.WesoughttoreconstitutetheenzymaticactivityofOxyBvaninamorenat-uralcontext,comprisingasimplifiedheptapeptide(SupplementaryFig.1)presentedbyaPCP7-domainintheabsenceandpresenceoftheX-domain.WiththisapproachweobservedamoderateincreaseinturnoveryieldbyusingthePCP7–Xconstruct(Fig.4andExtendedDataFig.7c).TheeffectsoftheX-domainweremorepronouncedforOxyBteiduetothecomparativelylowactivityofOxyBteiintheinvitroturnoverofPCP7-boundmodelhexapeptides:8indeed,OxyBteiishighlyactiveincyclizingheptapeptidesboundtothePCP7–Xconstructs,whereasitisonlyabletocatalyse,25%C-O-DringformationinPCP7-boundteicoplanin-likeheptapeptidesunderthesameconditions(Fig.4andExtendedDataFig.7a).ActivityassaysperformedwiththePCP7–X-domaininterfacemutantsconfirmtheresultsfromtheinter-actionstudies(ExtendedDataFig.2b),withnoactivityobservedfortheX1variant(Fig.4andExtendedDataFig.8).MutantvariantsthatretaintheabilitytobindOxyBteiretainP450activitycomparablewiththewild-typePCP7–Xprotein,underpinningtheimportanceoftheX-domainfortheOxyBteiturnoverreaction.WeexaminedwhetherthedifferencesobservedinthepresenceoftheX-domaininthesesystemsweredueto

内容需要下载文档才能查看

7MAY2015|VOL521|NATURE|107

MacmillanPublishersLimited.Allrightsreserved

RESEARCHLETTER

a

Tei7(Hpg3,7)a

MonocyclicOxyBtei

Bicyclic

OxyBtei + OxyAtei

b

Yield (%)

Yield (%)

内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看

Relative intensity

PCtei

P–XPCteP–iXPC1teiP–X2PCteiP–PCXP–3teiX

PCpPPCcepP–X

PCPPCcepP–X

PCPPCteiP–X

1–3tei

PCP

cep

tei

ce

X1: R167A, R171A X2: E290A, D291A X3: E377A, R382AX1–3: R167A, R171A, E290A, D291A, E377A, R382A

teitei

b

Figure5|CoupledinvitroactivityofOxyAteiandOxyBtei.a,TurnoverofheptapeptidesubstratesboundtoPCP7andPCP7–X(GB1fusionproteins)expressedasapercentageofthetotalpeptidedetectedandshownasstackedbars(averageoftriplicateexperiments,errorbarsindicates.d.).b,ESI-MS/MSanalysisofHPLC-purifiedbicyclicteicoplanin-likeOxyB/OxyAturnoverproduct,demonstratingtheanticipatedfragmentationforaC-O-D/D-O-Ebicyclicpeptidestructure(SupplementaryFig.6).

Relative intensity

内容需要下载文档才能查看

Figure4|InvitroactivityofOxyBteianditshomologues.a,TurnoverofheptapeptidesubstratesboundtoPCP7andPCP7–X(GB1fusionproteins)fromtheteicoplaninandchloroerymomycinNRPSwithOxyBenzymesfromteicoplanin-likesystems(OxyBtei,StaH)andvancomycin-likesystems(OxyBvan,CepF)expressedasapercentageofthetotalpeptidedetected.HeptapeptidesubstratesloadedontothePCP7/PCP7–Xconstructsare

indicatedabovetherespectiveOxyBenzymes;X-domainvariantsX1–X3andX1–3oftheteicoplaninNRPS(describedbelowthegraph)showstronglyreducedactivityforconstructsX1andX1–3thatpossessR167AandR171AmutationscontactingtheconservedPRDDOxymotifinthewild-typeprotein(averageoftriplicateexperiments;errorbarsindicatestandarddeviation(s.d.)).b,Electrosprayionizationtandemmassspectrometry(ESI-MS/MS)analysisofhigh-performanceliquidchromatography(HPLC)-purifiedmonocyclicteicoplanin-likeOxyBturnoverproduct,demonstratingtheanticipated

fragmentationforaC-O-Dmonocyclicpeptidestructure(SupplementaryFig.5).

OnemajorhurdleinGPAbiosynthesishasbeenthelackofinvitroactivityofanyOxyproteinbeyondtheC-O-DringformationcatalysedbyOxyB.WithresultsindicatingthattheX-domainwasabletorecruitallessentialOxyenzymes(OxyA–C),weinvestigatedwhetherthepres-enceoftheX-domainwouldsupporttheactivityofadditionalOxyen-zymes.Incoupledassays,thecombinationofOxyBteiandOxyAteiwasnowabletoinstallbothC-O-DandD-O-EcrosslinksinaPCP7–X-boundheptapeptidesubstrate(Fig.5andExtendedDataFig.9a).Inagree-mentwiththereportedinvivooxidationorder11,12,thecombinationofOxyBteiandOxyCteididnotleadtothegenerationofabicyclicpeptideproduct(ExtendedDataFig.9b).However,thelackofactivityinthisassaycouldhavebeenduetothelimitedcatalyticcompetenceoftheOxyCteienzyme(P420signalfortheCO-complex);thisalsopreventedtherecreationoftheOxyA–Ccascade(ExtendedDataFig.9c).Inspiteofthis,ourdemonstrationofinvitroOxyAactivityclearlyindicatestheimportanceoftheX-domainasarecruitmentplatformintheOxy-catalysedinstallationofcrosslinksinGPAbiosynthesisandopensthedoortothereconstitutionofGPAaglyconebiosynthesisinvitro.Morebroadly,ourresultsshowthattherecruitmentofenzymestoNRPSsystemscanbemediatedbydomainsbeyondcarrierproteinsandthatsuchmechanismsmayhaveawiderroleinbiosynthesisbymegaen-zymesynthetasemachineriesthanhasbeenacknowledged.

OnlineContentMethods,alongwithanyadditionalExtendedDatadisplayitemsandSourceData,areavailableintheonlineversionofthepaper;referencesuniquetothesesectionsappearonlyintheonlinepaper.Received10July;accepted5December2014.Publishedonline9February2015.1.2.3.4.5.6.7.

Hur,G.H.,Vickery,C.R.&Burkart,M.D.Explorationsofcatalyticdomainsinnon-ribosomalpeptidesynthetaseenzymology.Nat.Prod.Rep.29,1074–1098(2012).Yim,G.,Thaker,M.N.,Koteva,K.&Wright,G.Glycopeptideantibioticbiosynthesis.J.Antibiot.(Tokyo)67,31–41(2014).

Cryle,M.J.,Brieke,C.&Haslinger,K.inAminoAcids,PeptidesandProteinsVol.38,1–36(TheRoyalSocietyofChemistry,2014).

Bischoff,D.etal.Thebiosynthesisofvancomycin-typeglycopeptideantibiotics-amodelforoxidativeside-chaincross-linkingbyoxygenasescoupledtotheactionofpeptidesynthetases.ChemBioChem6,267–272(2005).

Bischoff,D.etal.Thebiosynthesisofvancomycin-typeglycopeptideantibiotics-newinsightsintothecyclizationsteps.Angew.Chem.Int.Ed.Engl.40,1693–1696(2001).

Bischoff,D.etal.Thebiosynthesisofvancomycin-typeglycopeptideantibiotics—theorderofthecyclizationsteps.Angew.Chem.Int.Ed.Engl.40,4688–4691(2001).

¨ssmuth,R.D.etal.NewadvancesinthebiosynthesisofglycopeptideantibioticsSu

ofthevancomycintypefromAmycolatopsismediterranei.Angew.Chem.Int.Ed.Engl.38,1976–1979(1999).

内容需要下载文档才能查看 内容需要下载文档才能查看

generaldifferencesbetweenthebiosynthesisofdifferentGPAclassesbyinvestigatingtheeffectoftheX-domainonOxyBactivityfromtworelatedglycopeptidebiosyntheticmachineries:thoseofchloroerymo-mycin(cep;van-type/type-I)29andA47934(sta;tei-type/type-IV)30GPAs.Theseresultswereevenmorepronouncedthanfortheteicoplaninsystem,witheffectiveOxyBactivityseenonlyinthepresenceoftheX-domain(Fig.4andExtendedDataFig.7b,d):thisindicatesthattheactivityofOxyBvanisatypicalandthatthegeneralmechanismforrecruitmentoftheOxyenzymesinGPAbiosynthesisrequirestheX-domain.

ToclarifyfurthertheroleoftheX-domaininOxyrecruitment,wetestedtheactivityofOxyBteionahexapeptideboundtothePCP-domainfrommodulesixoftheNRPS(PCP6):theseturnoversshowednoactiv-ityofOxyBtei(ExtendedDataFig.9d).Thisagreeswithpreviousinvivoexperimentsthatreportverylittleisolationofcrosslinkedhexapeptidescomparedwiththefinalaglycone11.Takentogether,theseresultsstronglysuggestthatcrosslinkedhexapeptideproductsonlyappearfromminorshuntpathwaysanddonotrepresentthenormalbiosynthesisrouteinvivo,whichinsteadreliesonX-domain-mediatedoxygenaserecruit-menttothemodule-seven-boundheptapeptide.

108|NATURE|VOL521|7MAY2015

G2015

MacmillanPublishersLimited.Allrightsreserved

LETTERRESEARCH

8.9.10.11.12.13.14.15.16.17.

Haslinger,K.,Maximowitsch,E.,Brieke,C.,Koch,A.&Cryle,M.J.CytochromeP450OxyBteicatalyzesthefirstphenoliccouplingstepinteicoplaninbiosynthesis.ChemBioChem15,2719–2728(2014).

Woithe,K.etal.OxidativephenolcouplingreactionscatalyzedbyOxyB:a

cytochromeP450fromthevancomycinproducingorganism.Implicationsforvancomycinbiosynthesis.J.Am.Chem.Soc.129,6887–6895(2007).Zerbe,K.etal.AnoxidativephenolcouplingreactioncatalyzedbyOxyB,a

cytochromeP450fromthevancomycin-producingmicroorganism.Angew.Chem.Int.Ed.Engl.43,6709–6713(2004).

Hadatsch,B.etal.Thebiosynthesisofteicoplanin-typeglycopeptideantibiotics:assignmentofP450mono-oxygenasestosidechaincyclizationsofglycopeptideA47934.Chem.Biol.14,1078–1089(2007).

Stegmann,E.etal.Geneticanalysisofthebalhimycin(vancomycin-type)oxygenasegenes.J.Biotechnol.124,640–653(2006).

Rausch,C.,Hoof,I.,Weber,T.,Wohlleben,W.&Huson,D.PhylogeneticanalysisofcondensationdomainsinNRPSshedslightontheirfunctionalevolution.BMCEvol.Biol.7,78(2007).

Stegmann,E.,Frasch,H.-J.&Wohlleben,W.Glycopeptidebiosynthesisinthecontextofbasiccellularfunctions.Curr.Opin.Microbiol.13,595–602(2010).Walsh,C.T.&Wencewicz,T.A.Prospectsfornewantibiotics:amolecule-centeredperspective.J.Antibiot.(Tokyo)67,7–22(2014).

Butler,M.S.etal.Glycopeptideantibiotics:backtothefuture.J.Antibiot.(Tokyo)67,631–644(2014).

Brieke,C.etal.RapidaccesstoglycopeptideantibioticprecursorpeptidescoupledwithcytochromeP450-mediatedcatalysis:towardsabiomimeticsynthesisofglycopeptideantibioticsOrg.Biomol.Chem.http://dx.doi/org/10.1039/C4OB02452D(2014).

Samel,S.A.,Czodrowski,P.&Essen,L.-O.StructureoftheepimerizationdomainoftyrocidinesynthetaseA.ActaCrystallogr.D70,1442–1452(2014).

Bloudoff,K.,Rodionov,D.&Schmeing,T.M.Crystalstructuresofthefirst

condensationdomainofCDAsynthetasesuggestconformationalchangesduringthesyntheticcycleofnonribosomalpeptidesynthetases.J.Mol.Biol.425,3137–3150(2013).

Tanovic,A.,Samel,S.A.,Essen,L.-O.&Marahiel,M.A.Crystalstructureoftheterminationmoduleofanonribosomalpeptidesynthetase.Science321,659–663(2008).

Samel,S.A.,Schoenafinger,G.,Knappe,T.A.,Marahiel,M.A.&Essen,L.-O.

Structuralandfunctionalinsightsintoapeptidebond-formingbidomainfromanonribosomalpeptidesynthetase.Structure15,781–792(2007).

Keating,T.A.,Marshall,C.G.,Walsh,C.T.&Keating,A.E.ThestructureofVibHrepresentsnonribosomalpeptidesynthetasecondensation,cyclizationandepimerizationdomains.NatureStruct.Mol.Biol.9,522–526(2002).

Sosio,http://wendang.chazidian.comanizationoftheteicoplaningeneclusterinActinoplanesteichomyceticus.Microbiology150,95–102(2004).

24.Li,T.-L.etal.Biosyntheticgeneclusteroftheglycopeptideantibioticteicoplanin:

characterizationoftwoglycosyltransferasesandthekeyacyltransferase.Chem.Biol.11,107–119(2004).

25.Haslinger,K.etal.Thestructureofatransientcomplexofanonribosomalpeptide

synthetaseandacytochromeP450monooxygenase.Angew.Chem.Int.Ed.Engl.53,8518–8522(2014).

¨ssmuth,R.D.&Cryle,M.J.CytochromeP450skyinteractsdirectly26.Uhlmann,S.,Su

withthenonribosomalpeptidesynthetasetogeneratethreeaminoacid

precursorsinskyllamycinbiosynthesis.ACSChem.Biol.8,2586–2596(2013).27.Cryle,M.J.,Meinhart,A.&Schlichting,I.StructuralcharacterizationofOxyD,a

cytochromeP450involvedinb-hydroxytyrosineformationinvancomycinbiosynthesis.J.Biol.Chem.285,24562–24574(2010).

28.Cryle,M.J.&Schlichting,I.StructuralinsightsfromaP450carrierproteincomplex

http://wendang.chazidian.comA105,15696–15701(2008).

29.vanWageningen,A.M.A.etal.Sequencingandanalysisofgenesinvolvedinthe

biosynthesisofavancomycingroupantibiotic.Chem.Biol.5,155–162(1998).30.Pootoolal,J.etal.Assemblingtheglycopeptideantibioticscaffold:thebiosynthesis

http://wendang.chazidian.comA99,8962–8967(2002).SupplementaryInformationisavailableintheonlineversionofthepaper.

AcknowledgementsTheauthorsthankA.Kochforassistancewithproteinexpression;S.Bellforredoxproteins;M.Gradlforassistancewithmassspectrometry;M.TarnawskiandA.Meinhartforassistancewithcrystalharvestinganddataprocessing;

¨ssmuthandI.SchlichtingandJ.Wrayfordiscussions;C.RoomeforITsupport;R.Su

A.Trumanforsharingunpublisheddata.DiffractiondatawerecollectedattheSwissLightSource,X10SAbeamline,PaulScherrerInstitute,Villigen,Switzerland.WethanktheHeidelbergteamfordatacollectionandthePXIIstafffortheirsupportinsettingupthebeamline.M.J.C.isgratefultoI.SchlichtingforconstantencouragementandtotheDeutscheForschungsgemeinschaft(Emmy2NoetherProgram,CR392/1-1)forfinancialsupport.

AuthorContributionsM.J.C.designedthestudy.K.H.,M.P.andE.M.performedthebiochemicalexperiments.C.B.performedthechemicalsynthesisandcompoundcharacterization.M.P.,K.H.andM.J.C.solvedthestructuresandperformedtheanalysis.M.J.C.wrotethemanuscripttogetherwithcontributionsfromK.H.,http://wendang.chazidian.com/reprints.Theauthorsdeclarenocompetingfinancialinterests.Readersarewelcometocommentontheonlineversionofthepaper.CorrespondenceandrequestsformaterialsshouldbeaddressedtoM.J.C.(Max.Cryle@mpimf-heidelberg.mpg.de).

18.19.

20.21.22.23.

7MAY2015|VOL521|NATURE|109

G2015

MacmillanPublishersLimited.Allrightsreserved

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

教师资格考试|小学教育知识与能力考点:教学反思
教师资格考试《小学教育心理学》核心考点十一:心理健康教育
2014年教师资格证考试:教学能力测试注意事项
教师资格考试《小学教育心理学》核心考点九:问题解决与创造性
教师资格考试《小学教育心理学》核心考点三:学习的基本理论
小学教育心理学考点命题:第十章 态度与品德形成
教资考试教育教学知识与能力重点一:历史上的教育学思想
小学教育学考点命题:3.3 教育在个人身心发展中的作用
小学教师资格证考试教育学辅导:情感教学理论
小学教育学考点命题:3.2 影响个体身心发展的主要因素
小学教师资格证考试教育学辅导:班级授课制
小学教育心理学考点命题:第九章 问题解决与创造性
教师资格之小学教育学考点命题:7.2教学组织形式
小学教师资格证考试教育学辅导:教育制度的特点
教师资格之小学教育学考点命题:7.1教学原则和教学方法
小学教师资格证考试教育学辅导:现代学校的危机与管理
教师资格考试《小学教育心理学》核心考点四:学习动机
小学教师资格证考试教育学辅导:教师劳动的特点
教师资格考试《小学教育心理学》核心考点十二:教学设计
教师资格考试《小学教育心理学》核心考点十三:课堂管理
教师资格考试|小学教育教学知识与能力高频考点:1.2小学的组织与运行
小学教师资格证考试教育学辅导:认知主义教学理论
教师资格考试《小学教育心理学》核心考点六:知识的学习
教师资格考试《小学教育心理学》核心考点八:学习策略
教师资格之小学教育学考点命题:6.2教学过程
小学教师资格证考试教育学辅导:教育的目的与教育方针的区别
小学教师资格证考试教育学辅导:开展课外校外教育的意义
教师资格之小学教育学考点命题:6.1教学的意义与任务
小学教育教学基本素质和能力考试知识点一
小学教育心理学考点命题:第八章 学习策略

网友关注视频

【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
外研版英语三起5年级下册(14版)Module3 Unit2
每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
冀教版英语五年级下册第二课课程解读
沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
外研版英语七年级下册module3 unit1第二课时
冀教版小学英语四年级下册Lesson2授课视频
第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
小学英语单词
冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
苏教版二年级下册数学《认识东、南、西、北》
沪教版八年级下册数学练习册一次函数复习题B组(P11)
七年级英语下册 上海牛津版 Unit5
苏科版数学八年级下册9.2《中心对称和中心对称图形》
二年级下册数学第三课 搭一搭⚖⚖
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
沪教版牛津小学英语(深圳用)五年级下册 Unit 1
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
外研版英语七年级下册module1unit3名词性物主代词讲解
3月2日小学二年级数学下册(数一数)
8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594