教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> > 物理> A novel nitromethane biosensor based on

A novel nitromethane biosensor based on

上传者:梁伟成
|
上传时间:2015-05-08
|
次下载

A novel nitromethane biosensor based on

BiosensorsandBioelectronics26 (2010) 991–995

ContentslistsavailableatScienceDirect

Biosensorsand

内容需要下载文档才能查看

Bioelectronics

journalhomepage:http://wendang.chazidian.com/locate/bio

内容需要下载文档才能查看

s

Anovelnitromethanebiosensorbasedonbiocompatibleconductiveredox

graphene-chitosan/hemoglobin/graphene/roomtemperatureionicliquidmatrix

LuWang,XiuhuaZhang,HuayuXiong,ShengfuWang?

Ministry-of-EducationKeyLaboratoryfortheSynthesisandApplicationofOrganicFunctionalMolecules,CollegeofChemistryandChemicalEngineering,HubeiUniversity,11XueyuanRoad,Wuhan430062,China

articleinfoabstract

Anovelamperometricbiosensorfornitromethane(CH3NO2)basedonimmobilizationofgraphene(GR),chitosan(CS),hemoglobin(Hb)androomtemperatureionicliquid(IL)onaglassycarbonelectrode(GCE)wasdevelopedforthe?rsttime.Thesurfacemorphologiesofasetofrepresentativemembraneswerecharacterizedbymeansofscanningelectronmicroscopy(SEM).Theelectrochemicalperformanceofthebiosensorwasevaluatedbycyclicvoltammetry(CV)andchronoamperometry.Apairofstableandwell-de?nedredoxpeaksofHbwithaformalpotentialof?0.240VwasobservedattheGR-CS/Hb/GR/IL/GCE.TheeffectsofphosphatebufferpH,scanrate,andtemperatureonthebiosensorwereinvestigatedtoprovideoptimumanalyticalperformance.Moreover,severalelectrochemicalparameters,e.g.,thehet-erogeneouselectrontransferrateconstant(ks),werecalculatedindetail.ThepresenceofbothGRandILnotonlydramaticallyfacilitatedtheelectrontransferofHb,butalsogreatlyenhancedelectrocatalyticactivitytowardsCH3NO2.TheapparentMichaelis–Mentenconstantwasdownto0.16?M,indicatingthatthebiosensorpossessedhighaf?nitytoCH3NO2.Besidesthis,theproposedbiosensorexhibitedfastamperometricresponse(<5s),lowdetectionlimit(6.0×10?10M),andexcellentlong-timestoragestabilityforthedeterminationofCH3NO2.

© 2010 Elsevier B.V. All rights reserved.

Articlehistory:

Received10May2010

Receivedinrevisedform21July2010Accepted12August2010

Available online 19 August 2010Keywords:HemoglobinGraphene

RoomtemperatureionicliquidNitromethaneElectrocatalysis

1.Introduction

Organicnitrocompoundshaveattractedagreatdealofinter-estoverthepastdecadesbecauseofthewidespreaduseofthesecompoundsasexplosivematerials(Fainberg,1992),fuels(Sabourinetal.,2009),specialsolvents(Subiratsetal.,2005),andevenaschemicalcoatings(Wangetal.,1998).Nitromethane(CH3NO2),thesimplestofthealiphaticnitrocompounds,isoneofthemostcommonpollutantswithrelativelyhighvaporpressure(JeanandMekki,2004;Singh,2007).Thechronicexposuretonitromethaneleadstomanycriticaleffectsonhumanhealthsuchasthyroidtoxicity,blooddyscrasiasandperipheralneuropathy(Pageetal.,2001).Hence,extensiveeffortshavebeendevotedtothedetectionofCH3NO2includingcolorimetry(JonesandRiddick,1956),solid-phasemicroextraction(SPME)-gaschromatography(GC)–highresolutionmassspectrometry(HRMS)(SPME-GC–HRMS)(Alwisetal.,2008),?uorimetry(MeaneyandMcGuf?n,2008).However,amajorityofthesemethodssufferedfromlimitations.Forinstance,?uorescencespectrometrydemandslargesamplesindespiteofthehighsensitivity.Nowadays,electrochemicalmethodappearsmuchmoreeleganttobeusedtodetectCH3NO2mainlyduetospeci?city,

?Correspondingauthor.Tel.:+862750865309;fax:+862788663043.E-mailaddress:wangsf6@http://wendang.chazidian.com(S.Wang).0956-5663/$–seefrontmatter© 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.bios.2010.08.027

fast,andeaseofmonitoring(Singh,2007).However,tothebestofourknowledge,verylittleworkhasbeenperformedonthedeter-minationofCH3NO2bythedirectelectrochemicalmeasurementwiththeenzymeelectrode.

Itiswellknownthatenzyme-basedmethodshowsfastspeed,highsensitivityandgoodselectivity.So,theelectrochemicalstudiesofenzymeandproteinsareofconsiderableimportanceinbiosen-sorsandbiocatalysts.Todate,avarietyofmaterialshavebeenemployedasmodi?erstorealizedirectelectrontransferofmet-alloproteins(e.g.,hemoglobin(Hb)),suchassurfactant(Liuetal.,2007),lipid(Tangetal.,2003),hydrogelpolymer(Liuetal.,2004)andnanomaterials(Xuetal.,2009).Graphene(GR)asa“risingstar”carbonnanomaterialhasbecomeahottopicinmyriadofresearchareasduringrecentyears(Sabourinetal.,2009;Chenetal.,2009).ItwasreportedthatGRexhibitshighsurfaceareaandexcellentelectricalconductivity(Stankovichetal.,2006).Fromthisitisclearthattheincreaseofeffectivesurfaceareaishelpingforintroducingalargernumberofactivesites.Thehighconductivitycanfacilitatetheelectrontransferofelectroactivespecies.Withthoseadvan-tages,anumberofelectrochemicalsensorsandbiosensorsbasedonGRweresuccessfullydevelopedforanalyticalpurposes(Wangetal.,2009;Shanetal.,2009;Kangetal.,2009).Morerecently,increasingattentionhasbeenpaidtothemodi?edelectrodeswithGRandroomtemperatureionicliquid(IL)inhopesofsynergizingtheirexceptionalproperties(Shanetal.,2010;Liuetal.,2010).

992L.Wangetal./BiosensorsandBioelectronics26 (2010) 991–995

ILisanioniccompoundcomposedofbulkyasymmetriccationsandsmallanions,whichpreservesliquidstateoverawidetemperaturerange(Moulthropetal.,2005).Itpossessesmanyfasci-natingpropertieslikelowtoxicity,negligiblevaporpressure,widepotentialwindow,highthermalstability,goodconductivityandelectrochemicalstability(Quinnetal.,2002).Therefore,ILsuggestsagreatpotentialapplicationinvariousareas.Inthe?eldofelectro-analysis,theapplicationsofILgenerallyfocusontwoaspects.OneisthatILisservedasanalternativesolventsorsupportingelec-trolyte(Wangetal.,2005).Forexample,ourgroupshadexploredthedirectelectrochemicalandelectrocatalysisofhemeproteinsimmobilizedbyagarosehydrogel?lmsinIL(Wangetal.,2005).Ontheotherhand,ILisusedasmodi?edmaterialinapplicationofbiosensorsandbiocatalysis(Chenetal.,2007).Thishasgainedmoreandmoreattentionsinrecentyears.Chitosan(CS)isanabundantnatural-bioploymerwithuniquestructure.Ithasbeenuniversallyusedtodispersenanomaterialsandimmobilizeenzymesowingtoitsgoodwaterpermeability,excellent?lmformingability,biocom-patibility,nontoxicity,andhighmechanicalstrength(Zhangetal.,2004).

Herein,anovelnitromethanebiosensorwithsandwichstructure(GR-CS/Hb/GR/IL)wasfabricatedbyintegratingtheadvantageousfeaturesofGR,IL,andCS.Theelectrochemicalprop-ertiesofthisbiosensorwereinvestigatedincludingthedirectelectrontransferofHbandelectrochemicaldeterminationofCH3NO2.Besides,thespecialsandwichstructureplayedacrucialroleinretainingthebioactivityofHbandavoidingtheleakageoftheimmobilizedprotein.2.Experimental

2.1.Reagentsandapparatus

GR(kindlyprovidedbyProfessorXianbaoWangfromFacultyofMaterialsScienceandEngineering,HubeiUniversity,China)wereusedasreceived.Theroomtemperatureionicliquid,1-butyl-3-methylimidazoliumtetra?uoroborate([bmim][BF4]),waspurchasedfromChengjieChemicalLtd.Corp.(Shanghai,China).BovineHbwasobtainedfromFluka(Switzerland).Theconcentra-tionofHbstocksolution,preparedbydissolvingHbin0.05MpH7.0phosphatebuffersolution(PBS),was20mg/ml.CH3NO2wasfromJingchunReagentLtd.Corp.(Shanghai,China).ThestocksolutionofCH3NO2waspreparedbydirectlydilutedwithPBS(0.1M,pH7.0)accordingtothedemands.CSoflowmolecularweightwasbroughtfromSigma(USA).CShydrogelwaspreparedbydissolving5mgCSin1mlHAc(0.1M).Supportingelectrolytesolutionforexperimentswas0.1MpH7.0PBS.Allotherchemicalswereofanalyticalreagentgrade.Deionizeddouble-distilledwaterwasusedthroughouttheexperiments.Unlessotherspeci?ed,allexperimentswereoperatedatroomtemperature.

AlltheelectrochemicalmeasurementswereperformedonaCHI660Aelectrochemicalworkstation.Astandardthree-electrodesystem,witha?lmmodi?edglassycarbonelectrode(GCE)astheworkingelectrode,asaturatedcalomelelectrode(SCE)asthereferenceelectrodeandaplatinumfoilastheauxiliaryelec-trode,wasusedinthemeasurements.Nitrogenatmospherewasmaintainedduringthemeasurements.ThepHvalueofelectrolytewasdeterminedbyusinga320-Saciditymeter(Mettler-Toledo,Switzerland).AJEOLJSM-5510LVscanningelectronmicroscopy(SEM,Japan)wasappliedforcharacterizingthepreparedsamples.2.2.PreparationoftheGR-CS/Hb/GR/IL/GCE

5?lof1%IL-ethanolsolutionwas?rstdroppedontothesur-faceofthepretreatedGCEtoformtheIL/GCE.Then,5?lofthe

homogeneousGR-DMFsolution(1mg/ml)wascoveredtheIL/GCE.Afterdrying,10?lHbsolutions(20mg/ml)werespreadontotheGR/IL/GCEsurface.Finally,5?loftheresultingCS-dispersedGRsolution,inwhichtheconcentrationofGRwas1mg/ml,wascoatedonthesurfaceofHb/GR/IL/GCE.TheelectrodereferredinthetextasGR-CS/Hb/GR/IL/GCEwasfabricated(seesupportinginformation,Scheme1).Forcomparison,GR-CS/Hb/GR/GCE,GR-CS/Hb/IL/GCE,GR-CS/GR/IL/GCEandCS/Hb/GR/IL/GCEwerealsopreparedbythissimpledrop-castingtechnique.3.Resultsanddiscussion

3.1.MorphologycharacterizationofthefabricatedbiosensorThesurfacemorphologiesofGR-CS/Hb/GR/ILmembraneandthreedifferentmembraneswereexaminedbySEMobservation.ThetopviewsofGR(Fig.1a)clearlyillustratedthetypically?ake-likewithslightlyscrollededgesshapes,whichwasconsistentwiththepreviousreports(Shanetal.,2009;Xuetal.,2010a).Fig.1bpresentedtheSEMimageofHb?lm.Thebrightglobu-larstructureswereassignabletothedepositionofHbmoleculeswithlargeaggregations.AscanbeseenfromFig.1c,theGR-CS/Hb/GRmembranelookedroughandincompact.However,forGR-CS/Hb/GR/ILmembrane(Fig.1d),atotallydifferentmorphol-ogywasobtained.ItseemedthattheGR-CS/Hb/GR/IL?lmwascharacterizedwithuniformandsmoothsurface.ThedegreeofevennesswasbetterwhenILwasadded,whichcouldbeattributedtothebindingandblanketingeffectofviscousIL(Xiaoetal.,2008).

3.2.Cyclicvoltammetrycharacterizationofthebiosensor

Todiscerntheroleofeachcomponentandpossiblesynergybetweenthem,cyclicvoltammograms(CVs)ofdifferentelectrodeswererecordedinFig.2.NovoltammetricresponsewasobservedforGR-CS/GR/IL/GCEexceptforalargebackgroundcurrent(Fig.2a).Whereasapairofwell-de?nedandnearlyreversiblepeakswiththeformalpotentialof?0.240VappearedonGR-CS/Hb/GR/IL/GCE(Fig.2b),indicatingthatthecoupleofpeaksarisesfromtheredoxreactionofHb–Fe(III)/Fe(II)(Wangetal.,2005).Incomparison,thecurrentresponsesofGR-CS/Hb/GRmatrixwithoutILwerefaintandfeeble(Fig.2c),meaningthatILplayedanimportantroleinfacilitatingthedirectelectrontransferofHb.Althoughthepeakcur-rentsdecreasedapparentlyandthepeak-to-peakseparation(??Ep)increasedsynchronouslyatbothGR-CS/Hb/IL/GCE(Fig.2d)andCS/Hb/GR/IL/GCE(Fig.2e),thepeakcurrentofHbdecreasedmoresharplyatGR-CS/Hb/IL/GCE.ThephenomenondemonstratedthatGR,especiallyclosetothesurfaceofelectrode,greatlypromotedtheelectrontransferbetweenredoxenzymeandtheunderlyingelec-trode(Xuetal.,2010a).Thus,thecombinationofILandGRshowedanextraordinarysynergisiticenhancementfortheelectrontransferrateofHbenzyme.

3.3.Selectionoftheoptimumexperimentalconditions

3.3.1.In?uenceofpHonelectrochemicalbehaviorsofthebiosensor

ThepHeffectofsupportingelectrolyteontheelectrochemi-calbehaviorsofHbwasexploredovertherangeof4.0–9.0(seesupportinginformation,Fig.S1).Boththeanodic(Epa)andcathodic(Epc)potentialshiftednegativelywiththeincreaseofpH,implyingthattheelectrochemicalprocessinvolvedprotontransfer.Intion,theEpa,EpcandE0??

addi-(formalpotential)werelinearlydependentonthepHvalueofPBSwiththeslopevaluesof45,42and44mV/pH,respectively.Allthoseslopevaluesweresmallerthanthetheo-reticalvalueof57.6mV/pHat18?Cforasingle-protoncoupled

L.Wangetal./BiosensorsandBioelectronics26 (2010) 991–995

内容需要下载文档才能查看

993

Fig.1.SEMimagesof(a)GR,(b)Hb,(c)GR-CS/Hb/GRand(d)GR-CS/Hb/GR/ILontheglassycarbon.

reversibleone-electrontransfer(Bond,1980;Meites,1965).Thereasonforthisdifferencemightresultfromthein?uenceoftheprotonationoftransandresidueligandsaroundheme,orthepro-tonationofthewatermoleculecoordinatedtothecentraliron(Luetal.,2007).Theanodicpeakcurrentschangedsigni?cantlyinthepHrange.ThemaximumvalueofpeakcurrentswasachievedatpH7.0.SopH7.0wasdeemedastheoptimumpHandusedinthefurther

内容需要下载文档才能查看

experiments.

Fig.2.CVsof(a)GR-CS/GR/IL/GCE,(b)GR-CS/Hb/GR/IL/GCE,(c)GR-CS/Hb/GR/GCE,(d)GR-CS/Hb/IL/GCEand(e)CS/Hb/GR/IL/GCEin0.1MpH7.0PBSatascanrateof0.1V/s.

3.3.2.In?uenceofscanrateonelectrochemicalbehaviorsofthebiosensor

Withtheincreaseofscanratefrom10to500mV/s,theanodicandcathodicpeakcurrentsofHbgrewlinearly,demonstrat-ingthattheredoxprocessofHbwassurface-con?ned(Zhangetal.,2007)(seesupportinginformation,Fig.S2).What’smore,thechargeconsumed(Q),obtainedbytheintegrationofreduc-tionpeaks,keepalmostunchangedregardlessofthescanrate.AccordingtoFaraday’slaw,Q=nFA??*(wherenisthenumberofelectrontransferred,FandAstandfortheFaradayconstantandthegeometricareaofthemodi?edelectrodesurface,respec-tively).Therefore,thesurfaceconcentrationsofelectroactiveHbatGR-CS/Hb/GR/IL/GCEwasestimatedtobe7.70×10?10molcm?2,whichwasabout41timesaslargeasthetheoreticalmonolayercoverage(1.89×10?11molcm?2)(Liuetal.,2004)and1.8timeshigherthanthat(4.25×10?10molcm?2)atHb/RTIL/PDDA-G/GCE(Liuetal.,2010).ThisrevealedthatmultilayersofHbparticipatedintheelectron-transferprocess.ThepercentageofelectroactivityHbontheelectrodesurfacewas2.19%,illuminatingthatonlytheproteinmoleculesclosetotheelectrodesurfaceandwithsuitableorientationcouldexchangeelectronswiththeelectrodesurface(Wangetal.,2005).

Ontheotherhand,thepeakpotentialsshiftslightlywithincreasingscanratefrom0.01to1V/s.However,thevaluesofEpcandEpawereproportionaltothelogarithmofscanrateswithslopesof2.3RT/(1??)nFand2.3RT/?nFathighscanrates.Sotheelectrontransfercoef?cient(?)wascalculatedtobe0.42.BasedontheLavirontheory(Laviron,1979),theheterogeneouselec-trontransferrateconstant(ks)ofHbcouldbedeterminedandestimatedtobe57.3s?1,whichwassuperiortothatincorpo-ratedinDDAB-HIMIMPF6(11.6s?1)(Xuetal.,2010b),SA-MWCNTs(9.54±0.883s?1)(Zhaoetal.,2009),andPVA/MWCNTs/CILE(1.05s?1)(Sunetal.,2009).Thepromotiontoelectrontransferof

994L.Wangetal./BiosensorsandBioelectronics26 (2010) 991–995

HbmaybeduetothesynergeticfunctionofGRandILwithgoodbiocompatibilityandhighconductivity.

3.3.3.In?uenceoftemperatureonthedetectionofCH3NO2bythebiosensor

Undertheoptimalconditionsestablishedabove,theeffectoftemperatureonthecurrentresponseofthebiosensorto2.12mMCH3NO2wasinvestigatedattherangefrom10to60?C(datanotshown).Itcanbenotedthatthecurrentincreasedwiththetemper-atureupto30?C,andthengraduallydecreasedasthetemperaturefurtherincreases.TheresultsmaybeattributedtothepartialdenaturationofHbathightemperatures.Consideringboththelife-timeandcurrentresponseofthebiosensor,theroomtemperature(25?C)waschosenastheoptimumtemperatureindetectionofCH3NO2.

3.4.AmperometricresponseoftheCH3NO2biosensor

AsshowninFig.3A,therewasnoelectrochemicalresponseatGR-CS/GR/IL/GCEintheabsenceofCH3NO2(curvea).However,acathodicpeakcorrespondingtothereductiveofCH3NO2wasobtainedat?1.01VwhenCH3NO2existed(curveb).Inaddition,itwasnecessarytomentionthatanewpeak,appearedat?0.790Vwithconsiderablyhighercurrentresponse,wasclearlyobservedontheGR-CS/Hb/GR/IL/GCEwhenCH3NO2wasaddedintothedetec-tionsolution(curved).ThepresenceofHbledtothegreataugmentinthecurrentresponseofCH3NO2andtherapiddeclineoftheover-potential,whichwereallcharacteristicofelectrocatalyticreductionofCH3NO2byHb.Furthermore,thedecreaseoftheoverpotentialwasfavorabletoavoidpossibleinterferencesfromtheelectroactivesubstancesinbiologicalmatrixes(Duetal.,2009).

Therewasnodoubtthatthecurrentresponseofelectrochem-icalbiosensorswasstronglydependentontheappliedpotentials.Ontheotherhand,theselectivityofelectrochemicalbiosensorsisalsopotential-dependant.Tothebestofourknowledge,thecoex-istingbiologicalcompound,suchasO2andNO2?,mayinterferewiththeelectrochemicaldeterminationofCH3NO2atthemorenegativelypotentials(Zhuetal.,2009;Weietal.,2009).There-fore,amperometricresponsesofthebiosensortoCH3NO2wereexaminedatdifferentpotentialsrangingfrom?0.6to0V.Amongthesepotentials,theoptimizedworkingpotentialof?0.35Vwasselectedtoensurearelativelyhighsensitivity,suf?cientcur-rentresponse,aswellasrelativelylowbackgroundcurrentofthebiosensor.InordertodemonstratetheperformanceoftheproposedCH3NO2biosensor,acomparisonoftheamperomet-ricresponseoftheGR-CS/Hb/GR/IL/GCEwiththatoftheothermodi?edelectrodesattheappliedpotentialof?0.35Vwasdis-playedinFig.3B.ForboththeGR-CS/GR/IL/GCE(curveb)andCS/Hb/IL/GCE(curvec),thevisionofsmallcurrentresponsewascaught.Incontrast,thelargeststeppedgrowthofreductioncur-rentcouldbeseenatGR-CS/Hb/GR/IL/GCE(curvea).ItwasinferredthatthesynergisticeffectoftheelectrocatalyticactivityofHbandGRresultedinthebettercatalyticpropertyofGR-CS/Hb/GR/IL/GCEtowardCH3NO2thanthatofothercases.ItwasknownfromtheinsetofFig.3BthattheGR-CS/Hb/GR/IL/GCEhadanexcel-lentlinearresponsetoCH3NO2intheconcentrationrangefrom2.0×10?9to2.3×10?7Mwithacorrelationcoef?cientof0.9991,whichwasmuchwiderthanthatof2.0×10?9–7.5×10?8MatCS/Hb/IL/GCE.Alowdetectionlimitof6.0×10?10M(S/N=3)wasobtainedbythepreparedbiosensor,whichwasevidentlylowerthanthevalueof3.3×10?5MbyMb/ddab/PGelectrode(JeanandMekki,2004)andwasalsocomparabletothatof1.6×10?10MbySPME-GC–HRMSmethod(Alwisetal.,2008).Thesensitivityofthebiosensor(788?AmM?1)wasimprovedapparentlycomparedwiththatof329?AmM?1atGR-CS/GR/IL/GCEand211?AmM?1atCS/Hb/IL/GCE.Moreover,95%ofthesteady-statecurrent

内容需要下载文档才能查看

was

Fig.3.(A)CVsat0.1V/sin0.1MpH7.0PBSfor(a)GR-CS/GR/IL/GCEand(c)GR-CS/Hb/GR/IL/GCEwithoutCH3NO2;(b)GR-CS/GR/IL/GCEand(d)GR-CS/Hb/GR/IL/GCEinbuffercontaining2.12mMCH3NO2.(B)Amperometricresponseof(a)GR-CS/Hb/GR/IL/GCE,(b)GR-CS/GR/IL/GCEand(c)CS/Hb/IL/GCEuponsucces-siveadditionsof7.92?MCH3NO2intostirring0.1MpH7.0PBS.Appliedpotential:?0.35V.Inset:thecorrectedcurvesofcatalyticcurrent(Icat)againstCH3NO2con-centrationfor(a)GR-CS/Hb/GR/IL/GCE,(b)GR-CS/GR/IL/GCEand(c)CS/Hb/IL/GCEin0.1MpH7.0PBS.Therelativestandarddeviation(RSD)islessthan7%.

reachedwithin5swhenaliquotsofCH3NO2wereadded,indicat-ingtherapidresponseofthebiosensor.SuchfastresponsemaybeonaccountoftheintroductionofGRandtheeasydiffusionofsub-strateintheGR-CS/Hb/GR/ILmatrix.ThecalibrationcurvetendedtoleveloffwhentheconcentrationofCH3NO2becamelarger,manifestingthecharacteristicsoftheMichaelis–Mentenmechanism.TheapparentMichaelis–Mentenconstant(Kapp

kinetic

m)forthebiosensortoCH3NO2wascalculatedtobe0.16?MaccordingtotheLineweaver–Burkequation(KaminandWilson,1980),whichwasremarkablylowerthanthevaluereportedtrode(JeanandMekki,2004).ThelowKapp

byMb/ddab/PGelec-mvaluesuggestedthatHbinGR-CS/Hb/GR/ILmembraneretaineditsbioelectrocatalyticactivityandexhibitedahighaf?nitytoCH3NO2.3.5.Reproducibilityandstabilityofthebiosensor

Therelativestandarddeviation(RSD)was5.41%for10suc-cessivedeterminationsof1.36×10?7MCH3NO2usingonesingleGR-CS/Hb/GR/IL/GCE.Theresultilluminatedthatthebiosensor

L.Wangetal./BiosensorsandBioelectronics26 (2010) 991–995995

showedtheexcellentreproducibilityforthedeterminationofCH3NO2.Thestabilityofthebiosensorwasalsoinvestigated.Thebiosensorcouldmaintain90%ofitsinitialresponseafterbeingstoredfor50daysintherefrigerator.Asexpected,thebiosen-sorposedoutstandinglong-timestoragestability,whichmightbeduetothefollowingaspects.Firstly,theuniquesandwich-likestructuresofGR-CS/Hb/GR/ILmatrixcouldprovideafavorablemicroenvironmentforHbtoremainitsconformationandbioactiv-ity.Additionally,theoutlayerofGR-CShybrid?lmcouldef?cientlypreventtheleakageoftheboundHb(Xuetal.,2010a;Zhangetal.,2007).Owingtotheaboveadvantages,itcanbeseenthatthismethodwasreliableforthedeterminationofCH3NO2.3.6.Selectivityandapplicationofthebiosensor

Thein?uenceoftheinterferingspecieson7.84×10?8MCH3NO2determinationwasexamined.Itwasfoundthat1000-foldNO3?,C7H8,C6H5NO2didnotinterferewiththetestofCH3NO2.Thegoodselectivityofthebiosensormightberelatedtothelowwork-ingpotentialof?0.35V.Todemonstratetheapplicationpotentialofthebiosensorinenvironmentalanalysis,realfreshwatersamplesdetectionwasperformed.ItwasfoundthattheCH3NO2contentinthetestedsampleswastoolowtobedetectedbythebiosen-sor(datanotshown).However,thereisanevidentincreaseinthecurrentresponseifdifferentconcentrationsofCH3NO2wereaddedintothesamples.ThissuggestedthattheproposedbiosensorcouldbeappliedtothedeterminationofCH3NO2inenvironmentsamples,withalinearrangefrom9.9×10?9to4.0×10?7Mandasensitivityof353?AmM?1.AlthoughtheresultsofCH3NO2anal-ysiswerenotsosatis?edinrealsamples,itisstillanareathatwewillbeworkinghardtoimprove.4.Conclusion

Inthispaper,theemploymentofGRnanosheets,ILandbiopolymer(CS)associatedwiththeinherentcatalyticactivityofHbtowardCH3NO2,provideustofabricateanewCH3NO2biosen-sor.Thisbiosensorofferedseveralfascinatingadvantages:?rst,theespecialsandwichstructureofthebiosensorcouldprovideafriendlymicroenvironmentforHbtopreserveitsnativestructureandbioactivity.Second,theappearanceofGRandILwithhighconductivityandprominentbiocompatibilitygreatlypromotedthedirectelectrontransferbetweenHbandtheunderlyingelec-trode.Therefore,thebiosensorachievedalimitofdetectiondownto6.0×10?10MforquantitativeCH3NO2analysis.Inaddition,theconstructedbiosensordisplayedhighsensitivity,enhancedaf?nity,andaprolongedgoodstabilizationtothedetectionofCH3NO2.AlthoughthedeterminationofCH3NO2inrealsamplesbythebiosensorisintheimprovementstages,westillbelievethisapproachcanpaveanewandcost-effectivewayforbiomon-itoringofCH3NO2bothinmethodologicalstudyandinclinicallaboratories.Acknowledgements

ThisworkwassupportedbytheNationalNaturalScienceFoun-dationofChina(No.20875023).

AppendixA.Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,intheonlineversion,atdoi:10.1016/j.bios.2010.08.027.References

Alwis,K.U.,Blount,B.C.,Smith,M.M.,Loose,K.H.,2008.Environ.Sci.Technol.42,

2522–2527.

Bond,A.M.,1980.ModernPolarographicMethodsinAnalyticalChemistry.Marcel

Dekker,NewYork.

Chen,H.J.,Wang,Y.L.,Liu,Y.,Wang,Y.Z.,Qi,L.,Dong,S.J.,http://wendang.chazidian.com-mun.9,469–474.

Chen,F.,Qing,Q.,Xia,J.L.,Li,J.H.,Tao,N.J.,2009.J.Am.Chem.Soc.131,

9908–9909.

Du,D.,Wang,J.,Smith,J.N.,Timchalk,C.,Lin,Y.H.,2009.Anal.Chem.81,

9314–9320.

Fainberg,A.,1992.Science255,1531–1537.

Jean,B.,Mekki,B.,2004.Inorg.Chem.43,3847–3853.

Jones,L.R.,Riddick,J.A.,1956.Anal.Chem.28,1493–1495.Kamin,R.A.,Wilson,G.S.,1980.Anal.Chem.52,1198–1205.

Kang,X.H.,Wang,J.,Wu,H.,Aksay,I.A.,Liu,J.,Lin,Y.H.,2009.Biosens.Bioelectron.

25,901–905.

Laviron,E.,1979.J.Electroanal.Chem.101,19–28.

Liu,H.H.,Tian,Z.Q.,Lu,Z.X.,Zhang,Z.L.,Zhang,M.,Pang,D.W.,2004.Biosens.Bio-electron.20,294–304.

Liu,Q.,Hu,C.G.,Cui,R.,Hu,S.S.,2007.J.Phys.Chem.B111,9808–9813.

Liu,K.P.,Zhang,J.J.,Yang,G.H.,Wang,C.M.,Zhu,J.J.,http://wendang.chazidian.commun.

12,402–405.

Lu,Q.,Hu,C.G.,Cui,R.,Hu,S.S.,2007.J.Phys.Chem.B111,9808–9813.Meaney,M.S.,McGuf?n,V.L.,2008.Anal.Chim.Acta610,57–67.

Meites,L.,1965.PolarographicTechniques,seconded.Wiley,NewYork.

Moulthrop,J.S.,Swatloski,R.P.,Moyna,G.,Rogers,R.D.,http://wendang.chazidian.commun.12,

1557–1559.

Page,E.H.,Pajeau,A.K.,Arnold,T.C.,Fincher,A.R.,Goddard,M.J.,2001.Am.J.Ind.

Med.40,107–113.

Quinn,B.M.,Ding,Z.F.,Moulton,R.,Bard,A.J.,http://wendang.chazidian.comngmuir18,1734–1742.

Sabourin,J.L.,Dabbs,D.M.,Yetter,R.A.,Dryer,F.L.,Aksay,I.A.,2009.ACSNano3,

3945–3954.

Shan,C.S.,Yang,H.F.,Song,J.F.,Han,D.X.,Ivaska,A.,Niu,L.,2009.Anal.Chem.81,

2378–2382.

Shan,C.S.,Yang,H.F.,Han,D.X.,Zhang,Q.X.,Ivaska,A.,Niu,L.,2010.Biosens.Bio-electron.25,1504–1508.

Singh,S.,2007.J.Hazard.Mater.144,15–28.

Stankovich,S.,Dikin,D.A.,Dommett,G.H.B.,Kohlhaas,K.M.,Zimney,E.J.,Stach,E.A.,

Piner,R.D.,Nguyen,S.T.,Ruoff,R.S.,2006.Nature442,282–286.

Subirats,X.,Porras,S.P.,Roses,M.,Kenndler,E.,2005.J.Chromatogr.A1079,

246–253.

Sun,W.,Li,X.Q.,Wang,Y.,Zhao,R.J.,Jiao,K.,2009.Electrochim.Acta54,

4141–4148.

Tang,J.,Wang,B.,Wu,Z.,Han,X.,Dong,S.,Wang,E.,2003.Biosens.Bioelectron.18,

867–872.

Wang,J.,Bansenauer,B.A.,Koel,B.E.,http://wendang.chazidian.comngmuir14,3255–3263.

Wang,S.F.,Chen,T.,Zhang,Z.L.,Shen,X.C.,Lu,Z.X.,Pang,D.W.,Wong,K.Y.,2005.

Langmuir21,9260–9266.

Wang,Y.,Li,Y.M.,Tang,L.H.,Lu,J.,Li,J.H.,http://wendang.chazidian.commun.11,889–892.Wei,W.,Jin,H.H.,Zhao,G.C.,2009.Microchim.Acta164,167–171.

Xiao,F.,Liu,L.Q.,Li,J.,Zeng,J.J.,Zeng,B.Z.,2008.Electroanalysis18,2047–2054.Xu,H.,Xiong,H.Y.,Zeng,Q.X.,Jia,L.,Wang,Y.,Wang,S.F.,http://wendang.chazidian.com-mun.11,286–289.

Xu,H.F.,Dai,H.,Chen,G.N.,2010a.Talanta81,334–338.

Xu,Y.X.,Hu,C.G.,Hu,S.S.,2010b.Anal.Chim.Acta663,19–26.

Zhang,M.,Smith,A.,Gorski,W.,2004.Anal.Chem.76,5045–5050.Zhang,Q.,Zhang,L.,Li,J.H.,2007.J.Phys.Chem.C111,8655–8660.

Zhao,H.Y.,Zheng,W.,Meng,Z.X.,Zhou,H.M.,Xu,X.X.,Li,Z.,Zheng,Y.F.,2009.Biosens.

Bioelectron.24,2352–2357.

Zhu,A.W.,Tian,Y.,Liu,H.Q.,Luo,Y.P.,2009.Biomaterials30,3183–3188.

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

沪教版八年级下册数学练习册一次函数复习题B组(P11)
六年级英语下册上海牛津版教材讲解 U1单词
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
《空中课堂》二年级下册 数学第一单元第1课时
化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
二年级下册数学第三课 搭一搭⚖⚖
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
苏科版八年级数学下册7.2《统计图的选用》
冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
冀教版英语四年级下册第二课
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
人教版二年级下册数学
冀教版小学数学二年级下册1
第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
外研版英语三起6年级下册(14版)Module3 Unit1
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
冀教版小学英语五年级下册lesson2教学视频(2)
沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
冀教版小学数学二年级下册第二单元《余数和除数的关系》
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
苏科版数学八年级下册9.2《中心对称和中心对称图形》