教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 高等教育> 农学> radial oxygen loss

radial oxygen loss

上传者:邱天
|
上传时间:2015-04-15
|
次下载

radial oxygen loss

Plant,CellandEnvironment(2014)37,2406–2420doi:10.1111/pce.12294

内容需要下载文档才能查看

OriginalArticle

Biochemicalandmolecularcharacterizationofrice(OryzasativaL.)rootsformingabarriertoradialoxygenloss

KonstantinKulichikhin,TakakiYamauchi,KohtaroWatanabe&MikioNakazono

GraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Furo-cho,Chikusa,Nagoya464-8601,Japan

ABSTRACT

Theformationofabarriertoradialoxygen(O2)loss(ROL)intherootisanimportantadaptationofplantstoroot?ood-ing,butthebiochemicalchangesinplantrootswherethebarrierisformedareunclear.Inthisstudy,weanalysedmeta-bolicpro?lesandgeneexpressionpro?lesinrootsofrice(OryzasativaL.)plantsgrownunderstagnantdeoxygenatedconditions,whichinducesuberizationintheoutercelllayersoftherootsandformationofbarriertoROL.Undertheseconditions,twodistinctivebiochemicalfeaturesoftherootsweretheaccumulationsofmalicacidandverylongchainfattyacids(VLCFAs).Wealsoshowedthattheexpressionsofsomegenesencodingplastid-localizedenzymes,whichconvertmalicacidtoacetylcoenzymeA(AcCoA),weresimultaneouslyup-regulatedunderstagnantconditions.Theexpressionlevelsofthesegenesinspeci?croottissuesiso-latedbylasermicrodissectionsuggestedthatmalicacidisconvertedtoAcCoApredominantlyintheplastidsintheoutercelllayersofriceroots.Weproposethatthephysio-logicalroleofmalicacidaccumulationinricerootsgrownunderstagnantconditionsistoprovideasubstrateforthebiosynthesisoffattyacids,which,inturn,areusedinthebiosynthesisofsuberin.

Key-words:lasermicrodissection;malicacid;metabolomics;microarray;rice;ROLbarrier;VLCFA.

INTRODUCTION

Rice(OryzasativaL.)isusuallycultivatedin?ooded,anaerobicenvironments.Themainadaptationsofriceplantstothisextremeconditionare(1)formationofaerenchymatoprovideinternalaerationof?oodedroots(Barberetal.1962;Armstrong1979)and(2)inductionofastrongapoplasticbarrierintheperipheralcelllayersoftheroots(reviewedbyWatanabeetal.2013).Thebarrierreducesradialoxygen(O2)loss(ROL)fromtherootaerenchymatoanaerobicsoilormedium(Armstrong1971;Colmer2003b),aswellaspre-ventstheentryofphytotoxiccompounds(reducedformsofmetalsandorganicacids)totherootsfromthesoil(Armstrong1979).PotentialcomponentsofthebarriertoROLaresuberinand/orlignin,whichareaccumulatedatthe

Correspondence:K.Kulichikhin.Fax:+81527894017;e-mail:konstantin_kulichikhin@http://wendang.chazidian.com;andM.Nakazono.Fax:+81527894017;e-mail:nakazono@agr.nagoya-u.ac.jp2406

cellwallintheperipheralcelllayersoftheroot(DeSimoneetal.2003;Soukupetal.2007;Kotulaetal.2009;Shionoetal.2011).ThechemicalcompositionoftheapoplasticbarrierinricerootssuggeststhatROLisrestrictedbytheformationofasuberizedhypodermis(exodermis)and/orligni?edscleren-chymaintheouterpartoftheroot(Kotulaetal.2009).Suberinisabiopolymerconsistingofthreedistinctgroupsofmonomers:(1)analiphaticdomainrepresentedbyfattyacids,includingverylongchainfattyacids(VLCFAs)andtheirderivatives;(2)anaromaticdomainrepresentedbyferulicandcoumaricacidsandtheirderivatives;and(3)glycerol(Bernards2002;Franke&Schreiber2007).Suberinmonomersaretheproductsofthreedistinctmetabolicpathwaysposses-singdifferentsubcellularlocalizations.Suberizationleadstomassiverearrangementofprimarycarbonmetabolism,increasedenergydemandandredirectionofcarbonandenergy?uxestothebiosynthesisofphenolicacidsandfattyacids.

Thecomponentsofthealiphaticdomainofsuberin–fattyacidsandVLCFAs–areproducedexclusivelyfromacetylcoenzymeA(AcCoA).Apartfromfattyacidbiosynthesis,AcCoAisinvolvedinmanyimportantaspectsofplantmetabolismsuchasthetricarboxylicacid(TCA)cycle(Siedow&Day2000).Inplantcells,AcCoAcanbesynthe-sizedindifferentcompartments,suchasthecytosol,mitochondria,plastidsandglyoxysomes.Inplastidsandmito-chondria,AcCoAisformedfrompyruvicacidthroughoxi-dativedecarboxylationbypyruvatedehydrogenase(PDH).Additionally,AcCoAcanbeformedbyacetyl-CoAsynthetaseusingaceticacidasasubstrate,butthisreactionrequiresadditionalATP.Inthecytosol,ATP-citratelyaseproducesAcCoAfromcitricacidtransportedfromthemito-chondria(Somervilleetal.2000;Rawsthorne2002).CytosolicAcCoAisthemainsourceofAcCoAforVLCFAelongation(Harwood1988).BiosynthesisofVLCFAconsistsoftwosteps:(1)biosynthesisofC16–C18fattyacidsintheplastidsand(2)elongationofthesefattyacidstoC30andlongerintheendoplasmicreticulum(ER)(Beissonetal.2012).Thus,theplastidicandERpoolsofAcCoAarederivedfromdifferentmetabolicpathways.Whenplantsaregrownunder?oodedconditions,theabove-describedprocessesshouldbeabletocopewithpossibleenergyde?citsintheroots;suchde?citsoriginatefromO2restriction,whichcandecreaseATPyieldfrom24–36molpermolofglucosemetabolizedunderaeratedconditionsto2–3molundercompleteanoxia(Gibbs&Greenway2003).

©2014JohnWiley&SonsLtd

Metabolicpro?lesofricerootunderwaterlogging

Apoplasticbarriersisolatedfromvariousplantspeciesdifferdramaticallyinsuberinandlignincontents,suberin-to-ligninratio,aliphatic-to-aromaticsuberinmonomerratioandaliphaticsuberincomposition(DeSimoneetal.2003;Soukupetal.2007;Kotulaetal.2009).ItisunclearwhichofthesecomponentsarerequiredtopreventROL(reviewedbyWatanabeetal.2013).Moreover,littleisknownaboutthesolublemetabolitesinroottissuesundergoingsuberizationorligni?cation.Toourknowledge,onlyonestudy(ofpotatowoundperiderm)hasexaminedtheeffectofsuberizationonthepro?leofextractablemetabolites(Yang&Bernards2007).Here,weattemptedtocharacterizethereorganizationofprimarycarbonmetabolisminricerootsduringROLbarrierformation.Tothisend,weobtainedthepro?lesofpolarmetabolitesandoffattyacidsindifferentrootzonesofriceplantsgrowninastagnantdeoxygenatedmediumandawell-aeratedmedium.Tobetterinterpretthedifferencesinmetabolicpro?les,wecombinedthebiochemicaldatawiththeresultsofamicroarrayanalysis,andweusedquantitativeRT-PCR(qRT-PCR)tostudytheexpressionsofseveralgenesthatstoodoutinthemicroarrayanalysis.

2407

Histochemicalstainingofsuberin

Freshrootswereharvestedasdescribedearlierandwholerootswereembeddedin5%agar.Further,50μmsectionsweremadeatthedistancesof10,20,30,40,50and60mmfromtherootapexusingavibratingmicrotome(VT1200S;LeicaBiosystemsNusslochGmbH,Nussloch,Germany).Rootcrosssectionswereclearedbyincubationat70°Cfor1hinlacticacidsaturatedwithchloralhydrate(Luxetal.2005);thiswasfollowedbystainingwiththelipophilic?uorochromeFluorolYellow088atroomtemperaturefor1htovisualizesuberinlamellae(Brundrettetal.1991).Thealiphaticcomponentofsuberininthecellwallswasdetectedwithacharge-coupleddevice(CCD)camera(DP70;OlympusOpticalCo.Ltd.,Tokyo,Japan)asyellow?uores-cenceuponexcitationbyUVlightundera?uorescencemicroscopeOlympusBX60equippedwithU-MWU?ltrecube(OlympusOpticalCo.Ltd.).

ROLmeasurement

RatesofROLfromtheadventitiousrootsofintactplantsweremeasuredusingroot-sleevingplatinumO2electrodesasdescribedbyKotulaetal.(2009),inaccordancewiththemethodsofArmstrong(1967)andArmstrong&Wright(1975).Therootsystemsofplantsfromeitheraeratedorstagnantculturewereimmersedinachambercontainingadeoxygenatedsolutionof5mmKCl,0.5mmCaSO4and0.1%(w/v)agar(Colmer2003a;Kotula&Steudle2009).Theshootbasewas?xedtothetopofthechambersothattheshootwasinair(21%O2,v/v),therootswereintheO2-freemedium,andtheroot–shootjunctionwas1–2cmbelowthesurfaceofthemedium.The?rstmeasurementsweretaken2haftertransferoftheplanttothechamber.Oneadventitiousroot(100–150mmlong)ofeachplantwasinsertedthroughthecylindricalplatinumelectrode(innerdiameterof2.25mm,heightof5mm),whichwas?ttedwithguidestokeeptherootatthecentreoftheelectrode.ROLwasmeasuredalongtherootwiththecentreoftheelectrodeatpositions5,10,20,30,40,50and60mmfromtheapex.Measurementsweretakenat28°Cinthegrowthchamberwheretheplantshadprevi-ouslybeengrown.

MATERIALSANDMETHODS

Plantmaterials,treatmentsandharvesting

Seedsofrice(O.sativaL.,cv.Nipponbare)weresterilizedwith70%ethanolfor1min;thiswasfollowedbysterilizationwithNaClOsolution(2.5%availablechlorine)for30minandthenwashingseveraltimeswithde-ionizedwater.Thesterilizedseedsweregerminatedinthedarkat28°Cfor2d.Seedlingsweretransferredtoahydroponiccontainerwithquarter-strengthaeratednutrientsolution[28°C,lightcon-ditions,photosyntheticallyactiveradiation200–250μmolm?2s?1]for4d.ThecompositionofthenutrientsolutionwasasdescribedbyColmeretal.(2006).After4d,theseedlingsweretransferredtoaeratedfull-strengthnutrientsolution.After3d(atage9d),halfoftheseedlingsweretransferredtostagnantdeoxygenatednutrientsolution.Thestagnantsolutioncontained0.1%(w/v)dissolvedagarandwasdeoxygenated(dissolvedO2,<0.5mgL?1)beforeusebybeing?ushedwithN2gas.Theaeratedandstagnantnutrientsolutionswererenewedweekly.Topreventironde?ciencyintheseedlingsgrownunderaeratedconditions,FeSO4(uptoa?nalconcentrationof5μm)wasaddedondays9,13,16and20aftergermination.At14dafterthestartofstagnanttreat-ment(23daftergermination),theplantswereusedforROLmeasurementorwereharvestedforbiochemicalanalysis,RNAextractionorenzymeactivitymeasurement.Adventi-tiousroots(100–150mmlong)wereharvestedfromriceplantsgrownineithertheaeratedorthestagnantsolution,and10mmsegmentswerecutwithasterilerazorbladefromregions0to10(0–10)mm,10to20(10–20)mm,20to30(20–30)mmand30to40(30–40)mmfromtherootapex,andcollectedandprocessedseparately.Forenzymeactivitymeasurement,thematerialswereprocessedimmediately.ForbiochemicalanalysisandRNAextraction,therootsegmentswereplunge-cooledinliquidnitrogenandstoredat?80°C.

Metaboliteextractionandanalysis

Metaboliteextraction

Rootsegmentsstoredat?80°Cwerefreeze-driedfor36hbeforetheextractionprocedure.Metaboliteswereextractedfrom3to20mgoflyophilizedtissuegroundinaglasshomogenizerwith1.2mLofbiphasicsolventsystemCHCl3–MeOH–H2O[50:25:25(v:v:v)].MeOHandhalfofCHCl3wereadded?rsttoinhibitenzymeactivity;thiswasfollowedbytheadditionofH2OandtheremainderofCHCl3.Heneicosanoicacid(C21:0,5μgmg?1ofdryweight)wasaddedasanexternalstandardforgaschromatography(GC)analy-sis.Aftercentrifugationoftheextractat800gfor10min,theCHCl3andMeOH–H2Ophaseswerecollectedseparatelyintoglassvials.Extractionwasperformedthreetimes;the

©2014JohnWiley&SonsLtd,Plant,CellandEnvironment,37,2406–2420

2408K.Kulichikhinetal.

phased,andthebaselinewasmanuallycorrectedusingthemultipointbaselinecorrectionfeature.Peakswereintegratedmanually,andmetaboliteswerequanti?edbycomparingthepeakareaofthecompoundofinterestwiththepeakareaofTMSP-d4.Metaboliteswereidenti?edbyacquiringtwo-dimensionalspectra[totalcorrelationspectroscopy(TOCSY)andJ-resolvedspectroscopy]torevealthecorrelationbetweenthesignalsandthepatternofsignalmultiplicity,respectively,andthroughcomparisonoftheexperimentaldatawiththedatafrompubliclyavailabledatabases(Fan1996;Cuietal.2008)andwiththespectraofpurecompounds.

non-polarandpolarphaseswerecombinedseparatelyandthesolventwasevaporatedusingastreamofpureN2gasinthecaseoftheCHCl3fractionorbycentrifugationundervacuuminthecaseoftheMeOH–H2Ofraction.Driedsampleswerestoredat?80°C,andvialscontainingtheCHCl3fractionresidueswere?lledwithpureN2gasbeforebeingplacedintotherefrigerator.CHCl3andMeOHandroottissueextractsweredispensedviaglassmicrosyringe(Hamilton,Reno,NV,USA);contactbetweentheorganicsolventsandanyplasticmaterialswasthusavoidedatallstagesofsampleextraction.

Samplepreparationfornuclearmagneticresonance(NMR)analysis

ImmediatelybeforeNMRanalysis,theMeOH/H2Ofractionsofthesampleswerereconstitutedinto220μLofdeuteriumoxide(D2O;99.9%D,CambridgeIsotopeLaboratories,Andover,MA,USA)containing100mmKD2PO4.ThesolventwasevaporatedbyvacuumcentrifugationtoremovethetracesofH2O,theresiduewasreconstitutedin220μLofD2O(99.96%D,CambridgeIsotopeLaboratories)and0.5–5μLof50mmsodium3-(trimethylsilyl)propionate-2,2,3,3-d4(TMSP-d4)wasaddedasachemicalshiftandquanti?cationreference.Sodiumazidewasaddedtoa?nalconcentrationof0.5mmtopreventmicrobialgrowth.ThepDofthesampleswasadjustedto7.40±0.02withKODandDClsolutionsinD2Ousingaglassmicroelectrode.pDvaluewascalculatedfromtheapparentpHvalue(pH*)ofthesampleusingtheequation,pD=pH*+0.4(Glasoe&Long1960).

GC-MSanalysisoffattyacids

Thefattyacidcompositionofthenon-polarfractionofplantextractswasanalysedbytheShimadzuAnalyticalandMeasuringCenter,Kyoto,Japan.Brie?y,theresiduewasreconstitutedin500μLofCHCl3andanaliquotof50–100μLwastransferredintoa10mLscrew-cappedvialwith1mLofMeOH.Thirtymicrolitresof0.3%(w/v)butylatedhydroxytolueneinMeOHwasaddedtopreventsampleoxi-dation,and5μLof0.2%(w/v)nonadecylicacid(C19:0;10μgintotal)wasaddedasaninternalstandard.Finally,1mLof10%HClinMeOHwasaddedtothemixture,thecapwasclosedandthevialwasplacedinadrybathat80°Cfor1hformethanolysis.Afterthemixturehadbeencooled,fattyacidmethylesters(FAMEs)wereextractedbyvortexingwithtwoportionsofn-hexane(1.5and1mL).Thetwopor-tionsofhexanewerecombinedinaglassvial;thesolventwasremovedbyastreamofN2gasat40°C,andtheresiduewasreconstitutedin200μLofn-hexaneandsubjectedtoGCanalysis.TheFAMEswereseparatedinanRtx2330column(ShimadzuCo.Ltd,Kyoto,Japan).

NMRanalysis

ThesampleswereanalysedwithJEOLECA-600orJEOLECA-800NMRspectrometers(JEOLLtd.,Tokyo,Japan).All1

H-NMRspectrawerecollectedwitha3mmbroadbandprobeusingaJEOL-de?nedpulseprogram(single_pulse.ex2).Theprobewastunedmanually(ECA-800)orautomatically(ECA-600).SampleswerelockedbytheD2Osignal,andmagnetic?eldhomogeneitywasoptimizedmanuallyusingupto10shimsfollowedbytheautomaticgradientshimmingoption.Theprobetemperaturewasmaintainedat298K,andspinningat20Hzwasappliedduringacquisition.Freeinduc-tiondecays(FIDs)werecollectedinto65536datapoints.Arelaxationdelayof5swasused,andonedummytransientwasfollowedbytheco-additionof1024scansforatotalexperimenttimeof3.00h.SeveralFIDs(upto?ve,depend-ingupontheamountofmaterialusedintheanalysis)werecollectedforeachsample,andadditionalshimmingwasper-formedinbetweentheacquisitionstoimprovethemagnetic?eldhomogeneity.

RNAextraction

TotalRNAwasextractedfromfrozen-?xedtissuesfromfoursequentialregionsoftheadventitiousrootsusinganRNeasyPlantMiniKit(Qiagen,Valencia,CA,USA)inaccordancewiththemanufacturer’sinstructions.ThequalityoftotalRNAwasassessedwithanRNA6000PicokitonanAgilent2100Bioanalyzer(AgilentTechnologies,PaloAlto,CA,USA).

Microarrayanalysis

TotalRNAs(400ng)werelabelledwithaQuickAmpLabel-ingKit(AgilentTechnologies)inaccordancewiththeman-ufacturer’sinstructions.AliquotsofCy5-labelledcRNAandCy3-labelledcRNA(825ngeach)wereusedforhybridiza-tioninarice44Koligo-DNAmicroarray(AgilentTechnol-ogies).Threebiologicalreplicateswereanalysed.ThehybridizedslideswerescannedwithaDNAmicroarrayscannerG2505C(AgilentTechnologies),andsignalinten-sitieswereextractedusingFeatureExtractionsoftware(version10.5.1.1;AgilentTechnologies).AcompletesetofmicroarraydatawasdepositedintheGeneExpressionOmnibus(GEO;http://www.ncbi.nlm.nih.gov/geo/)reposi-toryunderaccessionnumberGSE52128.

NMRdataprocessing

NMRspectrawereprocessedusingMestReNovaversion8.1(MestrelabResearchS.L.,SantiagodeCompostela,Spain).FIDscollectedforthesamesampleweresummedupbeforeFouriertransformwasapplied.Allspectraweremanually

©2014JohnWiley&SonsLtd,Plant,CellandEnvironment,37,2406–2420

Metabolicpro?lesofricerootunderwaterlogging

Formicroarraydataanalysis,theBenjamini–Hochbergfalsediscoveryrate(FDR)methodwasusedtoobtainP-valuescorrectedformultipletesting.Thefoldchangeofeachprobebetweenonesetofconditionsandtheotherwascalculatedusinganaverageofthreebiologicalreplicates.Weidenti?edthegenesforwhichtherewasatleastatwofoldchangeinexpressionbetweenthetwoconditionsonaverageandforwhichtheFDRP-valuewas<0.05.

Forgeneontology(GO)analysis,weanalysedthefre-quencyofGOtermsofup-regulatedanddown-regulatedgenesusingGOSlimAssignments(http://rice.plantbiology.msu.edu/downloads_gad.shtml).

2409

Enzymeactivitymeasurement

TheactivitiesofNAD-malatedehydrogenase(NAD-MDH;E.C.1.1.1.37),phosphoenolpyruvatecarboxylase(PEPC;E.C.4.1.1.23),NADP-malicenzyme(NADP-ME;E.C.1.1.1.40)andpyruvatephosphatedikinase(PPDK;E.C.2.7.9.1)weremeasuredspectrophotometricallyatawave-lengthof340nmwithaJASCOV-570spectrophotometer(JASCOCorp.,Tokyo,Japan),asdescribedbyMoonsetal.(1998),withsomemodi?cationsinthecaseofPPDK,andbyKulichikhinetal.(2009)inthecaseoftheotherenzymes.Measurementsweretakenat25°CforNAD-MDHandNADP-MEandat30°CforPEPCandPPDK.Theassaymixturewasincubatedatthecorrespondingtemperaturefor3minbeforethereactionwasstartedbytheadditionofthereactionsubstrate.Enzymeactivitywasexpressedinenzymeunits(EU)permilligramofprotein.ProteinintheextractswasassayedwithCoomassieBrilliantBlueG250inaccord-ancewiththemethodofBradford(1976)usingaBio-RadProteinAssayreagent(Bio-Rad,Hercules,CA,USA),withbovineserumalbumin(BSA)asareference.Thedetailedcompositionsoftheassaymixturesforeachenzymearepre-sentedinSupportingInformationFileS1.

Lasermicrodissection(LM)

Segmentsofadventitiousrootsintheregion10–20mmfromtherootapexwere?xedin100%acetone.After?xation,thesampleswereembeddedinparaf?nandsectionedatathick-nessof20μm.SerialsectionswereplacedontoPENmem-braneglassslides(LifeTechnologies,Carlsbad,CA,USA)forLM,asdescribedbyTakahashietal.(2010).Toremoveparaf-?n,slideswereimmersedinHisto-ClearIIsolution(NationalDiagnostics,Atlanta,GA,USA)for10min;thiswasfollowedbyairdryingatroomtemperature.Thecentralcylinder,thecortexandtheoutercelllayerswerecollectedfromtheroottissuesectionsusingaVeritasLaserMicrodissectionSystemLCC1704(MolecularDevices,Toronto,ON,Canada).

RESULTS

ROLfromadventitiousrootsinriceunderaeratedandstagnantconditions

Weplottedthepro?lesofROLalongadventitiousrootsofplants(23dold)grownunderaeratedorstagnantconditionsfor14d(Fig.1).AdventitiousrootsofplantsgrownunderaeratedconditionsshowedthehighestrateofROLatthemostbasalpart;therewasagradualdecreaseinROLtowardstherootapex(Fig.1).Growthunderstagnantcon-ditionsresultedinadramaticalterationintheROL

内容需要下载文档才能查看

pro?le

QuantitativeRT-PCR(qRT-PCR)

ForqRT-PCR,5ngoftotalRNAextractedfromtheadven-titiousrootsorthelaser-microdissectedtissueswasusedasatemplate.TranscriptlevelsweremeasuredusingaStepOnePlusReal-TimePCRSystem(AppliedBiosystems,FosterCity,CA,USA)andOneStepSYBRPrimeScriptRT-PCRKitII(TakaraBioInc.,Otsu,Japan),asdescribedbyYamauchietal.(2014).Thequanti?edmRNAlevelsofeachgenewerenormalizedagainstthemRNAlevelsofthetran-scriptionfactorTFIIEgeneasacontrol.qRT-PCRwasper-formedwithtotalRNAfromthreebiologicalreplicates.TheprimersequencesusedfortheexperimentsareshowninSupportingInformationTableS1.

Enzymeactivitymeasurements

Extractionprocedure

ExtractsofplantmaterialwereobtainedasdescribedbyKulichikhinetal.(2009).Freshlyharvestedrootsegments(15–20segments)wereweighedandgroundinaglasshomogenizerwith1mLofextractionmediumcontaining0.1mHEPES-KOH(pH7.5),12.5%(v/v)glycerol,0.5%(w/v)l-ascorbicacid,5mmdithiotreitoland5%(w/v)polyvinylpolypyrrolidone(PVPP,http://wendang.chazidian.completeMiniEDTA-free(ProteaseInhibitorCocktailTablets;RocheDiagnostics,Mannheim,Germany)wasaddedtopreventproteolyticcleav-ageoftheproteins.Thehomogenatewascentrifugedat15000gfor10min.Thepelletwasthendiscardedandthesupernatantwasusedfortheenzymeactivitymeasurements.

Figure1.Pro?lesofradialO2loss(ROL)alongadventitious

rootsofintactriceplantsgrownineitheraeratedorstagnantnutrientsolution.Dataaremeans±SE(n=3).

©2014JohnWiley&SonsLtd,Plant,CellandEnvironment,37,2406–2420

2410K.Kulichikhinetal.

lamellaeweredetectedat40mmorfartherfromtherootapex(Fig.2).OnthebasisoftheresultsoftheROLmeasurementsandsuberinhistochemicalstaining,wechosetheregionfrom0to40mmforfurtherbiochemicalandmolecularstudies.

Metabolicpro?lesinadventitiousrootsunderaeratedandstagnantconditions

1

H-NMRpro?lesofpolarmetabolites

Figure2.Crosssectionsofadventitiousricerootsstainedfor

suberinwithFluorolYellow088.Plantsweregrownundereitheraeratedorstagnantconditions.Yellow?uorescenceindicatesthepresenceofsuberin.Bar=50μm.Thedistancefromtherootapexisindicated.Theappearanceofsuberinat30mmfromtherootapexunderstagnantconditionsisindicatedbyarrows.ep,epidermis;hy,

内容需要下载文档才能查看

hypodermis.

(Fig.1).Theadventitiousrootsofplantsgrownunderstag-nantconditionsshowedthehighestratesofROLat5–10mmfromtheapex.Towardstherootbase,theROLdeclinedsubstantially:at20mmfromtheapex,itwasonly7.3%ofthevalueat10mmfromtheapex;andat30mm,itwas6.1%ofthevalue.LittleornoROLwasfoundat40and50mmfromtherootapex,andonlyatinyamountofO2wasreleasedat60mm(Fig.1),probablybecauseofthepresenceoflateralroots(datanotshown).Thus,growthunderstagnantcondi-tionsinducedtheformationofastrongbarriertoROLinriceadventitiousroots.

Thesignalsfrommorethan20compoundshavebeeniden-ti?edonthe1H-NMRspectraofpolarextractsfromriceroots(SupportingInformationTableS2),andmostofthemhavebeenquanti?able.Theconcentrationsofallpolarmetabolites,withtheexceptionofmalicacid,inbothaeratedandstagnantrootsdecreasedinthedirectionfromtherootapextotherootbase(SupportingInformationTableS3).Incontrast,thecontentofmalicacidwasminimalintheapicalregion(0–10mm)andat10–20mminrootsunderstagnantconditions,graduallyincreasingtowardstherootbase(Fig.3).Rootsofplantsgrownunderstagnantconditionswerecharacterizedbyelevatedlevelsofsolublesugars(sucrose,glucoseandfructose;Fig.3),someaminoacids(isoleucine,leucine)andorganicacids(quinicacid,shikimicacidandespeciallymalicacid)(Fig.3;SupportingInforma-tionTableS3).Aeratedrootsweremoreabundantinglutamine,asparagineandalanine,butonlyintheregions0–10mm(alanine)or0–20mm(glutamine,asparagine)fromtherootapex(SupportingInformationTableS3).

Themostabundantpolarmetabolitesinbothaeratedandstagnantrootsweresolublesugars(sucrose,glucoseandfruc-tose)andmalicacid(Fig.3).Thesucrosecontentoftheapicalregionofstagnantrootswas8.1μmolg?1freshweight;thiswas1.7timeshigherthanthecontentintheapicalregionoftherootsofplantsgrownunderaeratedconditions.Intheregion20–30mm,thesucrosecontentdecreasedto3.1and1.9μmolg?1freshweightinthestagnantandaerated

内容需要下载文档才能查看

roots,

Histochemicalstainingforsuberin

Weperformedhistochemicalstainingforsuberinincrosssectionsofricerootsfromplantsgrowninaeratedorstagnantsolutions(Fig.2).Underaeratedconditions,nosuberinstain-ingofhypodermalcellwallswasdetectedintheregions10,20and30mmfromtherootapex.Inthemorebasalregions,suberinstainingwasdetectedinsomeindividualcells,butthecellwallsofthemajorityofhypodermalcellswerenotstained(Fig.2).Growthunderstagnantconditionsledtosuberizationofhypodermalcellwalls.Suberinstainingwasdetectedat30mmfromtherootapex,andfullydevelopedsuberin

Figure3.Solublesugarandmalicacidcontentsindifferent

regionsofrootsfromriceplantsgrownundereitheraeratedorstagnantconditions.Signi?cantdifferencesbetweentheaeratedandstagnantconditionsatP<0.05,P<0.01orP<0.001(two-samplet-test)aredenotedby*,**or***,respectively.Dataaremeans±SE(n=3).

©2014JohnWiley&SonsLtd,Plant,CellandEnvironment,37,2406–2420

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

2018广西公务员考试面试题库:面试每日一练结构化面试模拟题答案1.5
2018广西公务员考试行测题库:行测每日一练数量关系练习题答案12.18
广西公务员考试面试题库:面试每日一练结构化面试模拟题1.10
2018广西公务员考试行测题库:行测每日一练数量关系练习题答案12.15
广西公务员面试每日一练结构化面试模拟题1.18
广西公务员面试每日一练结构化面试模拟题答案1.18
2018广西公务员考试面试热点模拟题:“节后空巢症”怎么治?
广西公务员行测每日一练资料分析练习题答案01.12
广西公务员面试每日一练结构化面试模拟题1.15
2018广西公务员考试面试题库:面试每日一练结构化面试模拟题1.5
广西公务员考试面试题库:面试每日一练结构化面试模拟题1.9
广西公务员行测每日一练言语理解练习题01.18
2018广西公务员行测每日一练言语理解练习题12.13
广西公务员行测每日一练资料分析练习题答案01.16
广西公务员行测每日一练资料分析练习题01.16
2018广西公务员行测每日一练判断推理练习题12.14
广西公务员考试行测题库:行测每日一练判断推理练习题答案01.10
广西公务员考试行测题库:行测每日一练言语理解练习题01.09
2018广西公务员考试面试题库:面试每日一练结构化面试模拟题答案1.8
广西公务员面试每日一练结构化面试模拟题答案1.15
2018广西公务员考试申论每周一练:支付宝账单与信息安全
2018广西公务员考试行测题库:行测每日一练数量关系练习题12.18
广西公务员行测每日一练判断推理练习题答案01.15
2018广西公务员考试行测题库:行测每日一练言语理解练习题01.08
广西公务员行测每日一练言语理解练习题答案01.17
广西公务员面试每日一练结构化面试模拟题1.16
广西公务员行测每日一练数量关系练习题01.19
2018广西公务员行测每日一练判断推理练习题答案12.14
广西公务员考试行测题库:行测每日一练言语理解练习题01.11
广西公务员面试每日一练结构化面试模拟题1.17

网友关注视频

8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
二年级下册数学第一课
冀教版小学数学二年级下册1
北师大版数学四年级下册3.4包装
外研版英语七年级下册module3 unit2第一课时
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
冀教版小学数学二年级下册第二单元《租船问题》
第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
外研版英语七年级下册module1unit3名词性物主代词讲解
沪教版八年级下册数学练习册一次函数复习题B组(P11)
冀教版小学英语五年级下册lesson2教学视频(2)
沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
七年级英语下册 上海牛津版 Unit3
二年级下册数学第二课
外研版英语三起5年级下册(14版)Module3 Unit1
沪教版八年级下册数学练习册21.4(1)无理方程P18
外研版英语三起5年级下册(14版)Module3 Unit2
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
冀教版英语四年级下册第二课
三年级英语单词记忆下册(沪教版)第一二单元复习
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
沪教版八年级下册数学练习册21.3(3)分式方程P17
沪教版八年级下册数学练习册21.3(2)分式方程P15
七年级下册外研版英语M8U2reading
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830