教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 高等教育> 其它> Components-of-A-Building-and-Tall-Buildings建筑及高层建筑的组成毕业论文外文文献翻译及原文

Components-of-A-Building-and-Tall-Buildings建筑及高层建筑的组成毕业论文外文文献翻译及原文

  毕 业 设 计(论文)

  外 文 文 献 翻 译

  文献、资料中文题目:建筑及高层建筑的组成

  文献、资料英文题目:Components of A Building and Tall Buildings 文献、资料来源:

  文献、资料发表(出版)日期:

  院 (部):

  专 业:

  班 级:

  姓 名:

  学 号:

  指导教师:

  翻译日期: 2017.02.14

  英文原文

  Components of A Building and Tall Buildings

  Andre

  1. Abstract

  Materials and structural forms are combined to make up the various parts of a building, including the load-carrying frame, skin, floors, and partitions. The building also has mechanical and electrical systems, such as elevators, heating and cooling systems, and lighting systems. The superstructure is that part of a building above ground, and the substructure and foundation is that part of a building below ground.

  The skyscraper owes its existence to two developments of the 19th century: steel skeleton construction and the passenger elevator. Steel as a construction material dates from the introduction of the Bessemer converter in 1885.Gustave Eiffel (1832-1932) introduced steel construction in France. His designs for the Galerie des Machines and the Tower for the Paris Exposition of 1889 expressed the lightness of the steel framework. The Eiffel Tower, 984 feet (300 meters) high, was the tallest structure built by man and was not surpassed until 40 years later by a series of American skyscrapers.

  Elisha Otis installed the first elevator in a department store in New York in 1857.In 1889, Eiffel installed the first elevators on a grand scale in the Eiffel Tower, whose hydraulic elevators could transport 2,350 passengers to the summit every hour.

  2. Load-Carrying Frame

  Until the late 19th century, the exterior walls of a building were used as bearing walls to support the floors. This construction is essentially a post and lintel type, and it is still used in frame construction for houses. Bearing-wall construction limited the height of building because of the enormous wall thickness required;for instance, the 16-story Monadnock Building built in the 1880’s in Chicago had walls 5 feet (1.5 meters) thick at the lower floors. In 1883, William Le Baron Jenney (1832-1907) supported floors on cast-iron columns to form a cage-like construction. Skeleton construction, consisting of steel beams and columns, was first used in 1889. As a consequence of skeleton construction, the enclosing walls become a “curtain wall” rather than serving a supporting function. Masonry was the curtain wall material until the 1930’s, when light metal and glass curtain walls were used. After the introduction of

  buildings continued to increase rapidly.

  All tall buildings were built with a skeleton of steel until World War Ⅱ. After the war, the shortage of steel and the improved quality of concrete led to tall building being built of reinforced concrete. Marina Tower (1962) in Chicago is the tallest concrete building in the United States; its height—588 feet (179 meters)—is exceeded by the 650-foot (198-meter) Post Office Tower in London and by other towers.

  A change in attitude about skyscraper construction has brought a return to the use of the bearing wall. In New York City, the Columbia Broadcasting System Building, designed by Eero Saarinen in 1962,has a perimeter wall consisting of 5-foot (1.5meter) wide concrete columns spaced 10 feet (3 meters) from column center to center. This perimeter wall, in effect, constitutes a bearing wall. One reason for this trend is that stiffness against the action of wind can be economically obtained by using the walls of the building as a tube; the World Trade Center building is another example of this tube approach. In contrast, rigid frames or vertical trusses are usually provided to give lateral stability.

  3. Skin

  The skin of a building consists of both transparent elements (windows) and opaque elements (walls). Windows are traditionally glass, although plastics are being used, especially in schools where breakage creates a maintenance problem. The wall elements, which are used to cover the structure and are supported by it, are built of a variety of materials: brick, precast concrete, stone, opaque glass, plastics, steel, and aluminum. Wood is used mainly in house construction; it is not generally used for commercial, industrial, or public building because of the fire hazard.

  4. Floors

  The construction of the floors in a building depends on the basic structural frame that is used. In steel skeleton construction, floors are either slabs of concrete resting on steel beams or a deck consisting of corrugated steel with a concrete topping. In concrete construction, the floors are either slabs of concrete on concrete beams or a series of closely spaced concrete beams (ribs) in two directions topped with a thin concrete slab, giving the appearance of a waffle on its underside. The kind of floor that is used depends on the span between supporting columns or walls and the function of the space. In an apartment building, for instance, where walls and columns are spaced at 12 to 18 feet (3.7 to 5.5 meters), the most popular construction is a solid concrete slab with no beams. The underside of the slab serves as the ceiling for the space below it. Corrugated steel decks are often used in office buildings because the corrugations, when enclosed by

  another sheet of metal, form ducts for telephone and electrical lines.

  5. Mechanical and Electrical Systems

  A modern building not only contains the space for which it is intended (office, classroom, apartment) but also contains ancillary space for mechanical and electrical systems that help to provide a comfortable environment. These ancillary spaces in a skyscraper office building may constitute 25% of the total building area. The importance of heating, ventilating, electrical, and plumbing systems in an office building is shown by the fact that 40% of the construction budget is allocated to them. Because of the increased use of sealed building with windows that cannot be opened, elaborate mechanical systems are provided for ventilation and air conditioning. Ducts and pipes carry fresh air from central fan rooms and air conditioning machinery. The ceiling, which is suspended below the upper floor construction, conceals the ductwork and contains the lighting units. Electrical wiring for power and for telephone communication may also be located in this ceiling space or may be buried in the floor construction in pipes or conduits.

  There have been attempts to incorporate the mechanical and electrical systems into the architecture of building by frankly expressing them; for example, the American Republic Insurance Company Building(1965) in Des Moines, Iowa, exposes both the ducts and the floor structure in an organized and elegant pattern and dispenses with the suspended ceiling. This type of approach makes it possible to reduce the cost of the building and permits innovations, such as in the span of the structure.

  6. Soils and Foundations

  All building are supported on the ground, and therefore the nature of the soil becomes an extremely important consideration in the design of any building. The design of a foundation depends

  on many soil factors, such as type of soil, soil stratification, thickness of soil lavers and their compaction, and groundwater conditions. Soils rarely have a single composition; they generally are mixtures in layers of varying thickness. For evaluation, soils are graded according to particle size, which increases from silt to clay to sand to gravel to rock. In general, the larger particle soils will support heavier loads than the smaller ones. The hardest rock can support loads up to 100 tons per square foot(976.5 metric tons/sq meter), but the softest silt can support a load of only 0.25 ton per square foot(2.44 metric tons/sq meter). All soils beneath the surface are in a state of

  compaction; that is, they are under a pressure that is equal to the weight of the soil column above it. Many soils (except for most sands and gavels) exhibit elastic properties—they deform when compressed under load and rebound when the load is removed. The elasticity of soils is often time-dependent, that is, deformations of the soil occur over a length of time which may vary from minutes to years after a load is imposed. Over a period of time, a building may settle if it imposes a load on the soil greater than the natural compaction weight of the soil. Conversely, a building may heave if it imposes loads on the soil smaller than the natural compaction weight. The soil may also flow under the weight of a building; that is, it tends to be squeezed out.

  Due to both the compaction and flow effects, buildings tend settle. Uneven settlements, exemplified by the leaning towers in Pisa and Bologna, can have damaging effects—the building may lean, walls and partitions may crack, windows and doors may become inoperative, and, in the extreme, a building may collapse. Uniform settlements are not so serious, although extreme conditions, such as those in Mexico City, can have serious consequences. Over the past 100 years, a change in the groundwater level there has caused some buildings to settle more than 10 feet (3 meters). Because such movements can occur during and after construction, careful analysis of the behavior of soils under a building is vital.

  The great variability of soils has led to a variety of solutions to the foundation problem. Where

  firm soil exists close to the surface, the simplest solution is to rest columns on a small slab of concrete(spread footing). Where the soil is softer, it is necessary to spread the column load over a greater area;in this case, a continuous slab of concrete(raft or mat) under the whole building is used. In cases where the soil near the surface is unable to support the weight of the building, piles of wood, steel, or concrete are driven down to firm soil.

  The construction of a building proceeds naturally from the foundation up to the superstructure. The design process, however, proceeds from the roof down to the foundation (in the direction of gravity). In the past, the foundation was not subject to systematic investigation. A scientific approach to the design of foundations has been developed in the 20th century. Karl Terzaghi of the United States pioneered studies that made it possible to make accurate predictions of the behavior of foundations, using the science of soil mechanics coupled with exploration and testing procedures. Foundation failures of the past, such as the classical example of the leaning tower in Pisa, have

  serious recurring damage to partitions, ceilings, and other architectural details. In addition, excessive sway may cause discomfort to the occupants of the building because of their perception of such motion. Structural systems of reinforced concrete, as well as steel, take full advantage of the inherent potential stiffness of the total building and therefore do not require additional stiffening to limit the sway.

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

教资统考|小学《综合素质》高频考点详解:外国现代文学(一)
教资统考|小学《综合素质》高频考点详解:世界著名的科学家(二)
教师资格证考试小学综合素质写作指导:巧用修辞
教资统考|小学《综合素质》高频考点详解:实施素质教育的途径与方法
教资统考|小学《综合素质》高频考点详解:中国传统文化知识(天文历法)
教资统考|小学《综合素质》高频考点详解:中国传统文化知识(古代称谓)
教资统考|小学《综合素质》高频考点详解:师生关系的基本类型
教资统考|小学《综合素质》高频考点详解:中国古代文学名家名著(诗歌)
教资统考|小学《综合素质》教育法律法规详解:材料分析类
教资统考|小学《综合素质》高频考点详解:教师要处理好的几大关系
教资统考|小学《综合素质》高频考点详解:世界著名的科学家(三)
教资统考|小学《综合素质》高频考点详解:小学教师的职业劳动特点
教资统考|小学《综合素质》教育法律法规详解:承担责任类
教资统考|小学《综合素质》高频考点详解:中外古代艺术成就(文字和书法)
教资统考|小学《综合素质》教育法律法规详解:特殊要求类
教资统考|小学《综合素质》高频考点详解:中国古代散文
教资统考|小学《综合素质》高频考点详解:外国文学名著
教资统考|小学《综合素质》高频考点详解:师生关系的含义及功能
教资统考|小学《综合素质》高频考点详解:外国近代文学(二)
教资统考|小学《综合素质》高频考点详解:中国传统文化知识(古代地理)
教资统考|小学《综合素质》高频考点详解:“以人为本”的学生观
教资统考|小学《综合素质》高频考点详解:中国现代文学名家名著
教资统考|小学《综合素质》高频考点详解:教师的艺术鉴赏素养
教资统考|小学《综合素质》高频考点详解:传统思想文化
教资统考|小学《综合素质》高频考点详解:教师观及教师专业观
教资统考|小学《综合素质》高频考点详解:中外古代艺术成就(绘画)
教资统考|小学《综合素质》高频考点详解:素质教育观
教资统考|小学《综合素质》高频考点详解:“人的全面发展”的思想
教资统考|小学《综合素质》高频考点详解:中国传统文化知识(传统习俗)
教资统考|小学《综合素质》高频考点详解:外国古典文学

网友关注视频

外研版英语三起6年级下册(14版)Module3 Unit2
冀教版小学英语四年级下册Lesson2授课视频
沪教版八年级下次数学练习册21.4(2)无理方程P19
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
北师大版数学四年级下册3.4包装
每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
六年级英语下册上海牛津版教材讲解 U1单词
青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
沪教版八年级下册数学练习册21.3(2)分式方程P15
苏科版数学 八年级下册 第八章第二节 可能性的大小
人教版历史八年级下册第一课《中华人民共和国成立》
河南省名校课堂七年级下册英语第一课(2020年2月10日)
外研版英语三起5年级下册(14版)Module3 Unit2
苏科版数学八年级下册9.2《中心对称和中心对称图形》
沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
二年级下册数学第三课 搭一搭⚖⚖
外研版英语七年级下册module3 unit2第二课时
苏教版二年级下册数学《认识东、南、西、北》
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
《空中课堂》二年级下册 数学第一单元第1课时
小学英语单词
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
外研版英语三起5年级下册(14版)Module3 Unit1
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs