ChemSocRev2014-5594-吸附
上传者:卢致天|上传时间:2015-05-08|密次下载
ChemSocRev2014-5594-吸附
ChemSocRev
Published on 29 May 2014. Downloaded by East China Normal University on 31/10/2014 02:53:32.
Citethis:Chem.Soc.Rev.,2014,43,5594
WateradsorptioninMOFs:fundamentalsandapplications
abacd
Je´ro?meCanivet,AlexandraFateeva,YouminGuo,BenoitCoasneandDavidFarrusseng*a
ThisreviewarticlepresentsthefundamentalandpracticalaspectsofwateradsorptioninMetal–OrganicFrameworks(MOFs).ThestateoftheartofMOFstabilityinwater,acrucialissuetomanyapplicationsinwhichMOFsarepromisingcandidates,isdiscussedhere.Stabilityinbothgaseous(suchashumidgases)andaqueousmediaisconsidered.Byconsideringanon-exhaustiveyetrepresentativesetofMOFs,thedifferentmechanismsofwateradsorptioninthisclassofmaterialsarepresented:reversibleandcontinuousporefilling,irreversibleanddiscontinuousporefillingthroughcapillarycondensation,and
Received19thFebruary2014DOI:10.1039/c4cs00078a
内容需要下载文档才能查看http://wendang.chazidian.com/csr
irreversibilityarisingfromtheflexibilityandpossiblestructuralmodificationsofthehostmaterial.Wateradsorptionpropertiesofmorethan60MOFsamplesarereported.TheapplicationsofMOFsasmaterialsforheat-pumpsandadsorbent-basedchillersandprotonconductorsarealsoreviewed.Somedirectionsforfutureworkaresuggestedasconcludingremarks.
1.Introduction
Wateriseverywhere!Thedesignanddevelopmentofmoisture-stableporousmaterialsarecrucialforindustrialapplicationssuchasgasstorageandseparation,sensing,catalysis,andprotonconduction.Unfortunately,thefirstdiscoveredporousmetal–organicframeworksMOF-51andHKUST-1,2whichhavestronglycontributedtotheboostoftheMOFdomain,turnedouttobeparticularlymoisturesensitive.3–5Despitethegreatintereststirredbytheirextraordinaryspecificsurfaceandcalibratedporesize,thedegradationintheatmosphereofthesematerialshasobviouslylimitedinterestforindustrialapplications.Ontheotherhand,solubilitypropertiesofMOFsareespeciallyattractiveforinvivomedicalapplications.Water-unstableMOFscalledBio-MOFs(suchasFe-nicotinateBioMIL-1)weredesignedanddeveloped‘‘onpurpose’’asdrugcarriersunderphysiologicalconditions6,7andforimaging.8–10Theunderstandingofthedegradationmechanismsinthepresenceofwater,eitherinvapourorliquidphases,ishenceofutmostimportanceforthedesignanddevelopmentofthenextgenerationsofporous
a
´Lyon1,CNRS,UMR5256,2avenueAlbertEinstein,IRCELYON,Universite
F-69626Villeurbanne,France.E-mail:david.farrusseng@ircelyon.univ-lyon1.fr;Fax:+33472445399;Tel:+33472445365b
´riauxetInterfaces,Universite´Lyon1,UMR5615,LaboratoiredesMultimate
43Boulevarddu11Novembre1918,F-69622Villeurbanne,Francec
MultiScaleMaterialScienceforEnergyandEnvironment,CNRS/MIT,UMI3466,MassachusettsInstituteofTechnology,77MassachusettsAvenue,Cambridge,MA02139,USAd
DepartmentofCivilandEnvironmentalEngineering,MassachusettsInstituteofTechnology,77MassachusettsAvenue,Cambridge,MA02139,USA
coordinationpolymerswithappropriatewatersensitivityorinsensitivityinthecontextofrealapplications.ThefirstchapterofthisreviewdealswiththestabilityofMOFsinhumidatmo-spheresandinaqueousmedia,andpresentsthedifferentdegradation–dissolutionmechanisms.
Thecontrolofwateradsorptioninmicroporoussolidsiscrucialforthedevelopmentofindustrialprocesses.Forinstance,thetemperaturerequiredfortheregenerationofadsorptionorchromatographycolumnsmadeupofmolecularsievesisgovernedbytheirwateradsorptionproperties.Ontheotherhand,hyperhydrophobiczeolitescanbeappliedformolecularspringsuponwaterintrusion.11,12Ofparticularimportanceforenvironmentalapplications,wateradsorptionisoftendetrimentalforCO2captureusinghydrophilicmaterialssincewateractsasastrongcompetitor.13Nevertheless,itwasdemonstratedthatcontrolledwateradsorptioncanenhanceCO2captureinMOFs14–16suchasMOF-100,17HKUST-1,18MIL-10119andMIL-53.20Theinventoryofwatereffectsondiverseapplica-tionsisvastandcomplex,andgoesthereforewellbeyondthisreview.WehavechosentofocusthisreviewontwoapplicationswherewateradsorptionpropertiesaredirectlyinvolvedintheperformanceoftheMOF.TheapplicationofMOFsasmaterialsfor(1)heat-pumpsandadsorbent-basedchillersand(2)protonconductorsisdescribedinthethirdchapterwithemphasis,wherepossible,ontherelationshipbetweenstructureandwateradsorption.OtherapplicationsforwhichwateradsorptioninMOFsisrelevantincludedehumidification,21waterpurifica-tion,22,23thermalbatteries,andproductionanddeliveryofdrinkingwaterinremoteareas(foraveryrecentstudyontheseapplications,seeref.24).
5594|Chem.Soc.Rev.,2014,43,5594--5617Thisjournalis©TheRoyalSocietyofChemistry2014
View Article Online
ReviewArticleChemSocRev
2014 02:53:32.
Kaskelandco-workersfirstreportedthatwateradsorption–desorptionisothermsonaseriesofdiverseMOFsdisplayabroadvarietyofbehavioursfromhyperhydrophobicforZIF-8toexceptionalwatercapacityforMIL-100/-101.25ThediversityofwateradsorptionpropertiesofMOFsisregularlyconfirmedwithnovelMOFs.Theeffectsofporesizeandsurfacefunction-alizationbyorganicgroupshavebeenthoroughlyinvestigatedinthecaseofH2,CH4,andCO2adsorption.26–29AfewrulesofthumbhavebeenestablishedandpredictivemodelshavebeendevelopedtoguidetherationaldesignofMOFs.Incontrast,lessefforthasbeendevotedtounravelthediversemechanismsofwateradsorptioninMOFs.Theeffectsofporesize,poremorphology,andflexibilityonwateradsorptionhavenotbeeninvestigatedinasystematicfashion.ThelackofcomprehensiveandpredictivemodelsofwateradsorptionisobviouslylimitingthedesignofMOFsforapplicationswherewaterispresentordirectlyinvolved.ThesecondchapterofthisreviewprovidesadescriptionofthedifferentadsorptionmechanismsthatoccurinMOFs.Then,acomprehensivereviewoftheliteratureisillustratedwithspecificexamples.
2.StabilityofMOFsinthepresenceofwater
BeyondtheobservationofMOFdegradationinthepresenceofwaterbymeansofpowderX-raydi?raction(PXRD)andnitrogenadsorption,therationaldesignofwater-stablematerialsimpliesthestudyofthecomplexbehaviourofMOFsuponwaterexposure.Boththee?ectsofexposuretohumidvapours(likeinfluegases)andaqueousphasesmustbeconsidered.2.1.
Stabilityinpurewater
Stabilityinwatervapour.InaseminalstudyLowandco-workersstudiedbyX-RayDi?raction(PXRD)thestabilityofaseriesoftenMOFshavingdi?erentorganiclinkers,porestructures,metalnodenatureandcoordination,andmonitoredtheirstabilityafterexposureto1mol%steamforafewhours.30Theenergyassessedusingmolecularmodellingoftheliganddisplacementbywatermoleculeswascomparedwithexperi-mentalresultsforeachMOFtomaptheirsteamstability(Fig.1).Throughsuchacombinedvirtualandexperimentalscreening,theseauthorsinvestigatedhowtheframeworknature(metalcoordination,ligandcomposition)anddimensionalitygoverntherelativestabilitiesofMOFsinwater.Theyconcludedontheimportanceofmetal–ligandbondstrengthasakeycriterionofthewater-stabilityofthematerials,moreimportantthanthemetalgeometryorvalenceinthecaseofMOFscontainingtrivalentmetalliccations.Intheirstudy,themoststablematerialswereMIL-110/-101,CPO-27(alsoknownasMOF-74)andZIF-8.Itisnoteworthythatthisstudydidnottakeintoaccountthekineticsofthewater-inducedframeworkdecompositionsincethemolecularmodelingstrategywasbasedontheequilibriumgroundandtransitionstateconfigurations(thermodynamics).Whilesuchstabilitystudiesareveryuseful,itshouldbeemphasizedthatcontradictingresultsaresometimes
Thisjournalis©TheRoyalSocietyofChemistry2014Fig.1SteamstabilitymapofMOFs.ThepositionofthestructureforagivenMOFrepresentsitsmaximumstructuralstabilityasprobedbyXRDmeasure-ments,whiletheenergyofactivationforliganddisplacementbyawatermoleculeasdeterminedbymolecularmodelingisrepresentedbythemagentanumbers(inkcalmolÀ1).Reprintedwithpermissionfromref.30.
reportedintheliterature.Forinstance,whileHKUST-1wasfoundtobehighlystableinwatervapourinref.28,otherauthorshaveobservedasignificantdecreaseintheirspecificsurfaceareaorwatercapacityafterwateradsorption.25,31
Morerecently,thestabilityofaseriesofsixMOFswasestimatedafterwateradsorptionmeasurementsunder80%RelativeHumidity(RH)atroomtemperature.5Thesurfacearealossestimatedfromnitrogenadsorptionat77Kwasusedtorankthesolidstabilityafterhumidityexposure.Onthetimeoftheexperiment,thestabilityfollowstheorder:UiO-66-NH24CPO-27,HKUST-1dDMOF-1,UMCM-1.Thecrystalstructureswerereportedtobepreservedforalmostallthesamples,exceptforDMOF-1andUMCM-1whoseinstabilitywasattributedtothelowcoordinationoftetracoordinatedzinc-carboxylateclusternodes.AlthoughZr-MOFssuchasUiO-66werefoundtobeextremelystableinthepresenceofwater,isostructuralUiO-67,MOF-805andMOF-806madeofbiphenyldicarboxylateorbipyridinedi-carboxylateligands(insteadofbenzenedicarboxylateinUiO-66)areunstableinwatervapor.24,32Theinstabilityoftheextendedbiaryl-basedZr-MOFderivativeswasattributedtothetorsionalstrainundergonebythecrystalleadingtoitsstructuralcollapse.SimilaradsorptionisothermsfoundforAl-MIL-100seemtoindicateinstabilityoratleastpartialcollapseofthestructure.24UsingPXRD,Dietzelandco-workerspointedoutthatexposuretooxygenfromambientairduringwaterdesorption/adsorptioninitiatesthedegradationofNi/Mg-CPO-27.33
Stabilityinliquidwater.ThestabilityofvariousMOFsimmersedinpurewaterorinwetdimethylformamide(DMF)hasbeeninvestigatedbyMatzgerandco-workersontimescalesfromhourstomonths.34ThestabilitywasassessedaccordingtoPXRDrecordedbeforeandafterexposureatroomtempera-ture.ThezinccarboxylatesMOF-5andMOF-177werefoundtobeunstableinwater:DMFmixtureswithratioshigherthan1:4.MOF-5,whichiscomposedofZn4O(COO)6secondarybuildingunits(SBUs),isindeedknowntobeunstableunderexposuretowatervapor4orliquidwater.3Thestabilityof
内容需要下载文档才能查看MOF-5
Chem.Soc.Rev.,2014,43,5594--5617|5595
Published on 29 May 2014. Downloaded by East China Normal University on 31/10/
View Article Online
ChemSocRevReviewArticle
orimidazolatesdissolveinacidicmedia,eitheraqueoushydro-chloricorhydrofluoricacidsolution.44Thisisduetotheprotonationoftheirorganiclinkerinsuchmedia.MOFstabilityinstrongalkalinesolutionshasbeenevaluatedforafewmaterials.Inanearlystudy,Yaghiandco-workersreportedthatthePXRDpatternofZIF-8remainsunchangedafter24hoursinan0.1and8Maqueoussodiumhydroxidesolutionat1001C.39TheseauthorsconcludedthatthehydrothermalstabilityofZIF-8issuperiortothoseoforiginalMCMandSBAmesoporoussilica,evencompetingwiththeultrastablederivativesofthesematerials.However,hydrolysisunderhydrothermalconditionsofthesamematerialswasreportedelsewhere.45OtherstudieshavereportedthatstrongaqueousbasessuchasKOHorNaOHdissolvethestructureof2014 02:53:32.
Fig.2PhasediagrammappingthestabilityofzinccarboxylateSBUsinvariouswater–DEFmixtures.Reprintedwithpermissionfromref.36.
underdi?erentrelativehumiditieswasalsodemonstratedinastudyonsamplingformaldehydefromair.35ThekineticsofMOF-5synthesisindiethylformamide(DEF)inthepresenceofwaterwasstudiedbyMertensandco-workers.36Hydratedzincnitrateactsasabu?erandstabilizesthepHensuringslowaciddeprotonationandleadingtoafairlyconstantprecipitationrateandwell-orderedcrystals.ThestudyshowsthatMOF-5isobtainedasaninter-mediatesolidwhichistransformedtothermodynamicallyfavour-ableMOF-69C.ThelatterisbuiltfrominorganicZn3(OH)2(COO)4monodimensionalinfinitechains.Inasystematicstudy,astabilityphasediagramindiethylformamidewasproposedasafunctionoftemperatureandwaterconcentration.ThisphasediagramshowsthatthestabilitydomainofMOF-5isrestrictedtolowwaterconcentration(Fig.2).
http://wendang.chazidian.completecollapseoccursathigherwaterloadingthroughthereplacementoftheligandoxygenatomsbywateroxygenatomsintheZncoordinationsphere.37Matzgerandco-workersalsoshowedthatUMCM-150isstableinawater:DMFratio9:2forhoursandalsoformonthswithaloweramountofwater(water:DMF=3:40).34Incontrast,copperpaddlewheelMOFssuchasMOF-505andHKUST-1werefoundtobestableformonthsinaqueoussolvent(water:DMF=5:1).However,HKUST-1startstodecomposeinpurewaterafter24hours.FinallythechromiumcarboxylateMIL-100andzincimidazolateZIF-8werestableformonthsinpurewater.Inlinewiththelatterresult,PXRDshowedthatimidazolateMOFssuchasZIF-8orSIM-1arestableaftertreatmentinboilingwaterforatleast24hours.38,39Bellatandco-workersshowedthatAl-MIL-53undergoesdegradationinboilingwatertoformcore–shellstructures.40ThesurfaceofMIL-53crystalsistransformedintogammaaluminaundertheseconditionswhileligandsareinter-calatedintotheMOFpores.2.2.
Stabilityinaqueousacid/base
WhilesomeMOFssuchasZr-porphyrinPCN-222,224,and225arestableundersomeextremeaqueousconditions,41–43itisgenerallyacknowledgedthatmostMOFsformedbycarboxylates
5596|Chem.Soc.Rev.,2014,43,5594--5617UiO-66andUiO-66-NH246aswellasthatofAl-MIL-53.40
Ontheotherhand,materialssuchasBioMOFs,whicharedesignedformedicalapplications,werestudiedinsimulatedphysiologicalmedia.Serreandco-workersrankedthestabilityofaseriesofsevencarboxylate-basedMOFsinaphosphatebu?eraqueoussolutionatpH=7.4and371C.47ThestabilityfollowstheorderFe-MIL-100/-1274Fe-MIL-53,UiO-66-NH24Fe-MIL-53-BrcUiO-664UiO-66-Br.ThisseriesshowsthatthestabilityoftheUiOseriesisrelatedtothedonore?ectoftheligandsubstituentasindicatedbytheHammetconstant(themostelectronrichbeingthemoststable).48Theligandreleaseisfacilitatedbyitsdisplacementbyphosphatesfromthebu?ersolutionandtheformationofmetaloxide.IndeedahigherstabilityofthetestedMOFswasfoundinpurewaterthaninphosphatebu?er.
Beyondsimpledegradationorcollapseoftheframeworkstructure,thestabilityofMOFscanberelatedtoanassembly–disassemblyequilibrium.Cohenandco-workersstudiedtheabilityofMOFstoexchangeligandsaswellasmetalcationsinwatersuspension.49,50Asanexample,whentheUiO-66solidmadefrom1,4-benzenedicarboxylicacidissuspendedinanaqueoussolutioncontainingthesubstitutedlinker2-amino-1,4-benzenedicarboxylicacid,thelatterisintroducedinthesolidbyanexchangeprocessyieldinganisoreticularUiOsolidcontainingbothlinkers.Althoughthemechanismofligandexchangehasnotbeeninvestigatedindepth,itisobviousthatthesolubilitydifferenceofthelinkersisanimportantdrivingforceoftheprocess.Similarly,isoreticularMIL-68-(Br/NH2)solidswereobtained.51TheauthorshaveextendedthisprincipletocationexchangetoAl-MIL-53withanaqueoussolutionofFe3+leadingto(Fe/Al)-MIL-53.492.3.
Structure–stabilityrelationships
Metal–ligandbond.ThestabilityofMOFsinwatercanbeattributedtoboththeelectronicandstericeffectsoftheligandonthemetalnode.Indeed,thestrengthofmetal–oxygen/metal–nitrogenbonds,30combinedwiththeshieldingabilityoftheligandtoprotecttheinorganicnodeagainstwatercoordination,drivethewaterresistanceofthematerials.Asdemonstratedforpyrazolate52andimidazolate,39thestabilityoftheframeworkformedbyitscoordinationtoacationincreasesuponincreasingthepKaoftheligand;themetalligandbondisstrongerwhenveryacidicmetalsorverybasicligandsareused.This
内容需要下载文档才能查看property
Thisjournalis©TheRoyalSocietyofChemistry2014
Published on 29 May 2014. Downloaded by East China Normal University on 31/10/
View Article Online
ReviewArticleChemSocRev
explainswhyMOFsmadeupofstrongLewisacids(Al(III),Cr(III))and/orazolates(pKa=14vs.carboxylatepKa=3.5)arethemoststablesuchasAl-MIL-53,Cr-MIL-101andZIF-8(Fig.1).30
Inadditiontothermodynamics,kineticsplaysanimportantroleinthedegradationofMOFsthroughhydrolysis.Moreover,hydrophobicligandssuchasmethylatedlinkersimprovethestabilityofthestructureonashorttimescaleonly(thepositionofthesubstituentsbeingcrucial).Indeed,forDMOFseries,thefullytetramethylatedterephthalateligandallowstheframeworktobestableuponwateradsorption.53,54Giventhefactthathighwateruptakeisobservedinthiscase,thestabilitycannotbeattributedtowaterexclusionbuttotheshieldingofC(O)–OandZnclusterssurroundedbythenumerousmethylgroupswhich2014 02:53:32.
Theseauthorshaveproposedarankingaccordingtotheinertness(i.e.,lowlability)ofthemetalcation.
BycomparingcationsintheisoreticularseriesofMOFs,Chabalandco-workersdescribedthebehaviouroftheM2(bdc)2(dabco)seriescontainingeitherCu,Zn,CoorNicationsunderhumidconditions.63Thewater-induceddegradationmechanismwasreportedtobedi?erentdependingonthecationinvolved.Accordingtodensityfunctionalcalculationscombinedwithexperimentalwatervaporadsorption,theCu–ObondswerefoundtoundergohydrolysistoformhydroxidespecieswhiletheliganddisplacementoccurstobreakZn/Co–Obonds.Finally,undertheconditionsdescribedabove,theNi-dabcoMOFshowsaverylowreactivityi.e.highstabilityinthepresenceofwater.makethenodehardlyaccessibletowater.SimilarconclusionswerereportedforMOF-508havingMe-bipypillars,55Banasorb-22withtrifluoromethoxygroups,56andframeworksmadeupofphosphonatelinkers.57
Inadditiontotheligandstructure,themetalcoordinationintheframeworknodeswasfoundtogovernthewaterstabilityofMOFstructures.IRMOF-1-typestructureswiththethreemetalsZn,Mg,andBewerestudiedusingBorn–OppenheimerMolecularDynamicsinordertodeterminetheirbehaviourinliquidwater.58ThefullyhydratedBebasedcompoundswerefoundtobemorestablethantheiranaloguescontainingMgorZn.ThereasongivenbytheauthorstoexplaintherelativeinstabilityofMgandZn-basedMOFscomparedtotheBeanaloguesisthetendencyofthemetaltoformpenta-andhexa-coordinationspherescombinedwiththeflexibilityoftheM4Ocoreandtheweakermetal-oxidebonds.Furthermore,MgstructureswerefoundtobreakdifferentlyfromtheZnanaloguesduetothelargerrigidityoftheircoreandthestrongMg–Ocoordination.Thiswouldpreventfurtherwatercoordinationtothemetal,incontrasttoZn-IRMOF-1inwhichZnclustersaremoreflexibleandopenupmoreeasily.Moreover,theseauthorsalsopointedoutthatkineticeffectswerebehindthehydrothermalresistanceofBe-IRMOF-1structures;theactivationenergyofthemetal–liganddissociationleadingtothehydratedBe–terephthalatecompoundfromBe-IRMOF-1isindeedverysteep.Similarly,inthecaseofUiO-type5,59andMIL-100/-101MOFs,60,61thehighstabilityofthesematerialswasrelatedtothehighcoordinationofthemetalcentres.Indeed,uponwateradsorptionupto90%RH,the8-coordinatedzirconium-basedUiO-66wastheonlyonetoretainbothitscrystallinityandporositycomparedtoMg-MOF-74,DMOF-1,HKUST-1,andUMCM-1.5
ThenatureofthemetalionitselfalsoplaysacrucialroleinthestabilityofMOFsinwater,asdemonstratedbyJhungandco-workersforisotopicMIL-53/-47frameworks.62BasedonboththeBETsurfaceareaandPXRDanalysis,theseauthorsrankedthestabilityofthesematerialsafterexposureto7Â10À2MNaOH,7Â10À2MHClaqueoussolutionsatroomtemperatureandpurewaterat801C:Cr-MIL-534Al-MIL-534V-MIL-47.Theseauthorsdidnotattributetherelativestabilityoftheframeworktothemetal–ligandbondstrength(theM–ObondenergyfollowstheorderV4Al4Cr).Moreover,therelativestabilitycannotbeattributedeithertothemetaloxidationstateortothecoordina-tiongeometrywhicharethesameforthethreemetalcations.
Thisjournalis©TheRoyalSocietyofChemistry2014Degradationmechanisms.Lowandco-workersreportedtwomaindegradationmechanismsofMOFsexposedtowater:(1)liganddisplacementand(2)hydrolysis.Bothmechanismswereestablishedfromcomputationalchemistryandconfirmedexperimentally.30TheliganddisplacementreactioninvolvestheinsertionofawatermoleculeintotheM–Ometal–ligandbondoftheframework.Thisleadstotheformationofahydratedcationandtothereleaseofafreeligand:
Mn+—LnÀ+H2O-Mn+—(OH2)ÁÁÁLnÀ
(1)
Incontrast,duringthehydrolysisreaction,themetal–ligandbondisbrokenandwaterdissociatestoformahydroxylatedcationandafreeprotonatedligand:
Mn+—LnÀ+H2O-Mn+—(OH)À+HL(nÀ1)À
(2)
AliganddisplacementmechanismwasproposedtoexplainthestructuralbreakdownofZrMOFs(UiO-66)inthepresenceofeithersodiumhydroxideorwater(Fig.3).32
Usingfirst-principlescalculationswithvariouswaterloadings,theliganddisplacementwasalsoproposedasthemainmechanismfortheframeworkdecompositionofthehydrophobicIRMOF.64Itwasfoundthat,inadditiontothewatermoleculeinvolvedintheliganddisplacement,additionalwaterstabilizesboththehydratedmetalspeciesandtheligandbeingdisplaced.Further-more,Coudertandco-workersreportedthatZnOclustersactashydrophilicdefectsinhydrophobicMOFs.Theydemonstratedthat,athighwaterloading,themetaloxideclusterstabilizesawaterclusterinitsneighbourhoodwhichpromotestheliganddisplacement(seealsoref.65foratheoreticaldiscussionon
内容需要下载文档才能查看the
Fig.3Liganddisplacementmechanismproposedtoexplainthebreak-downofUiO-66inthepresenceofsodiumhydroxideorwater.Reprintedwithpermissionfromref.32.
Chem.Soc.Rev.,2014,43,5594--5617|5597
Published on 29 May 2014. Downloaded by East China Normal University on 31/10/
View Article Online
ChemSocRevReviewArticle
stabilityofMOFsinwater).SuchamechanismmayexplainthepresenceofZn–OHdefectswhichareactiveinacidcatalysis.66,67
Inadditiontothethermodynamicstabilityoftheframe-work,whichisgenerallyattributedtotheM–Obondstrengthasmentionedabove,morecomplexparametersarerequiredtoevaluatethekineticstabilityofMOFs.Waltonandco-workersreportedthatthebreakdownoffunctionalDMOFsuponexposuretowaterisgovernedbykinetics.54BoththeirexperimentalandcomputationalstudiesshownodirectcorrelationbetweenthestabilityofaseriesofverywatersensitiveDMOFsandthebasicityoftheirligands.Thewaterresistanceofsuchframeworksdependsthusontheactivationenergybarrierforthecorrespondinghydro-lysisreaction.SimilarconclusionswerereportedbyBellarosaetal.2014 02:53:32.
Fig.4ExcitedstatewavefunctioncalculatedbymeansofDFTforMg-CPO-27.Mgatomsareshowningreen,oxygenatomsinred,carbonatomsingray,forthe(Be)IRMOF-1framework.58
ThepredictionofwaterstabilityfromtheMOFcompositionandstructureremainsqualitative.MajortrendsinMOFstabilityversuswaterareacknowledged,evenifsomedataavailableintheliteraturearesomewhatcontradictory.Thesediscrepanciesmayfindtheirorigininthedi?erentmethodsusedtoassessthestabilityoftheframeworks.Theassessmentofcrystallinityofasampleaftermoistureexposureorhydrothermaltreatmentmaybemisleadingsincecrystallinitymightberetainedwhileapartofthesolidisdissolved.68ThemeasurementsofBETsurfaceareaandporousvolumefromN2adsorptionisothermsafterexposuremayalsobemisleadingforthesamereasons.Ontheotherhand,cyclingwateradsorptionisothermsismoreappropriatefortheevaluationofthestabilityundermoistureexposure.Typically,ifthedesorptionbranchinsuchwateradsorptionisothermscrossestheadsorptionbranch,suchasinthecaseofDUT-4,itcanbeconcludedthattheporousframeworkhascollapsedtotallyorpartially.25Thelimitationsofsuchatechniquearethattheoriginofthedegradationcannotbedetermined(amorphisation,hydrolysis,orother).Moreover,thesemeasurementsathighwaterpressure(higherthanPsatat701C),whicharerelevantforhydrothermalprocesses,aredi?culttoperform.Inadditiontoprobingstructuralstability,wateradsorption–desorptionisothermsprovideanappropriatemeansforthecharacterisationofhydrophilic–hydrophobicpropertiesoftheporoussolids.69
3.Wateradsorption–desorptioninMOFs
3.1.
Adsorption–desorptionmechanisms
Therearethreemaintypesofwateradsorptionmechanism:(i)adsorptiononmetallicclusterswhichmodifiesthefirstcoordinationsphereofthemetalion(chemisorption),(ii)layer/cluster(reversible)adsorption,and(iii)capillarycondensation(irreversible).Weillustratebelowthesemechanismsusingthreewell-knowncasestudies:microporousCPO-27(alsoknownasMOF-74),UiO-66,http://wendang.chazidian.comparisonwithwateradsorptionmechanismsinporoussilicaandcarbonsisalsomade.
ThecrystalstructureofCPO-27resemblesahoneycombandcanbeobtainedwithNi2+,Mg2+,Co2+,andZn2+asmetalions.
5598|Chem.Soc.Rev.,2014,43,5594--5617andhydrogenatomsinwhite.Thetwophasesofthewavefunctionareshowninyellowandteal.Reprintedwithpermissionfromref.
内容需要下载文档才能查看70.
Theintersectionsofthehoneycombareformedbyone-dimensionalhelicalchainsofcis-edge-connectedmetal–oxygencoordinationoctahedra.Thechannelshaveanaccessiblediameterofapproximately1.1nm.Initssolvatedstate,themetalatomiscoordinatedbyasinglewatermoleculewhiletheremainingcoordinationsitesareoccupiedbyoxygenatomsbelongingtotheorganiclinker.Uponheating,thesolvatingwatermoleculeisdesorbedwhichleadstoacoordinativelyunsaturatedmetalsite(referredtoas‘‘cus’’)inthedehydratedstructure.Suchadehydrationstepcorrespondstoatransformationofanoctahedralsix-coordinatedintoafive-coordinatedspeciesinasquare-pyramidalgeometry.Anillustrationoftheelectronwave-functioncalculatedbymeansofDensityFunctionalTheory(DFT)showsthelargeunoccupiedorbitalindehydratedMg-CPO-27(Fig.4).70
Thethermodi?ractogramofZn-CPO-27containsabruptchangeswhichrevealstructuredeformationoftheclusterupondehydration.However,theporoustopologyremainsidenticaland,forallmetalions,astructureanalogoustothedehydratedCPO-27isrecoveredonceallthewatermoleculesleavethecompound.ThedensityprobabilityofwaterwasdeterminedusingsinglecrystalX-raydi?ractionatroomtemperatureonahydratedsample(Fig.5).71Thethermaldisplacementellipsoidsdrawnata50%probabilitylevelshowthatthedensity
内容需要下载文档才能查看gets
Fig.5SinglecrystalX-raystructureofCPO-27-Znatroomtemperaturewithatomlabelling.Theellipsoidscorrespondtothermaldisplacementofwatermoleculeswithanoccupancyprobabilityequalto50%.Thesizeoftheellipsoidsindicatesthemobilityofwatermolecules.Reprintedwithpermissionfromref.71.
Thisjournalis©TheRoyalSocietyofChemistry2014
Published on 29 May 2014. Downloaded by East China Normal University on 31/10/
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 2014上海市考试行测:个性化真题盘点(B卷)
- 2012年上海公务员考试专项练习之数学运算(五)
- 2013上海公务员考试申论模拟试卷:收入分配
- 2012年上海公务员考试专项练习之数学运算(六)
- 2014上海市考行测(B卷)答案
- 2012年上海公务员考试专项练习之数字推理(一)
- 2013上海市公务员考试行测A类答案及解析
- 2012年上海公务员考试行测专项练习之数字推理(五)
- 2012年上海城管执法行测试题部分参考答案及解析
- 2014年3月29日上午上海公务员面试真题及解析
- 2012年上海公务员考试专项练习之数学运算(一)
- 2013上海市公务员考试行测A类真题
- 2013上海公务员考试申论A类参考答案
- 2012年上海公务员考试行测专项练习之数学运算(一)
- 2013上海市公务员考试行测B类真题
- 2013上海公务员考试申论B类参考答案
- 2012年上海公务员考试专项练习之数字推理(三)
- 2012年上海公务员考试行测专项练习之数字推理(三)
- 2013上海公务员考试申论A卷真题
- 2014上海公务员考试行测真题答案(B卷)
- 2012上海公务员考试行测备考:和差倍比问题
- 2012年上海公务员考试数字推理考前训练(五)
- 2014上海市考申论A卷深度解读:聚焦简政放权 主题材料凸显
- 2012年上海公务员考试专项练习之数字推理(五)
- 2012年上海公务员考试专项练习之数字推理(六)
- 2014上海市公务员考试行测真题(B类)
- 2012年上海公务员考试专项练习之数学运算(四)
- 2013上海公务员考试申论模拟试卷:收入分配参考答案
- 2014上海公务员考试行测真题答案解析(B卷)
- 2013上海公务员考试行测B类试卷答案及解析
网友关注视频
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 外研版英语七年级下册module3 unit2第一课时
- 北师大版小学数学四年级下册第15课小数乘小数一
- 小学英语单词
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 人教版二年级下册数学
- 七年级英语下册 上海牛津版 Unit5
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
- 冀教版英语三年级下册第二课
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 冀教版英语四年级下册第二课
- 冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 外研版英语三起6年级下册(14版)Module3 Unit2
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 七年级英语下册 上海牛津版 Unit9
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理