教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 工程科技> 能源/化工> Design and analysis of biodiesel production from algae grown

Design and analysis of biodiesel production from algae grown

上传者:孙雅明
|
上传时间:2015-05-08
|
次下载

Design and analysis of biodiesel production from algae grown

CleanTechnEnvironPolicy(2010)12:239–254DOI10.1007/s10098-009-0215-6

ORIGINALPAPER

Designandanalysisofbiodieselproductionfromalgaegrownthroughcarbonsequestration

GracePokoo-AikinsÆAhmedNadimÆ

MahmoudM.El-HalwagiÆVladimirMahalec

Received:18October2008/Accepted:13March2009/Publishedonline:31March2009ÓSpringer-Verlag2009

AbstractThispaperaddressesthedesignandtechno-economicanalysisofanintegratedsystemforthepro-ductionofbiodieselfromalgaloilproducedviathesequestrationofcarbondioxidefromthe?uegasofapowerplant.Theproposedsystemprovidesanef?cientwaytothereductioningreenhousegasemissionsandyieldsalgaeasapotentialalternativetoedibleoilscur-rentlyusedforbiodieselproduction.Algaecanbeprocessedintoalgaloilbyvariouspathways.Thealgaloilcanthenbeusedtoproducebiodiesel.A?owsheetoftheintegratedsystemissynthesized.Then,processsimulationusingASPENPlusiscarriedouttomodelatwo-stagealkalicatalyzedtransesteri?cationreactionforconvertingmicroalgaloilofChlorellaspeciestobiodiesel.Costesti-mationiscarriedoutwiththeaidofICARUSsoftware.Furthereconomicanalysisisperformedtodeterminepro?tabilityofthealgaloiltobiodieselprocess.Theresultssuggestthat,forthealgaloiltobiodieselprocessanalyzedinthisstudy,factorssuchaschoosingtherightalgalspe-cies,usingtheappropriatepathwayforconvertingalgaetoalgaloil,sellingtheresultingbiodieselandglycerolatafavorablemarketsellingprices,andattaininghighlevelsofprocessintegrationcancollectivelyrenderalgaloiltobeacompetitivealternativetofood-basedplantoils.KeywordsProcessintegrationÁProcesssimulationÁBiodieselÁTransesteri?cationÁMicroalgaloil

G.Pokoo-AikinsÁM.M.El-Halwagi(&)

DepartmentofChemicalEngineering,TexasA&MUniversity,3122TAMU,CollegeStation,TX77843,USAe-mail:El-Halwagi@tamu.edu

A.NadimÁV.Mahalec

DepartmentofChemicalEngineering,McMasterUniversity,1280MainStreetWest,Hamilton,ONL8S4L9,Canada

Introduction

Biodieselisatransportationfuelthathasgrownimmenselyinpopularityoverthepastdecade.Withthedwindlingreservesoffossilfuels,http://wendang.chazidian.commonsourcesforbiodieselfeedstockincludesoy,sun?ower,saf?ower,canola,http://wendang.chazidian.comtelytherehasbeengrowingcontroversyabouttheuseofpotentialfoodsourcesfortheproductionoffuel.Inattempttoaddresstheseconcerns,researchershaveturnedtheirfocusfromthepopularfeedstockandarecurrentlyinvestigatingtheuseofalternative,non-foodrelatedfeedstocksuchasoilfromalgae.

Algaearealargeanddiversegroupofsimpleplant-likeorganisms,rangingfromunicellartomulticellarforms.Thesecellshavetheabilitytoconvertcarbondioxidetobiomassthatcanfurtherbeprocesseddown-streamtoproducebiodiesel,fertilizerandotherusefulproducts.Photosyntheticgrowthofalgaerequirescarbondioxide,waterandsunlight.Temperatureshouldbeintherangeof20–30°Cinordertohavegoodgrowingcondi-tions.Algaealsoneedotherinorganicnutrientslikephosphorusandnitrogeninordertogrow.Thefactthatmicroalgaegrowinaqueoussuspensions,allowsformoreef?cientaccesstoH2O,CO2andothernutrientswhichexplainsthepotentialfortheproductionofmoreoilperunitareathanothercropscurrentlyused.Thechemicalcompositionofalgaediffersbasedonspecies.Algaehaveseveralcharacteristicsthatcausethemtobeacandidatebiodieselfeedstockthatdeservesseriousinvestigation.

Theadvantagesofusingalgaeforbiodieselproductioninclude:

123

240?Nocompetitionforlandwithcrops?Nocompetitionwiththefoodmarket

?

Abilitytogrowinwaterwithhighlevelsofsaltsothereisnoadditionaldemandoffreshwater.Also,areaswithsalinegroundwaterthathasnootherusefulapplica-tionscanbetargeted

?Overalluselesswaterthanoilseeds

?

Highoilyield:algae(oftheaquaticspecies)requirelesslandforgrowththanbiodieselfeedstockfromterrestrialplantsbecausetheyarecapableofproducingmoreoilperhectare(Chisti2008a).Table1showsthepotentialgallonsofoilperacreperyearfromdifferentcrops.Furthermore,theoilcontentinalgae(perdryweight)canreachashighas80%(Chisti2008a).Itisworthnotingthattheoilfrommicroalgaecanbeextractedwithyieldsupto80–90%(Grimaetal.1994;Fajardoetal.2007;Belarbietal.2000).

?

Ef?cientsequestrationofCO2:anotherreasonwhymicroalgaeareattractiveisthatCO2(ofabouthalfoftheofdryalgaeweight)isneededforgrowth(Chisti2008a).CO2isacommonindustrialpollutant,thusmicroalgaecancontributetoreducingatmosphericCO2byconsumingCO2wastesfromindustrialsourcessuchaspowerplants.

Thereareninemajorgroupsofalgaewhicharecya-nobacteria(Cyanophyceae),greenalgae(Chlorophyceae),diatoms(Bacillariophyceae),yellow-greenalgae(Xanto-phyceae),goldenalgae(Chrysophyceae),redalgae(Rhodophyceae),brownalgae(Phaeophyceae),dino?ag-ellates(Dinophyceae)and‘pico-plankton’(PrasinophyceaeandEustigmatophyceae)(Huetal.,2008).Oftheseninegroups,thegreenalgaearethelargesttaxonomicgroup.Microalgaehavebeenknowntosurviveunderawiderangeofconditions.Underoptimalconditions,microalgaehavelipidcontentbetween5and20%dryweightwhileunderunfavorableconditionslipidcontentincreasesbetween20and50%(Huetal.2008).Hence,itisidealtocultivatemicroalgaeunderoptimalconditionsandlaterexposethemtounfavorableconditionsinordertoincreaselipidcontent.

Table1Gallonsofoilperacreperyear(Chisti2008a)GallonsofoilperacreperyearCorn18Soybeans48Saf?ower83Sun?ower102Rapeseed127

OilPalm635

Microalgae

5,000–15,000

123

G.Pokoo-Aikinsetal.

Laboratoryexperimentsutilizinggreenalgae,diatoms,andoleaginousspeciesfromothereukaryotictaxashowthatthemicroalgaehaveoilcontentof26,23,and27%dryweight,respectively,underoptimalconditionsand46,38,and45%dryweight,respectivelyunderstressconditions(Huetal.2008).Dependingonthespeciesofmicroalgae,oilcontentcanbefurtherincreasedbylimitingcertainnutrientssuchasnitrogen,phosphorusorsulfur.Forexample,limitingsulfurcontentcanincreaselipidcontentinChlorellasp.(Otsuka1961).

Withthegrowinginterestingrowingalgaeforenergyapplications,differentopinionshavebeenexpressed.Theopinionsrangefromconcernstoskepticismabouttheenergyef?ciency,scaleup,andeconomicfeasibilityofmicroalgalusefortransportationfuelsandotherenergyneeds(e.g.,Anslow2008;Sweeney2008;Reijnders2008)topositiveassessmentofitsef?ciencyandfutureindustrialapplicationsinproducingbiodieselmeetingASTMstan-dards(e.g.,Chisti2007,2008a,b;MiaoandWu2006).Thegrowthofalgaerequirescarbondioxideasoneofthemainnutrientsneeded.ThereisanopportunitytosequesterCO2byusing?uegasemissionsfromindustrialsourcesastheCO2feedforalgaecultivation.Theobjectiveofthispaperistodevelopatechno-economicanalysisofaprocessforsequesteringCO2from?uegasintogrowingalgaewhichprovideslipidsthatareprocessedtoproducebiodiesel.Acombinationofsystemsynthesis,simulation,integration,andanalysisisusedtoassessthetechnicalandeconomicperformanceoftheprocess.Acasestudyissolvedtodiscussthevariousmetricsoftheprocess.

Problemstatement

Theproblemtobeaddressedinthepapermaybestatedasfollows:

Givenanindustrialsource(e.g.,powerplant)whichproduces?uegas(?owrateMandcompositionZ),itisdesiredtosequesterCO2fromthe?uegastogrowalgaewhichistobeprocessedtoproducebiodiesel.Thepaperwilldevelopasystemsapproachforthealternativeprocesspathsandperformatechno-economicanalysistodeterminetheoptimaldesignofa?uegastobiodieselsystemthroughthecultivationofalgae.Thepaperwillalsoprovideananalysisofthetechnicalandeconomicmetricsoftheaforementionedsteps.Systemoverview

Theoverallsystemiscomposedoftwomainsections:anupstreamprocessingsectionwhichisaimedatsequesteringtheCO2,growingthealgae,andproducingthelipidsandadownstreamprocessingsectionwhichincludesthe

Designandanalysisofbiodieselproductionfromalgae241

pretreatmentofthelipidsfollowedbytransesteri?cationthenseparationand?nishingtoyieldthebiodiesel.Figure1illustratesthesekeysteps.Algaeselection

Thechoiceofalgaespeciesshouldaddressspeci?ccharacteristicsthatallowtheuseof?uegasastheCO2source.Muchresearchhasbeendoneonthetoleranceofdifferentspeciesto?uegases.Severalspecieswerefoundtobesuitableforthegrowthofalgaeusing?uegas.OneofthesemanyspeciesisChlorellaspecies.Hanagataetal.(1992)foundthatChlorellaistoleranttoCO2concen-trationsofupto40%byvolume.Sungetal.(1999)reportedthatchlorellagrewinconditionsofupto40°C.TheseresultsindicatethatChlorellaisagoodchoiceforthisstudy.

Inthiswork,theChlorellaspeciesischosen.TheoilcontentofChlorellatypicallyrangesbetween28and32%dryweight(Chisti2007)butcanreach46%dryweightunderstressconditions(Huetal.2008)and55%dryweightwhengrownheterotrophically(http://wendang.chazidian.comrmationaboutthefattyacidcompositionsofvariousmicroalgae(namelythegreenalgaeintheclassesChlorophyceaeandPrasinophyceae)waspublishedin1992(Dunstanetal.1992).ChlorellaisintheclassChloro-phyceaandthefattyacidcompositionsofthreeChlorellaspecieswerelisted.Chlorellasp.(CS-195)wasusedinthisanalysisbecauseofitspotentialeaseforuseinsimulation.ItisinterestingtonotethattheChlorellaprotothecoides(CS-41)compositionincludesthesamefattyacidspresentintheChlorellasp.chosen(Dunstanetal.1992)butinslightlydifferentproportions.AnotherreasonwhyChlo-rellasp.waschosenistheavailabilityofinformationaboutitsgrowth,harvestingandextraction.Feedstockproduction

Algaecanbecultivatedviaanopensystemoraclosedsystem.Racewaypondsarethemostcommerciallyusedopensystemforgrowingalgae.Photobioreactorsareaclosedsystemforalgaecultivation.BothracewaypondsandphotobioreactorsaredescribedbyChisti(2007).Twosystemsareconsideredinthiswork:theuseofanopenpondsystemversustheBio-Kingsystem(CleanTech

2008)thatusesareactortocultivatealgae.TheBio-KingprocessisutilizedbyacompanyinTheNetherlands.Methodsforharvestingincludecentrifugation,?ltration,and?occulation.Centrifugationisexpensivebutalsooneofthemosteffectivewaystoharvestalgae.TheAlfaLavalPXseriescentrifugeswillbeusedtoharvestthealgae.Centrifugationwillresultinthealgaebeing30%solidwith70%moisturecontent.Asaresult,furtherdryingisrequired.

Dryingisconsideredtobethemostenergyintensivepartofthisprocess.Therearemanywaystodrythewetpasteslurrythatcomesoutofthecentrifuge.Asmentionedtheslurrycontains30%solidswiththeremaining70%water.Totryandsaveonenergycostsforthisprocess,thedryingwillbedoneusingexcess?uegas.

Extractionisthe?nalstepintheprocessingofalgaeforuseinbiodieselproduction.Algaloilcanbeextractedeitherphysically,chemicallyorboth.Anexpeller/presscanbeusedtophysicallyextractalgaloil.TheBK-oilpressiscapableofprocessing20kg/handwillbeusedforthisstudy.

Chlorellaisanalgalspeciesthatcontainsanywherefrom29to32%lipids(oilcontent).ForthisstudyitisassumedthatChlorellaisabout30%oilandforsensitivityanalysispurposes,thecostofproducingalgaloilassuming50%oilcontentwillalsobeevaluated.Costofproducingalgaloil

AnanalysiswasconductedassumingaprocessthatutilizedtheBio-KingBioreactorforgrowingthealgae,centrifu-gationforharvesting,excess?uegasfordrying,andtheBio-Kingoilpressforextraction.Economicandsensitivityanalyseswereconductedforthisprocessandusedforestimatingarangeofcostsforproducingoilfromalgae.Speci?cally,twofactorswerevaried:oilcontentinthealgaeandperformance.Twooilcontentsareconsidered:30and50%(drybasisoilinalgae).Thesecondfactoristheperformanceofthedryingandextractionunits.Forthehigh-performancecase,lowcostofelectricity($0.05/kWh),highproduction(100ton/dayplant),andtheuseofheatintegrationindryingusingthehot?uegaseswereassumed.Forthelow-performancecase,highcostofelectricity($0.20/kWh),lowproduction(1ton/day),andnoheatintegrationfordryingwasassumed.Thecost

内容需要下载文档才能查看

123

242

Table2Estimatedcostsforproducingalgaloil

OilcontentUnits

30%

50%Lowperformance1.140.63$/lbHighperformance0.210.07$/lbAverage

0.68

0.35

$/lbestimatesarepresentedinTable2.Thesecostsareusedlaterintheeconomicanalysisoftheproductionofbiodiesel.

Biodieselprocessdescription

MiaoandWu(2006)haveshownthataspeciesofChlo-rella(Chlorellaprotothecoides)canbeusedtoproducebiodieselthatmeetsASTMstandards.Themicroalgaeweregrownheterotrophicallytoincreasetheoilcontentfrom14.6%dryweightto55.2%dryweight.Acidtransesteri?cationwasusedsincetheacidvalueforthealgaloilwasreportedas8.97mgKOH/g.Thebiodieselyieldwasapproximately70%at50°Candconditionsof60%H2SO4catalyst,5hreactiontime,160rpm,9.12gmicroalgaloil,and30–1methanoltooilratio(MiaoandWu2006).

Thedesign,integration,andeconomicassessmentoftheprocessarebasedontheprocedureshowninFig.2.Thisapproachisbasedonwell-establishedproceduresintheareasofprocesssynthesis,simulation,andintegration.Inthisworkthealgaloilistransesteri?edtobiodieselinacontinuousprocess.Biodieselcanbeproducedbyoneofthreecommonroutes.Theyare:acidcatalyzedtrans-esteri?cation,basecatalyzedtransesteri?cationoracidcatalyzedesteri?cationoffeedstocktofattyacidsandthentoalkylesters(NBB2008).Basecatalyzedtransesteri?-cationisthewell-establishedmeansofprocessingbiodieselandtheoverwhelmingoptionusedinindustryforeco-nomicandtechnicalreasons.Rashidetal.(2008)producedmethylestersfromsun?oweroilutilizingNaOHcatalystat1wt%concentrationina6:1methanoltooilratioat60°Catyieldsof97.1%.Georgogiannietal.(2008)reportedmethylesteryieldsfromtheprocessingofsun?oweroilof90%forconditionsof60°C,7:1methanoltooilmolarratioand1wt%NaOHascatalyst.Intheresultsanddiscussionitwaslaterstatedthat‘‘thehighestconversiontoester(93–98%)wasobservedataratioof6:1’’(Georgogiannietal.2008).RashidandAnwar(2008)foundthatbiodieselcouldbeproducedfromsaf?oweroilwithyieldsupto98%forbase-catalyzedtransesteri?cationutilizingsodiummeth-oxidecatalystat1wt%concentration,60°C,and6:1methanoltooilratioandyieldsofabove90%couldbe

123

G.Pokoo-Aikinsetal.

achievedforthesameconditionswiththeexceptionoftheuseofNaOHasacatalyst.Mekaetal.(2007)alsosyn-thesizedbiodieselfromsaf?oweroilandfoundthatat60°Cfor6:1methanoltooilratioand1wt%NaOHcatalyst,yieldof96%couldbeobtained.LeungandGuo(2006)performedexperimentsutilizingneatcanolaoilandusedfryingoilandfoundthatforexperimentsexploringdif-ferentparameters,atemperatureof60°Cwasoptimumforareactiontimeof20minusedfryingoil,thatestercontentwashighest(98%)forcanolaoilforanalcoholtooilratioof6:1(correspondingtoayieldof94%)andthatforthethreealkalicatalystexploredsodiumhydroxidewasthecheapestandhadanoptimumconcentrationof1.0forneatcanolaoiland1.1wt%forusedfryingoil.Foonetal.(2004)inexploringthekineticsofthetransesteri?cationofpalmoil,performedexperimentsutilizingbase-catalyzedtransesteri?cationandfoundthatformationofmethylesterswasfastestforNaOHat60°Cfortheparametersexplored.Conversionsabove97%werereported.

内容需要下载文档才能查看

Leevijit

Designandanalysisofbiodieselproductionfromalgaeetal.(2008)utilizedalkalicatalyzedtransesteri?cationina6-stagereactortoafattyacidmethylesterproductfrompalmoil.NaOHwasusedat60°Cinamethanoltooilratioof6:1.Gerpenetal.(2004)describesthevariouspossibleroutesforbiodieselproductionincludingalkali-transesteri?cation.

Forthisreason,base-catalyzedtransesteri?cationisusedinthisinvestigation.Pretreatmentisrequiredforfeedstockwithhighfreefattyacid(FFA)content(i.e.greaterthan1%,suchaswastecookingoils)aswellasfeedstockwithsubstantialamountsofimpurities(suchassomealgaloils).FeedstockwithFFAcontentof1wt%orlessaregenerallyrequiredforbase-catalyzedtransesteri?cation.ThealgaloilusedfortheprocessingofbiodieselinthisworkisassumedtohaveonlytraceamountsofimpuritiesandtohaveFFAcontentof0.05wt%thereforenopretreatmentisrequired.

Ingeneral,thebiodieselprocessinthisworkconsistsofsevensections:?Feedstockcomposition

?Two-stagetransesteri?cation?FAMEandglycerolseparation?Methanolrecovery?Alkaliremoval

?Waterwashing(FAMEpuri?cation)?

Glycerolpuri?cation

Feedstockcomposition

ThefeedstockinthisworkisalgaloilfromChlorellasp.andischaracterizedintermsofthecompositionoftheindividualfattyacidsandtriglycerides.TheFFAcontentisassumedtobe0.05wt%andthuspretreatmentisnotnecessary.BasedonthedatapresentedbyDunstanetal.(1992)forChlorellasp.(CS-195),thefattyacidcompo-sitionisdistributedsuchthatthetotalweightpercentis0.05.Fortheremaining99.95wt%,thesamedata(Dunstanetal.1992)aredistributedsuchthatitencom-passesthetriglyceridecomposition.Forsimpli?cation,eachtriglycerideisrepresentedascontainingthreeiden-ticalcomponentfattyacids,althoughinrealitynumerouspossiblecombinationsexistforthefattyacidscomprisingeachtriglyceride.

SincetheASPENPlussimulationsoftwareonlyhasthethermodynamicdataandotherinformationforalimitednumberoffattyacidsandthecorrespondingtriglyceridesandmethylestersthatarefoundinplantoils,fatsandalgaloils(MyintandEl-Halwagi2009),mostofthecomponentsofthealgaloilfeedstockwereenteredmanuallyusingtheuser-de?nedmethodandthestructuresofeachcompoundwereconstructedusingISISsoftware.

243

Two-stagetransesteri?cation

Theoverallreactionbetweenthetriglycerides(algaloil)andmethanolisgivenby:

OO ==H2CO

C

R1

H2C

OH

C

R1

OO Catalyst

==R2

+ 3 CH3OH

OH

+

C

R2

OO

==H2R3

H2OHC

R3

TriglycerideMethanol

GlycerolFattyAcidAlkylEster

Consequently,onemoleculeofeachtriglycerideinthealgaloilreactswiththreemoleculesofmethanoltoproducethreemoleculesofmethylesters,thebiodie-selproduct,andonemoleculeofglycerol(Gerpenetal.2004).

Basedonseveralstudiesofalkali-catalyzedtranseste-ri?cation,thereactionwillbecarriedoutatthetemperatureneartheboilingpointofthealcohol(60°Cformethanol).Amolarratioof6:1,alcohol:oil,isalsocon?rmedtobetheoptimalratiobynumerousstudies(MaandHanna1999;Tapasvietal.2005;Meheretal.2006;MyintandEl-Halwagi2009).Inthisstudy,thetemperatureof60°C,methanolasthealcohol,amolarratioof6:1methanoltooil,andNaOHasthebasecat-alystaretheconditionsusedasaresultofcomprehensiveliteraturereviewmentionedabove‘‘Biodieselprocessdescription’’.

Inthe?rstreactor,sodiumhydroxidewithaconcen-trationof1.0wt%ofthefeedalgaloilwasused.TheconcentrationofNaOHfortheunreactedoilsuggestedinpatentdocumentsbyWimmer(1995)andTanakaetal.(1981)forthesecondreactoris0.2wt%ofinletoils.Fortheprocesswhere97.7%conversionisassumedthrougheachreactor,noadditionalNaOHisneededinthesec-ondreactor.Fortheprocesswhere70%conversionisassumedthrougheachreactor,additionalNaOHthatisonly0.14wt%ofinletoilsisneededinthesecondreactorasaresultofmassbalancecalculations,tobringthetotalNaOHto1.0wt%oftheinlettothesecondreactor.Thepurityofalgaloilisassumedtobe99.95wt%whiletheFFAcontentwasassumedtobe0.05wt%.

Inordertoincreasetheconversionofthealgaloil,twotransesteri?cationreactionsareconductedinsequence.ConversionoffeedstockhavebeendocumentedbyTanakaetal.(1981)toreachupto99.5wt%usingthistwo-stepprocess.Inthiswork,theconversionissettothesamepercentineachreactor.Inthe?rstscenario,theconversionthrougheachreactorissetat97.7%andinthesecondscenariotheconversionthrougheachreactorissetat70%.Thereactionproductsbiodieselandglycerol

123

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

网友关注视频

七年级英语下册 上海牛津版 Unit9
冀教版小学英语五年级下册lesson2教学视频(2)
苏科版八年级数学下册7.2《统计图的选用》
冀教版小学数学二年级下册第二单元《租船问题》
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
沪教版八年级下次数学练习册21.4(2)无理方程P19
8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
外研版英语七年级下册module3 unit2第一课时
冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
人教版二年级下册数学
沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
二年级下册数学第三课 搭一搭⚖⚖
苏科版数学 八年级下册 第八章第二节 可能性的大小
外研版八年级英语下学期 Module3
沪教版牛津小学英语(深圳用) 四年级下册 Unit 8