教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> > 化学> ChemSocRev2014-5594-吸附

ChemSocRev2014-5594-吸附

上传者:卢致天
|
上传时间:2015-05-08
|
次下载

ChemSocRev2014-5594-吸附

ChemSocRev

Published on 29 May 2014. Downloaded by East China Normal University on 31/10/2014 02:53:32.

Citethis:Chem.Soc.Rev.,2014,43,5594

WateradsorptioninMOFs:fundamentalsandapplications

abacd

Je´ro?meCanivet,AlexandraFateeva,YouminGuo,BenoitCoasneandDavidFarrusseng*a

ThisreviewarticlepresentsthefundamentalandpracticalaspectsofwateradsorptioninMetal–OrganicFrameworks(MOFs).ThestateoftheartofMOFstabilityinwater,acrucialissuetomanyapplicationsinwhichMOFsarepromisingcandidates,isdiscussedhere.Stabilityinbothgaseous(suchashumidgases)andaqueousmediaisconsidered.Byconsideringanon-exhaustiveyetrepresentativesetofMOFs,thedifferentmechanismsofwateradsorptioninthisclassofmaterialsarepresented:reversibleandcontinuousporefilling,irreversibleanddiscontinuousporefillingthroughcapillarycondensation,and

Received19thFebruary2014DOI:10.1039/c4cs00078a

内容需要下载文档才能查看

http://wendang.chazidian.com/csr

irreversibilityarisingfromtheflexibilityandpossiblestructuralmodificationsofthehostmaterial.Wateradsorptionpropertiesofmorethan60MOFsamplesarereported.TheapplicationsofMOFsasmaterialsforheat-pumpsandadsorbent-basedchillersandprotonconductorsarealsoreviewed.Somedirectionsforfutureworkaresuggestedasconcludingremarks.

1.Introduction

Wateriseverywhere!Thedesignanddevelopmentofmoisture-stableporousmaterialsarecrucialforindustrialapplicationssuchasgasstorageandseparation,sensing,catalysis,andprotonconduction.Unfortunately,thefirstdiscoveredporousmetal–organicframeworksMOF-51andHKUST-1,2whichhavestronglycontributedtotheboostoftheMOFdomain,turnedouttobeparticularlymoisturesensitive.3–5Despitethegreatintereststirredbytheirextraordinaryspecificsurfaceandcalibratedporesize,thedegradationintheatmosphereofthesematerialshasobviouslylimitedinterestforindustrialapplications.Ontheotherhand,solubilitypropertiesofMOFsareespeciallyattractiveforinvivomedicalapplications.Water-unstableMOFscalledBio-MOFs(suchasFe-nicotinateBioMIL-1)weredesignedanddeveloped‘‘onpurpose’’asdrugcarriersunderphysiologicalconditions6,7andforimaging.8–10Theunderstandingofthedegradationmechanismsinthepresenceofwater,eitherinvapourorliquidphases,ishenceofutmostimportanceforthedesignanddevelopmentofthenextgenerationsofporous

a

´Lyon1,CNRS,UMR5256,2avenueAlbertEinstein,IRCELYON,Universite

F-69626Villeurbanne,France.E-mail:david.farrusseng@ircelyon.univ-lyon1.fr;Fax:+33472445399;Tel:+33472445365b

´riauxetInterfaces,Universite´Lyon1,UMR5615,LaboratoiredesMultimate

43Boulevarddu11Novembre1918,F-69622Villeurbanne,Francec

MultiScaleMaterialScienceforEnergyandEnvironment,CNRS/MIT,UMI3466,MassachusettsInstituteofTechnology,77MassachusettsAvenue,Cambridge,MA02139,USAd

DepartmentofCivilandEnvironmentalEngineering,MassachusettsInstituteofTechnology,77MassachusettsAvenue,Cambridge,MA02139,USA

coordinationpolymerswithappropriatewatersensitivityorinsensitivityinthecontextofrealapplications.ThefirstchapterofthisreviewdealswiththestabilityofMOFsinhumidatmo-spheresandinaqueousmedia,andpresentsthedifferentdegradation–dissolutionmechanisms.

Thecontrolofwateradsorptioninmicroporoussolidsiscrucialforthedevelopmentofindustrialprocesses.Forinstance,thetemperaturerequiredfortheregenerationofadsorptionorchromatographycolumnsmadeupofmolecularsievesisgovernedbytheirwateradsorptionproperties.Ontheotherhand,hyperhydrophobiczeolitescanbeappliedformolecularspringsuponwaterintrusion.11,12Ofparticularimportanceforenvironmentalapplications,wateradsorptionisoftendetrimentalforCO2captureusinghydrophilicmaterialssincewateractsasastrongcompetitor.13Nevertheless,itwasdemonstratedthatcontrolledwateradsorptioncanenhanceCO2captureinMOFs14–16suchasMOF-100,17HKUST-1,18MIL-10119andMIL-53.20Theinventoryofwatereffectsondiverseapplica-tionsisvastandcomplex,andgoesthereforewellbeyondthisreview.WehavechosentofocusthisreviewontwoapplicationswherewateradsorptionpropertiesaredirectlyinvolvedintheperformanceoftheMOF.TheapplicationofMOFsasmaterialsfor(1)heat-pumpsandadsorbent-basedchillersand(2)protonconductorsisdescribedinthethirdchapterwithemphasis,wherepossible,ontherelationshipbetweenstructureandwateradsorption.OtherapplicationsforwhichwateradsorptioninMOFsisrelevantincludedehumidification,21waterpurifica-tion,22,23thermalbatteries,andproductionanddeliveryofdrinkingwaterinremoteareas(foraveryrecentstudyontheseapplications,seeref.24).

5594|Chem.Soc.Rev.,2014,43,5594--5617Thisjournalis©TheRoyalSocietyofChemistry2014

View Article Online

ReviewArticleChemSocRev

2014 02:53:32.

Kaskelandco-workersfirstreportedthatwateradsorption–desorptionisothermsonaseriesofdiverseMOFsdisplayabroadvarietyofbehavioursfromhyperhydrophobicforZIF-8toexceptionalwatercapacityforMIL-100/-101.25ThediversityofwateradsorptionpropertiesofMOFsisregularlyconfirmedwithnovelMOFs.Theeffectsofporesizeandsurfacefunction-alizationbyorganicgroupshavebeenthoroughlyinvestigatedinthecaseofH2,CH4,andCO2adsorption.26–29AfewrulesofthumbhavebeenestablishedandpredictivemodelshavebeendevelopedtoguidetherationaldesignofMOFs.Incontrast,lessefforthasbeendevotedtounravelthediversemechanismsofwateradsorptioninMOFs.Theeffectsofporesize,poremorphology,andflexibilityonwateradsorptionhavenotbeeninvestigatedinasystematicfashion.ThelackofcomprehensiveandpredictivemodelsofwateradsorptionisobviouslylimitingthedesignofMOFsforapplicationswherewaterispresentordirectlyinvolved.ThesecondchapterofthisreviewprovidesadescriptionofthedifferentadsorptionmechanismsthatoccurinMOFs.Then,acomprehensivereviewoftheliteratureisillustratedwithspecificexamples.

2.StabilityofMOFsinthepresenceofwater

BeyondtheobservationofMOFdegradationinthepresenceofwaterbymeansofpowderX-raydi?raction(PXRD)andnitrogenadsorption,therationaldesignofwater-stablematerialsimpliesthestudyofthecomplexbehaviourofMOFsuponwaterexposure.Boththee?ectsofexposuretohumidvapours(likeinfluegases)andaqueousphasesmustbeconsidered.2.1.

Stabilityinpurewater

Stabilityinwatervapour.InaseminalstudyLowandco-workersstudiedbyX-RayDi?raction(PXRD)thestabilityofaseriesoftenMOFshavingdi?erentorganiclinkers,porestructures,metalnodenatureandcoordination,andmonitoredtheirstabilityafterexposureto1mol%steamforafewhours.30Theenergyassessedusingmolecularmodellingoftheliganddisplacementbywatermoleculeswascomparedwithexperi-mentalresultsforeachMOFtomaptheirsteamstability(Fig.1).Throughsuchacombinedvirtualandexperimentalscreening,theseauthorsinvestigatedhowtheframeworknature(metalcoordination,ligandcomposition)anddimensionalitygoverntherelativestabilitiesofMOFsinwater.Theyconcludedontheimportanceofmetal–ligandbondstrengthasakeycriterionofthewater-stabilityofthematerials,moreimportantthanthemetalgeometryorvalenceinthecaseofMOFscontainingtrivalentmetalliccations.Intheirstudy,themoststablematerialswereMIL-110/-101,CPO-27(alsoknownasMOF-74)andZIF-8.Itisnoteworthythatthisstudydidnottakeintoaccountthekineticsofthewater-inducedframeworkdecompositionsincethemolecularmodelingstrategywasbasedontheequilibriumgroundandtransitionstateconfigurations(thermodynamics).Whilesuchstabilitystudiesareveryuseful,itshouldbeemphasizedthatcontradictingresultsaresometimes

Thisjournalis©TheRoyalSocietyofChemistry2014Fig.1SteamstabilitymapofMOFs.ThepositionofthestructureforagivenMOFrepresentsitsmaximumstructuralstabilityasprobedbyXRDmeasure-ments,whiletheenergyofactivationforliganddisplacementbyawatermoleculeasdeterminedbymolecularmodelingisrepresentedbythemagentanumbers(inkcalmolÀ1).Reprintedwithpermissionfromref.30.

reportedintheliterature.Forinstance,whileHKUST-1wasfoundtobehighlystableinwatervapourinref.28,otherauthorshaveobservedasignificantdecreaseintheirspecificsurfaceareaorwatercapacityafterwateradsorption.25,31

Morerecently,thestabilityofaseriesofsixMOFswasestimatedafterwateradsorptionmeasurementsunder80%RelativeHumidity(RH)atroomtemperature.5Thesurfacearealossestimatedfromnitrogenadsorptionat77Kwasusedtorankthesolidstabilityafterhumidityexposure.Onthetimeoftheexperiment,thestabilityfollowstheorder:UiO-66-NH24CPO-27,HKUST-1dDMOF-1,UMCM-1.Thecrystalstructureswerereportedtobepreservedforalmostallthesamples,exceptforDMOF-1andUMCM-1whoseinstabilitywasattributedtothelowcoordinationoftetracoordinatedzinc-carboxylateclusternodes.AlthoughZr-MOFssuchasUiO-66werefoundtobeextremelystableinthepresenceofwater,isostructuralUiO-67,MOF-805andMOF-806madeofbiphenyldicarboxylateorbipyridinedi-carboxylateligands(insteadofbenzenedicarboxylateinUiO-66)areunstableinwatervapor.24,32Theinstabilityoftheextendedbiaryl-basedZr-MOFderivativeswasattributedtothetorsionalstrainundergonebythecrystalleadingtoitsstructuralcollapse.SimilaradsorptionisothermsfoundforAl-MIL-100seemtoindicateinstabilityoratleastpartialcollapseofthestructure.24UsingPXRD,Dietzelandco-workerspointedoutthatexposuretooxygenfromambientairduringwaterdesorption/adsorptioninitiatesthedegradationofNi/Mg-CPO-27.33

Stabilityinliquidwater.ThestabilityofvariousMOFsimmersedinpurewaterorinwetdimethylformamide(DMF)hasbeeninvestigatedbyMatzgerandco-workersontimescalesfromhourstomonths.34ThestabilitywasassessedaccordingtoPXRDrecordedbeforeandafterexposureatroomtempera-ture.ThezinccarboxylatesMOF-5andMOF-177werefoundtobeunstableinwater:DMFmixtureswithratioshigherthan1:4.MOF-5,whichiscomposedofZn4O(COO)6secondarybuildingunits(SBUs),isindeedknowntobeunstableunderexposuretowatervapor4orliquidwater.3Thestabilityof

内容需要下载文档才能查看

MOF-5

Chem.Soc.Rev.,2014,43,5594--5617|5595

Published on 29 May 2014. Downloaded by East China Normal University on 31/10/

View Article Online

ChemSocRevReviewArticle

orimidazolatesdissolveinacidicmedia,eitheraqueoushydro-chloricorhydrofluoricacidsolution.44Thisisduetotheprotonationoftheirorganiclinkerinsuchmedia.MOFstabilityinstrongalkalinesolutionshasbeenevaluatedforafewmaterials.Inanearlystudy,Yaghiandco-workersreportedthatthePXRDpatternofZIF-8remainsunchangedafter24hoursinan0.1and8Maqueoussodiumhydroxidesolutionat1001C.39TheseauthorsconcludedthatthehydrothermalstabilityofZIF-8issuperiortothoseoforiginalMCMandSBAmesoporoussilica,evencompetingwiththeultrastablederivativesofthesematerials.However,hydrolysisunderhydrothermalconditionsofthesamematerialswasreportedelsewhere.45OtherstudieshavereportedthatstrongaqueousbasessuchasKOHorNaOHdissolvethestructureof2014 02:53:32.

Fig.2PhasediagrammappingthestabilityofzinccarboxylateSBUsinvariouswater–DEFmixtures.Reprintedwithpermissionfromref.36.

underdi?erentrelativehumiditieswasalsodemonstratedinastudyonsamplingformaldehydefromair.35ThekineticsofMOF-5synthesisindiethylformamide(DEF)inthepresenceofwaterwasstudiedbyMertensandco-workers.36Hydratedzincnitrateactsasabu?erandstabilizesthepHensuringslowaciddeprotonationandleadingtoafairlyconstantprecipitationrateandwell-orderedcrystals.ThestudyshowsthatMOF-5isobtainedasaninter-mediatesolidwhichistransformedtothermodynamicallyfavour-ableMOF-69C.ThelatterisbuiltfrominorganicZn3(OH)2(COO)4monodimensionalinfinitechains.Inasystematicstudy,astabilityphasediagramindiethylformamidewasproposedasafunctionoftemperatureandwaterconcentration.ThisphasediagramshowsthatthestabilitydomainofMOF-5isrestrictedtolowwaterconcentration(Fig.2).

http://wendang.chazidian.completecollapseoccursathigherwaterloadingthroughthereplacementoftheligandoxygenatomsbywateroxygenatomsintheZncoordinationsphere.37Matzgerandco-workersalsoshowedthatUMCM-150isstableinawater:DMFratio9:2forhoursandalsoformonthswithaloweramountofwater(water:DMF=3:40).34Incontrast,copperpaddlewheelMOFssuchasMOF-505andHKUST-1werefoundtobestableformonthsinaqueoussolvent(water:DMF=5:1).However,HKUST-1startstodecomposeinpurewaterafter24hours.FinallythechromiumcarboxylateMIL-100andzincimidazolateZIF-8werestableformonthsinpurewater.Inlinewiththelatterresult,PXRDshowedthatimidazolateMOFssuchasZIF-8orSIM-1arestableaftertreatmentinboilingwaterforatleast24hours.38,39Bellatandco-workersshowedthatAl-MIL-53undergoesdegradationinboilingwatertoformcore–shellstructures.40ThesurfaceofMIL-53crystalsistransformedintogammaaluminaundertheseconditionswhileligandsareinter-calatedintotheMOFpores.2.2.

Stabilityinaqueousacid/base

WhilesomeMOFssuchasZr-porphyrinPCN-222,224,and225arestableundersomeextremeaqueousconditions,41–43itisgenerallyacknowledgedthatmostMOFsformedbycarboxylates

5596|Chem.Soc.Rev.,2014,43,5594--5617UiO-66andUiO-66-NH246aswellasthatofAl-MIL-53.40

Ontheotherhand,materialssuchasBioMOFs,whicharedesignedformedicalapplications,werestudiedinsimulatedphysiologicalmedia.Serreandco-workersrankedthestabilityofaseriesofsevencarboxylate-basedMOFsinaphosphatebu?eraqueoussolutionatpH=7.4and371C.47ThestabilityfollowstheorderFe-MIL-100/-1274Fe-MIL-53,UiO-66-NH24Fe-MIL-53-BrcUiO-664UiO-66-Br.ThisseriesshowsthatthestabilityoftheUiOseriesisrelatedtothedonore?ectoftheligandsubstituentasindicatedbytheHammetconstant(themostelectronrichbeingthemoststable).48Theligandreleaseisfacilitatedbyitsdisplacementbyphosphatesfromthebu?ersolutionandtheformationofmetaloxide.IndeedahigherstabilityofthetestedMOFswasfoundinpurewaterthaninphosphatebu?er.

Beyondsimpledegradationorcollapseoftheframeworkstructure,thestabilityofMOFscanberelatedtoanassembly–disassemblyequilibrium.Cohenandco-workersstudiedtheabilityofMOFstoexchangeligandsaswellasmetalcationsinwatersuspension.49,50Asanexample,whentheUiO-66solidmadefrom1,4-benzenedicarboxylicacidissuspendedinanaqueoussolutioncontainingthesubstitutedlinker2-amino-1,4-benzenedicarboxylicacid,thelatterisintroducedinthesolidbyanexchangeprocessyieldinganisoreticularUiOsolidcontainingbothlinkers.Althoughthemechanismofligandexchangehasnotbeeninvestigatedindepth,itisobviousthatthesolubilitydifferenceofthelinkersisanimportantdrivingforceoftheprocess.Similarly,isoreticularMIL-68-(Br/NH2)solidswereobtained.51TheauthorshaveextendedthisprincipletocationexchangetoAl-MIL-53withanaqueoussolutionofFe3+leadingto(Fe/Al)-MIL-53.492.3.

Structure–stabilityrelationships

Metal–ligandbond.ThestabilityofMOFsinwatercanbeattributedtoboththeelectronicandstericeffectsoftheligandonthemetalnode.Indeed,thestrengthofmetal–oxygen/metal–nitrogenbonds,30combinedwiththeshieldingabilityoftheligandtoprotecttheinorganicnodeagainstwatercoordination,drivethewaterresistanceofthematerials.Asdemonstratedforpyrazolate52andimidazolate,39thestabilityoftheframeworkformedbyitscoordinationtoacationincreasesuponincreasingthepKaoftheligand;themetalligandbondisstrongerwhenveryacidicmetalsorverybasicligandsareused.This

内容需要下载文档才能查看

property

Thisjournalis©TheRoyalSocietyofChemistry2014

Published on 29 May 2014. Downloaded by East China Normal University on 31/10/

View Article Online

ReviewArticleChemSocRev

explainswhyMOFsmadeupofstrongLewisacids(Al(III),Cr(III))and/orazolates(pKa=14vs.carboxylatepKa=3.5)arethemoststablesuchasAl-MIL-53,Cr-MIL-101andZIF-8(Fig.1).30

Inadditiontothermodynamics,kineticsplaysanimportantroleinthedegradationofMOFsthroughhydrolysis.Moreover,hydrophobicligandssuchasmethylatedlinkersimprovethestabilityofthestructureonashorttimescaleonly(thepositionofthesubstituentsbeingcrucial).Indeed,forDMOFseries,thefullytetramethylatedterephthalateligandallowstheframeworktobestableuponwateradsorption.53,54Giventhefactthathighwateruptakeisobservedinthiscase,thestabilitycannotbeattributedtowaterexclusionbuttotheshieldingofC(O)–OandZnclusterssurroundedbythenumerousmethylgroupswhich2014 02:53:32.

Theseauthorshaveproposedarankingaccordingtotheinertness(i.e.,lowlability)ofthemetalcation.

BycomparingcationsintheisoreticularseriesofMOFs,Chabalandco-workersdescribedthebehaviouroftheM2(bdc)2(dabco)seriescontainingeitherCu,Zn,CoorNicationsunderhumidconditions.63Thewater-induceddegradationmechanismwasreportedtobedi?erentdependingonthecationinvolved.Accordingtodensityfunctionalcalculationscombinedwithexperimentalwatervaporadsorption,theCu–ObondswerefoundtoundergohydrolysistoformhydroxidespecieswhiletheliganddisplacementoccurstobreakZn/Co–Obonds.Finally,undertheconditionsdescribedabove,theNi-dabcoMOFshowsaverylowreactivityi.e.highstabilityinthepresenceofwater.makethenodehardlyaccessibletowater.SimilarconclusionswerereportedforMOF-508havingMe-bipypillars,55Banasorb-22withtrifluoromethoxygroups,56andframeworksmadeupofphosphonatelinkers.57

Inadditiontotheligandstructure,themetalcoordinationintheframeworknodeswasfoundtogovernthewaterstabilityofMOFstructures.IRMOF-1-typestructureswiththethreemetalsZn,Mg,andBewerestudiedusingBorn–OppenheimerMolecularDynamicsinordertodeterminetheirbehaviourinliquidwater.58ThefullyhydratedBebasedcompoundswerefoundtobemorestablethantheiranaloguescontainingMgorZn.ThereasongivenbytheauthorstoexplaintherelativeinstabilityofMgandZn-basedMOFscomparedtotheBeanaloguesisthetendencyofthemetaltoformpenta-andhexa-coordinationspherescombinedwiththeflexibilityoftheM4Ocoreandtheweakermetal-oxidebonds.Furthermore,MgstructureswerefoundtobreakdifferentlyfromtheZnanaloguesduetothelargerrigidityoftheircoreandthestrongMg–Ocoordination.Thiswouldpreventfurtherwatercoordinationtothemetal,incontrasttoZn-IRMOF-1inwhichZnclustersaremoreflexibleandopenupmoreeasily.Moreover,theseauthorsalsopointedoutthatkineticeffectswerebehindthehydrothermalresistanceofBe-IRMOF-1structures;theactivationenergyofthemetal–liganddissociationleadingtothehydratedBe–terephthalatecompoundfromBe-IRMOF-1isindeedverysteep.Similarly,inthecaseofUiO-type5,59andMIL-100/-101MOFs,60,61thehighstabilityofthesematerialswasrelatedtothehighcoordinationofthemetalcentres.Indeed,uponwateradsorptionupto90%RH,the8-coordinatedzirconium-basedUiO-66wastheonlyonetoretainbothitscrystallinityandporositycomparedtoMg-MOF-74,DMOF-1,HKUST-1,andUMCM-1.5

ThenatureofthemetalionitselfalsoplaysacrucialroleinthestabilityofMOFsinwater,asdemonstratedbyJhungandco-workersforisotopicMIL-53/-47frameworks.62BasedonboththeBETsurfaceareaandPXRDanalysis,theseauthorsrankedthestabilityofthesematerialsafterexposureto7Â10À2MNaOH,7Â10À2MHClaqueoussolutionsatroomtemperatureandpurewaterat801C:Cr-MIL-534Al-MIL-534V-MIL-47.Theseauthorsdidnotattributetherelativestabilityoftheframeworktothemetal–ligandbondstrength(theM–ObondenergyfollowstheorderV4Al4Cr).Moreover,therelativestabilitycannotbeattributedeithertothemetaloxidationstateortothecoordina-tiongeometrywhicharethesameforthethreemetalcations.

Thisjournalis©TheRoyalSocietyofChemistry2014Degradationmechanisms.Lowandco-workersreportedtwomaindegradationmechanismsofMOFsexposedtowater:(1)liganddisplacementand(2)hydrolysis.Bothmechanismswereestablishedfromcomputationalchemistryandconfirmedexperimentally.30TheliganddisplacementreactioninvolvestheinsertionofawatermoleculeintotheM–Ometal–ligandbondoftheframework.Thisleadstotheformationofahydratedcationandtothereleaseofafreeligand:

Mn+—LnÀ+H2O-Mn+—(OH2)ÁÁÁLnÀ

(1)

Incontrast,duringthehydrolysisreaction,themetal–ligandbondisbrokenandwaterdissociatestoformahydroxylatedcationandafreeprotonatedligand:

Mn+—LnÀ+H2O-Mn+—(OH)À+HL(nÀ1)À

(2)

AliganddisplacementmechanismwasproposedtoexplainthestructuralbreakdownofZrMOFs(UiO-66)inthepresenceofeithersodiumhydroxideorwater(Fig.3).32

Usingfirst-principlescalculationswithvariouswaterloadings,theliganddisplacementwasalsoproposedasthemainmechanismfortheframeworkdecompositionofthehydrophobicIRMOF.64Itwasfoundthat,inadditiontothewatermoleculeinvolvedintheliganddisplacement,additionalwaterstabilizesboththehydratedmetalspeciesandtheligandbeingdisplaced.Further-more,Coudertandco-workersreportedthatZnOclustersactashydrophilicdefectsinhydrophobicMOFs.Theydemonstratedthat,athighwaterloading,themetaloxideclusterstabilizesawaterclusterinitsneighbourhoodwhichpromotestheliganddisplacement(seealsoref.65foratheoreticaldiscussionon

内容需要下载文档才能查看

the

Fig.3Liganddisplacementmechanismproposedtoexplainthebreak-downofUiO-66inthepresenceofsodiumhydroxideorwater.Reprintedwithpermissionfromref.32.

Chem.Soc.Rev.,2014,43,5594--5617|5597

Published on 29 May 2014. Downloaded by East China Normal University on 31/10/

View Article Online

ChemSocRevReviewArticle

stabilityofMOFsinwater).SuchamechanismmayexplainthepresenceofZn–OHdefectswhichareactiveinacidcatalysis.66,67

Inadditiontothethermodynamicstabilityoftheframe-work,whichisgenerallyattributedtotheM–Obondstrengthasmentionedabove,morecomplexparametersarerequiredtoevaluatethekineticstabilityofMOFs.Waltonandco-workersreportedthatthebreakdownoffunctionalDMOFsuponexposuretowaterisgovernedbykinetics.54BoththeirexperimentalandcomputationalstudiesshownodirectcorrelationbetweenthestabilityofaseriesofverywatersensitiveDMOFsandthebasicityoftheirligands.Thewaterresistanceofsuchframeworksdependsthusontheactivationenergybarrierforthecorrespondinghydro-lysisreaction.SimilarconclusionswerereportedbyBellarosaetal.2014 02:53:32.

Fig.4ExcitedstatewavefunctioncalculatedbymeansofDFTforMg-CPO-27.Mgatomsareshowningreen,oxygenatomsinred,carbonatomsingray,forthe(Be)IRMOF-1framework.58

ThepredictionofwaterstabilityfromtheMOFcompositionandstructureremainsqualitative.MajortrendsinMOFstabilityversuswaterareacknowledged,evenifsomedataavailableintheliteraturearesomewhatcontradictory.Thesediscrepanciesmayfindtheirorigininthedi?erentmethodsusedtoassessthestabilityoftheframeworks.Theassessmentofcrystallinityofasampleaftermoistureexposureorhydrothermaltreatmentmaybemisleadingsincecrystallinitymightberetainedwhileapartofthesolidisdissolved.68ThemeasurementsofBETsurfaceareaandporousvolumefromN2adsorptionisothermsafterexposuremayalsobemisleadingforthesamereasons.Ontheotherhand,cyclingwateradsorptionisothermsismoreappropriatefortheevaluationofthestabilityundermoistureexposure.Typically,ifthedesorptionbranchinsuchwateradsorptionisothermscrossestheadsorptionbranch,suchasinthecaseofDUT-4,itcanbeconcludedthattheporousframeworkhascollapsedtotallyorpartially.25Thelimitationsofsuchatechniquearethattheoriginofthedegradationcannotbedetermined(amorphisation,hydrolysis,orother).Moreover,thesemeasurementsathighwaterpressure(higherthanPsatat701C),whicharerelevantforhydrothermalprocesses,aredi?culttoperform.Inadditiontoprobingstructuralstability,wateradsorption–desorptionisothermsprovideanappropriatemeansforthecharacterisationofhydrophilic–hydrophobicpropertiesoftheporoussolids.69

3.Wateradsorption–desorptioninMOFs

3.1.

Adsorption–desorptionmechanisms

Therearethreemaintypesofwateradsorptionmechanism:(i)adsorptiononmetallicclusterswhichmodifiesthefirstcoordinationsphereofthemetalion(chemisorption),(ii)layer/cluster(reversible)adsorption,and(iii)capillarycondensation(irreversible).Weillustratebelowthesemechanismsusingthreewell-knowncasestudies:microporousCPO-27(alsoknownasMOF-74),UiO-66,http://wendang.chazidian.comparisonwithwateradsorptionmechanismsinporoussilicaandcarbonsisalsomade.

ThecrystalstructureofCPO-27resemblesahoneycombandcanbeobtainedwithNi2+,Mg2+,Co2+,andZn2+asmetalions.

5598|Chem.Soc.Rev.,2014,43,5594--5617andhydrogenatomsinwhite.Thetwophasesofthewavefunctionareshowninyellowandteal.Reprintedwithpermissionfromref.

内容需要下载文档才能查看

70.

Theintersectionsofthehoneycombareformedbyone-dimensionalhelicalchainsofcis-edge-connectedmetal–oxygencoordinationoctahedra.Thechannelshaveanaccessiblediameterofapproximately1.1nm.Initssolvatedstate,themetalatomiscoordinatedbyasinglewatermoleculewhiletheremainingcoordinationsitesareoccupiedbyoxygenatomsbelongingtotheorganiclinker.Uponheating,thesolvatingwatermoleculeisdesorbedwhichleadstoacoordinativelyunsaturatedmetalsite(referredtoas‘‘cus’’)inthedehydratedstructure.Suchadehydrationstepcorrespondstoatransformationofanoctahedralsix-coordinatedintoafive-coordinatedspeciesinasquare-pyramidalgeometry.Anillustrationoftheelectronwave-functioncalculatedbymeansofDensityFunctionalTheory(DFT)showsthelargeunoccupiedorbitalindehydratedMg-CPO-27(Fig.4).70

Thethermodi?ractogramofZn-CPO-27containsabruptchangeswhichrevealstructuredeformationoftheclusterupondehydration.However,theporoustopologyremainsidenticaland,forallmetalions,astructureanalogoustothedehydratedCPO-27isrecoveredonceallthewatermoleculesleavethecompound.ThedensityprobabilityofwaterwasdeterminedusingsinglecrystalX-raydi?ractionatroomtemperatureonahydratedsample(Fig.5).71Thethermaldisplacementellipsoidsdrawnata50%probabilitylevelshowthatthedensity

内容需要下载文档才能查看

gets

Fig.5SinglecrystalX-raystructureofCPO-27-Znatroomtemperaturewithatomlabelling.Theellipsoidscorrespondtothermaldisplacementofwatermoleculeswithanoccupancyprobabilityequalto50%.Thesizeoftheellipsoidsindicatesthemobilityofwatermolecules.Reprintedwithpermissionfromref.71.

Thisjournalis©TheRoyalSocietyofChemistry2014

Published on 29 May 2014. Downloaded by East China Normal University on 31/10/

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

2014上海市考试行测:个性化真题盘点(B卷)
2012年上海公务员考试专项练习之数学运算(五)
2013上海公务员考试申论模拟试卷:收入分配
2012年上海公务员考试专项练习之数学运算(六)
2014上海市考行测(B卷)答案
2012年上海公务员考试专项练习之数字推理(一)
2013上海市公务员考试行测A类答案及解析
2012年上海公务员考试行测专项练习之数字推理(五)
2012年上海城管执法行测试题部分参考答案及解析
2014年3月29日上午上海公务员面试真题及解析
2012年上海公务员考试专项练习之数学运算(一)
2013上海市公务员考试行测A类真题
2013上海公务员考试申论A类参考答案
2012年上海公务员考试行测专项练习之数学运算(一)
2013上海市公务员考试行测B类真题
2013上海公务员考试申论B类参考答案
2012年上海公务员考试专项练习之数字推理(三)
2012年上海公务员考试行测专项练习之数字推理(三)
2013上海公务员考试申论A卷真题
2014上海公务员考试行测真题答案(B卷)
2012上海公务员考试行测备考:和差倍比问题
2012年上海公务员考试数字推理考前训练(五)
2014上海市考申论A卷深度解读:聚焦简政放权 主题材料凸显
2012年上海公务员考试专项练习之数字推理(五)
2012年上海公务员考试专项练习之数字推理(六)
2014上海市公务员考试行测真题(B类)
2012年上海公务员考试专项练习之数学运算(四)
2013上海公务员考试申论模拟试卷:收入分配参考答案
2014上海公务员考试行测真题答案解析(B卷)
2013上海公务员考试行测B类试卷答案及解析

网友关注视频

【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
外研版英语七年级下册module3 unit2第一课时
北师大版小学数学四年级下册第15课小数乘小数一
小学英语单词
冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
人教版二年级下册数学
七年级英语下册 上海牛津版 Unit5
8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
冀教版英语三年级下册第二课
沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
冀教版英语四年级下册第二课
冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
沪教版八年级下次数学练习册21.4(2)无理方程P19
沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
沪教版八年级下册数学练习册21.4(1)无理方程P18
外研版英语三起6年级下册(14版)Module3 Unit2
第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
外研版英语三起5年级下册(14版)Module3 Unit2
化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
苏科版数学 八年级下册 第八章第二节 可能性的大小
沪教版牛津小学英语(深圳用)五年级下册 Unit 1
七年级英语下册 上海牛津版 Unit9
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省