教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 高等教育> 其它> Elastic-image-matching弹性图像匹配大学毕业论文外文文献翻译及原文

Elastic-image-matching弹性图像匹配大学毕业论文外文文献翻译及原文

  毕 业 设 计(论文) 外 文 文 献 翻 译

  文献、资料中文题目:弹性图像匹配

  文献、资料英文题目:Elastic image matching 文献、资料来源:

  文献、资料发表(出版)日期:

  院 (部):

  专 业:

  班 级:

  姓 名:

  学 号:

  指导教师:

  翻译日期: 2017.02.14

  In image recognition, a common problem is to match two given images, e.g. when comparing an observed image to given references. In that pro-cess, elastic image matching, two-dimensional (2D-)warping (Uchida and Sakoe, 1998) or similar types of invariant methods (Keysers et al., 2000) can be used. For this purpose, we can define cost functions depending on the distortion introduced in the matching and search for the best matching with respect to a given cost function. In this paper, we show that it is an algorithmically hard problem to decide whether a matching between two images exists with costs below a given threshold. We show that the problem image matching is NP-complete by means of a reduction from 3-SAT, which is a common method of demonstrating a problem to be intrinsically hard (Garey and Johnson, 1979). This result shows the inherent computational difficulties in this type of image comparison, while interestingly the same problem is solvable for 1D sequences in polynomial time, e.g. the dynamic time warping problem in speech recognition (see e.g. Ney et al., 1992). This has the following implications: researchers who are interested in an exact solution to this problem cannot hope to find a polynomial time algorithm, unless P=NP. Furthermore, one can conclude that exponential time algorithms as presented and extended by Uchida and Sakoe (1998, 1999a,b, 2000a,b) may be justified for some image matching applications. On the other hand this shows that those interested in faster algorithms––e.g. for pattern recognition purposes––are right in searching for sub-optimal solutions. One method to do this is the restriction to local optimizations or linear approximations of global

  transformations as presented in (Keysers et al., 2000). Another possibility is to use heuristic approaches like simulated annealing or genetic algorithms to find an approximate solution. Furthermore, methods like beam search are promising candidates, as these are used successfully in speech recognition, although linguistic decoding is also an NP-complete problem (Casacuberta and de la Higuera, 1999).

  2. Image matching

  Among the varieties of matching algorithms,we choose the one presented by Uchida and Sakoe(1998) as a starting point to formalize the problem image matching. Let the images be given as(without loss of generality) square grids of size MM with gray values (respectively node labels)from a finite alphabet ={1,…,G}. To define the problem, two distance functions are needed,one acting on gray values dg:→N , measuring the match in gray values, and one acting on displacement differences dd:ZZ→N , measuring the distortion introduced by the matching. For these distance

  functions we assume that they are monotonous functions (computable in polynomial time) of the commonly used squared Euclid-ean distance, i.e dg(g1,g2)=f1(||g1-g2||)and dd(z)=f2(||z||) monotonously increasing. Now we call the following optimization problem the image matching problem (let ={1,…M} ).

  Instance: The pair( A ; B ) of two images A and B of size MM .

  Solution: A mapping function f :→.

  Measure:

  c(A,B,f)=?dg(Aij,Bf(i,j))

  (i,j)????

  +

  (i,j)?{1,???,M?1}??d(i,j)?{1,???,M?1}??d(?f((i,j)?(1,0))?(f(i,j)?(1,0))) +

  d(i,j)??{1,???,M-1}(i,j)???{1,???,M-1}d??(f((i,j)?(0,1))?(f(i,j)?(0,1)))

  Goal:minfc(A,B,f).

  In other words, the problem is to find the mapping from A onto B that minimizes the distance between the mapped gray values together with a measure for the distortion introduced by the mapping. Here, the distortion is measured by the deviation from the identity mapping in the two dimensions. The identity mapping

  fulfills f(i,j)=(i,j),and therefore,f((i,j)+(x,y))=f(i,j)+(x,y)

  The corresponding decision problem is fixed by the following

  Question:Given an instance of image matching and a cost c′, does there exist a mapping f such that c(A,B,f)≤c′?

  In the definition of the problem some care must be taken concerning the distance functions. For example, if either one of the distance functions is a constant function, the problem is clearly in P (for dgconstant, the minimum is given by the identity mapping and for ddconstant, the minimum can be determined by sorting all possible matching for each pixel by gray value cost and mapping to one of the pixels with minimum cost). But these special cases are not those we are concerned with in image matching in general.We choose the matching problem of Uchida and Sakoe (1998) to complete the definition of the problem. Here, the mapping functions are restricted by continuity and monotonicity constraints: the deviations from the identity mapping may locally be at most one pixel (i.e. limited to the eight-neighborhood with squared Euclidean distance less than or equal to 2). This can be formalized in this approach by choosing the functions f1,f2 as e.g.

  ?0,x?2,f1=id,f2(x)=step(x):=? M?M?(10G),x?2.

  3. Reduction from 3-SAT

  3-SAT is a very well-known NP-complete problem (Garey and Johnson, 1979), where 3-SAT is defined as follows:

  Instance: Collection of clauses C={C1,,CK} on a set of variables X={x1,xL} such that each ckconsists of 3 literals for k=1,K .Each literal is a variable or the negation of a variable.

  Question:Is there a truth assignment for X which satisfies each clause ck, k=1,K ?

  The dependency graph D(Ф)corresponding to an instance Ф of 3-SAT is defined to be the bipartite graph whose independent sets are formed by the set of clauses C and the set of variables X .Two vert ices ckand x1are adjacent iff ckinvolves x1orxL.

  Given any 3-SAT formula U, we show how to construct in polynomial time an ?

  equivalent image matching problem l(Ф)=(A(Ф),B(Ф)); . The two images of l(Ф)are similar according to the cost function (i.e.f:c(A(Ф),B(Ф),f)≤0) iff the formulaФ is satisfiable. We perform the reduction from 3-SAT using the following steps:

  ? From the formula Ф we construct the dependency graph D(Ф).

  ? The dependency graph D(Ф) is drawn in the plane.

  ? The drawing of D(Ф)is refined to depict the logical behaviour of Ф , yielding two images(A(Ф),B(Ф)) .

  For this, we use three types of components: one component to represent variables of Ф , one component to represent clauses of Ф, and components which act as interfaces between the former two types. Before we give the formal reduction, we introduce these components.

  3.1. Basic components

  For the reduction from 3-SAT we need five components from which we will construct the in-stances for image matching , given a Boolean formula in 3-DNF, respectively its graph. The five components are the building blocks needed for the graph drawing and will be introduced in the following, namely the representations of connectors,crossings, variables, and clauses. The connectors represent the edges and have two varieties, straight connectors and corner connectors. Each of the components consists of two parts, one for image A and one for image B , where blank pixels are considered to be of the‘background ’color.

  We will depict possible mappings in the following using arrows indicating the direction of displacement (where displacements within the eight-neighborhood of a pixel are the only cases considered). Blank squares represent mapping to the respective counterpart in the second image.For example, the following displacements

  Elastic-image-matching弹性图像匹配大学毕业论文外文文献翻译及原文1

  of neighboring pixels can be used with zero cost:

  On the other hand, the following displacements result in costs greater than zero:

  Elastic-image-matching弹性图像匹配大学毕业论文外文文献翻译及原文2

  Fig. 1 shows the first component, the straight connector component, which consists of a line of two different interchanging colors,here denoted by the two symbols◇and□. Given that the outside pixels are mapped to their respective counterparts and the connector is continued infinitely, there are two possible ways in which the colored pixels can be mapped, namely to the left (i.e. f(2,j)=(2,j-1)) or to the right (i.e. f(2,j)=(2,j+1)),where the background pixels have different possibilities for the mapping, not influencing the main property of the connector. This property, which justifies the name ‘connector ’, is the following: It is not possible to find a mapping, which yields zero cost where the relative displacements of the connector pixels are not equal, i.e. one always has f(2,j)-(2,j)=f(2,j')-(2,j'),which can easily be observed by induction over j'.That is, given an initial displacement of one pixel (which will be 1 in this context), the remaining end of the connector has the same displacement if overall costs of the mapping are zero. Given this property and the direction of a connector, which we define to be directed from variable to clause, we can define the state of the connector as carrying the‘true’truth value, if the displacement is 1 pixel in the direction of the connector and as carrying the‘false’ truth value, if the displacement is -1 pixel in the direction of the connector. This property then ensures that the truth value transmitted by the connector cannot change

  Elastic-image-matching弹性图像匹配大学毕业论文外文文献翻译及原文3

  Elastic-image-matching弹性图像匹配大学毕业论文外文文献翻译及原文4

  at mappings of zero cost.

  Image A image B

  Elastic-image-matching弹性图像匹配大学毕业论文外文文献翻译及原文5

  Elastic-image-matching弹性图像匹配大学毕业论文外文文献翻译及原文6

  mapping 1 mapping 2

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

中信银行2015实习大礼包
4.7汇评丨澳元“南下”或“北上”? 澳联储揭晓谜底
史丹利化肥股份有限公司限制性股票激励计划(草案修订稿)摘要-上海证券报
【环球外汇网】:美联储惊现措辞转变 美元置之死地而后生
家庭理财与风险保障(授课版)
零基础学外汇:总结日本蜡烛线
零基础学外汇 :双蜡烛线形态
【现货黄金投资】涨11美元两连阳创三周收盘高位,美元下跌支撑
GWFX金道环球黄金策略分析:非农后黄金企稳前期支持位
经济师考试中级金融专业高频考点:金融监管国际协调背景方式
财经和股票关键词
经济师考试中级金融专业高频考点:金融监管与货币政策的相互协调
证券市场基础知识练习五
GWFX金道环球热点:迈向SDR
个人理财实例分析
基本面和技术面的较量_鼎丰银
【现货黄金投资】市场将金银的关键止损卖盘均小幅下移
证券公司实习总结
【环球外汇网】:LMCI诱发美元空头止损 澳元待降息谜底宣判
【现货黄金投资】黄金波动性逼近七周高位,得益于美联储推迟加息的预期
火爆各大论坛的外汇交易帖
【现货黄金投资】现货金银受技术面逢低接盘及美联储决议前的鸽派预期支撑走高
通过泡妞手段,便能看出你的投资水平
(简体)嘉实海外中国股票投资基金产品方案
GWFX金道环球策略分析:欧元短线突破很迅速
山轻工财务与金融学院营销策划计划[资料]
【现货黄金投资】黄昏之星乍现,油价弱于金银将继续上演
揭秘!索罗斯斩获55亿美金的投资手段!
互联网金融背景下的商业银行网点转型策略
现代制药2014年度非公开发行A股股票预案

网友关注视频

沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
二年级下册数学第二课
冀教版小学英语五年级下册lesson2教学视频(2)
外研版英语三起5年级下册(14版)Module3 Unit1
沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
冀教版小学数学二年级下册1
北师大版数学四年级下册3.4包装
沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
冀教版英语五年级下册第二课课程解读
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
外研版英语七年级下册module1unit3名词性物主代词讲解
七年级英语下册 上海牛津版 Unit9
六年级英语下册上海牛津版教材讲解 U1单词
外研版英语七年级下册module3 unit2第二课时
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
苏科版数学七年级下册7.2《探索平行线的性质》
冀教版英语三年级下册第二课
第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
二年级下册数学第一课
冀教版小学英语四年级下册Lesson2授课视频
三年级英语单词记忆下册(沪教版)第一二单元复习
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省