Elastic-image-matching弹性图像匹配大学毕业论文外文文献翻译及原文
上传者:尚德庆|上传时间:2017-06-03|密次下载
Elastic-image-matching弹性图像匹配大学毕业论文外文文献翻译及原文
毕 业 设 计(论文) 外 文 文 献 翻 译
文献、资料中文题目:弹性图像匹配
文献、资料英文题目:Elastic image matching 文献、资料来源:
文献、资料发表(出版)日期:
院 (部):
专 业:
班 级:
姓 名:
学 号:
指导教师:
翻译日期: 2017.02.14
In image recognition, a common problem is to match two given images, e.g. when comparing an observed image to given references. In that pro-cess, elastic image matching, two-dimensional (2D-)warping (Uchida and Sakoe, 1998) or similar types of invariant methods (Keysers et al., 2000) can be used. For this purpose, we can define cost functions depending on the distortion introduced in the matching and search for the best matching with respect to a given cost function. In this paper, we show that it is an algorithmically hard problem to decide whether a matching between two images exists with costs below a given threshold. We show that the problem image matching is NP-complete by means of a reduction from 3-SAT, which is a common method of demonstrating a problem to be intrinsically hard (Garey and Johnson, 1979). This result shows the inherent computational difficulties in this type of image comparison, while interestingly the same problem is solvable for 1D sequences in polynomial time, e.g. the dynamic time warping problem in speech recognition (see e.g. Ney et al., 1992). This has the following implications: researchers who are interested in an exact solution to this problem cannot hope to find a polynomial time algorithm, unless P=NP. Furthermore, one can conclude that exponential time algorithms as presented and extended by Uchida and Sakoe (1998, 1999a,b, 2000a,b) may be justified for some image matching applications. On the other hand this shows that those interested in faster algorithms––e.g. for pattern recognition purposes––are right in searching for sub-optimal solutions. One method to do this is the restriction to local optimizations or linear approximations of global
transformations as presented in (Keysers et al., 2000). Another possibility is to use heuristic approaches like simulated annealing or genetic algorithms to find an approximate solution. Furthermore, methods like beam search are promising candidates, as these are used successfully in speech recognition, although linguistic decoding is also an NP-complete problem (Casacuberta and de la Higuera, 1999).
2. Image matching
Among the varieties of matching algorithms,we choose the one presented by Uchida and Sakoe(1998) as a starting point to formalize the problem image matching. Let the images be given as(without loss of generality) square grids of size MM with gray values (respectively node labels)from a finite alphabet ={1,…,G}. To define the problem, two distance functions are needed,one acting on gray values dg:→N , measuring the match in gray values, and one acting on displacement differences dd:ZZ→N , measuring the distortion introduced by the matching. For these distance
functions we assume that they are monotonous functions (computable in polynomial time) of the commonly used squared Euclid-ean distance, i.e dg(g1,g2)=f1(||g1-g2||)and dd(z)=f2(||z||) monotonously increasing. Now we call the following optimization problem the image matching problem (let ={1,…M} ).
Instance: The pair( A ; B ) of two images A and B of size MM .
Solution: A mapping function f :→.
Measure:
c(A,B,f)=?dg(Aij,Bf(i,j))
(i,j)????
+
(i,j)?{1,???,M?1}??d(i,j)?{1,???,M?1}??d(?f((i,j)?(1,0))?(f(i,j)?(1,0))) +
d(i,j)??{1,???,M-1}(i,j)???{1,???,M-1}d??(f((i,j)?(0,1))?(f(i,j)?(0,1)))
Goal:minfc(A,B,f).
In other words, the problem is to find the mapping from A onto B that minimizes the distance between the mapped gray values together with a measure for the distortion introduced by the mapping. Here, the distortion is measured by the deviation from the identity mapping in the two dimensions. The identity mapping
fulfills f(i,j)=(i,j),and therefore,f((i,j)+(x,y))=f(i,j)+(x,y)
The corresponding decision problem is fixed by the following
Question:Given an instance of image matching and a cost c′, does there exist a mapping f such that c(A,B,f)≤c′?
In the definition of the problem some care must be taken concerning the distance functions. For example, if either one of the distance functions is a constant function, the problem is clearly in P (for dgconstant, the minimum is given by the identity mapping and for ddconstant, the minimum can be determined by sorting all possible matching for each pixel by gray value cost and mapping to one of the pixels with minimum cost). But these special cases are not those we are concerned with in image matching in general.We choose the matching problem of Uchida and Sakoe (1998) to complete the definition of the problem. Here, the mapping functions are restricted by continuity and monotonicity constraints: the deviations from the identity mapping may locally be at most one pixel (i.e. limited to the eight-neighborhood with squared Euclidean distance less than or equal to 2). This can be formalized in this approach by choosing the functions f1,f2 as e.g.
?0,x?2,f1=id,f2(x)=step(x):=? M?M?(10G),x?2.
3. Reduction from 3-SAT
3-SAT is a very well-known NP-complete problem (Garey and Johnson, 1979), where 3-SAT is defined as follows:
Instance: Collection of clauses C={C1,,CK} on a set of variables X={x1,xL} such that each ckconsists of 3 literals for k=1,K .Each literal is a variable or the negation of a variable.
Question:Is there a truth assignment for X which satisfies each clause ck, k=1,K ?
The dependency graph D(Ф)corresponding to an instance Ф of 3-SAT is defined to be the bipartite graph whose independent sets are formed by the set of clauses C and the set of variables X .Two vert ices ckand x1are adjacent iff ckinvolves x1orxL.
Given any 3-SAT formula U, we show how to construct in polynomial time an ?
equivalent image matching problem l(Ф)=(A(Ф),B(Ф)); . The two images of l(Ф)are similar according to the cost function (i.e.f:c(A(Ф),B(Ф),f)≤0) iff the formulaФ is satisfiable. We perform the reduction from 3-SAT using the following steps:
? From the formula Ф we construct the dependency graph D(Ф).
? The dependency graph D(Ф) is drawn in the plane.
? The drawing of D(Ф)is refined to depict the logical behaviour of Ф , yielding two images(A(Ф),B(Ф)) .
For this, we use three types of components: one component to represent variables of Ф , one component to represent clauses of Ф, and components which act as interfaces between the former two types. Before we give the formal reduction, we introduce these components.
3.1. Basic components
For the reduction from 3-SAT we need five components from which we will construct the in-stances for image matching , given a Boolean formula in 3-DNF, respectively its graph. The five components are the building blocks needed for the graph drawing and will be introduced in the following, namely the representations of connectors,crossings, variables, and clauses. The connectors represent the edges and have two varieties, straight connectors and corner connectors. Each of the components consists of two parts, one for image A and one for image B , where blank pixels are considered to be of the‘background ’color.
We will depict possible mappings in the following using arrows indicating the direction of displacement (where displacements within the eight-neighborhood of a pixel are the only cases considered). Blank squares represent mapping to the respective counterpart in the second image.For example, the following displacements
of neighboring pixels can be used with zero cost:
On the other hand, the following displacements result in costs greater than zero:
Fig. 1 shows the first component, the straight connector component, which consists of a line of two different interchanging colors,here denoted by the two symbols◇and□. Given that the outside pixels are mapped to their respective counterparts and the connector is continued infinitely, there are two possible ways in which the colored pixels can be mapped, namely to the left (i.e. f(2,j)=(2,j-1)) or to the right (i.e. f(2,j)=(2,j+1)),where the background pixels have different possibilities for the mapping, not influencing the main property of the connector. This property, which justifies the name ‘connector ’, is the following: It is not possible to find a mapping, which yields zero cost where the relative displacements of the connector pixels are not equal, i.e. one always has f(2,j)-(2,j)=f(2,j')-(2,j'),which can easily be observed by induction over j'.That is, given an initial displacement of one pixel (which will be 1 in this context), the remaining end of the connector has the same displacement if overall costs of the mapping are zero. Given this property and the direction of a connector, which we define to be directed from variable to clause, we can define the state of the connector as carrying the‘true’truth value, if the displacement is 1 pixel in the direction of the connector and as carrying the‘false’ truth value, if the displacement is -1 pixel in the direction of the connector. This property then ensures that the truth value transmitted by the connector cannot change
at mappings of zero cost.
Image A image B
mapping 1 mapping 2
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 《一粒红尘2》经典语录摘抄
- 房屋出租合同详细要求范本(附交割清单)
- 小学六年级阅读训练:南海明珠——海南岛
- “英语动词的分类”讲解和练习
- 外贸英语函电范文整理
- 2015年医疗器械经营法规培训测试卷
- 大学生心理危机干预工作管理规范
- 青语小说《金屋藏娇》
- 阴阳师:技能分析,为什么用博雅人很少
- 小学一年级汉语拼音学习口诀整理
- 2017国家公务员考试申论热点“女排精神”梳理
- 《依法审理和执行民事商事案件,保障民间投资健康发展的通知》法〔2016〕334号
- 《网络借贷信息中介机构业务活动管理暂行办法》——网络借贷监管细则全文
- 幼儿园的万圣节主题活动方案
- 2015年中职《计算机网络技术》期中考试试题
- 2016 超星尔雅 蒙元帝国史试题
- 英语语法:动词的分类学习
- 阿拉伯语日常使用词汇对照表
- 《my family》小班幼儿英语教案
- 幼儿学习歌曲:文明礼仪儿歌集
- 交易规则:交易者生存指南大全
- 签订分期付款合同时有哪些要注意的陷阱
- 电影《建党伟业》观后感精选
- 短文“孟母三迁”的典故及阅读题
- KTV万圣节狂欢活动详细方案
- 阿拉伯故事:一千零一夜(天方夜谭)
- 2016年西药执业药师:医疗器械基本知识考试试题
- 关于网约车平台与司机之间的用工关系争议问题(案件分析)
- 高校大学生心理危机干预工作管理指导
- 郑和下西洋之官本船贸易
网友关注视频
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 3月2日小学二年级数学下册(数一数)
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 苏教版二年级下册数学《认识东、南、西、北》
- 冀教版英语五年级下册第二课课程解读
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 二年级下册数学第三课 搭一搭⚖⚖
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 北师大版小学数学四年级下册第15课小数乘小数一
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 人教版二年级下册数学
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 外研版英语三起6年级下册(14版)Module3 Unit1
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
- 外研版英语七年级下册module3 unit1第二课时
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理