02 Semi-online scheduling with decreasing job sizes
上传者:刘大龙|上传时间:2015-04-22|密次下载
02 Semi-online scheduling with decreasing job sizes
半在线调度与减少工件的大小
内容需要下载文档才能查看OperationsResearchLetters27(2000)
内容需要下载文档才能查看215–221
http://wendang.chazidian.com/locate/dsw
Semi-onlineschedulingwithdecreasingjobsizes
SteveSeidena; ;1,JiÄrà Sgallb;c;2,GerhardWoegingerd;3
ofComputerScience,LouisianaStateUniversity,298CoatesHall,BatonRouge,LA70803,USAbMathematicalInstitute,ASCR,ZitnÃÄa25,CZ-11567Praha1,CzechRepublic
cDepartmentofAppliedMathematics,FacultyofMathematicsandPhysics,CharlesUniversity,Praha,CzechRepublic
dInstitutf urMathematik,TechnischeUniversit atGraz,Steyrergasse30,A-8010Graz,Austria
Received28October1998;receivedinrevisedform1July2000
aDepartment
Abstract
Weinvestigatetheproblemofsemi-onlineschedulingjobsonmidenticalparallelmachineswherethejobsarriveinorder
ofdecreasingsizes.Wepresentacompletesolutionforthepreemptivevariantofsemi-onlineschedulingwithdecreasingjobsizes.Wegivematchinglowerandupperboundsonthecompetitiveratioforanyÿxednumbermofmachines;these√
boundstendto(1+=2≈1:36603,asthenumberofmachinesgoestoinÿnity.Ourresultsarealsothebestpossibleforrandomizedalgorithms.Forthenon-preemptivevariantofsemi-onlineschedulingwithdecreasingjobsizes,aresultofGraham(SIAMJ.Appl.Math.17(1969)263–269)yieldsa(4=3 1=(3m))-competitivedeterministicnon-preemptivealgorithm.Form=2machines,√weprovethatthisalgorithmisthebestpossible(itis7=6-competitive).Form=3machineswegivealowerboundof(1+=6≈1:18046.Finally,wepresentarandomizednon-preemptive8=7-competitivealgorithm
c2000ElsevierScienceB.V.Allrightsreserved.form=2machinesandprovethatthisisoptimal.
Keywords:Analysisofalgorithms;Onlinealgorithms;Competitiveratio;Scheduling
1.Introduction
Considerthefollowingschedulingproblem:we
areconfrontedwithasequenceofjobswithprocess-Correspondingauthor.
E-mailaddresses:sseiden@http://wendang.chazidian.com(S.Seiden),sgall@math.cas.cz(J.Sgall),gwoegi@opt.math.tu-graz.ac.at(G.Woeginger).1ThisresearchwasdoneattheTechnischeUniversit atGraz,supportedbytheSTARTprogramY43-MAToftheAustrianMinistryofScience.
2PartiallysupportedbygrantA1019901ofGAAVCR,Äpost-Ädoctoralgrant201=97=P038ofGACR,andcooperativeresearch
ÄgrantINT-9600919=ME-103fromtheNSFandMSMTCR.
3ThisresearchhasbeensupportedbytheSTARTprogramY43-MAToftheAustrianMinistryofScience.
ingtimesp1;p2;:::;pnthatmustbeassignedtommachines.Theloadofamachineisthesumoftheprocessingtimesofthejobsassignedtothatma-chine.Ourgoalistominimizethemakespan,i.e.,themaximummachineload.Iftheproblemisonline,theneachjobmustbeassignedwithoutknowledgeofsuccessivejobs.(However,theorderofjobshasnocorrelationwiththetimeintheschedule,somefuturejobmaybeassignedtostartrunningearlierthanthecurrentone.)Iftheproblemissemi-onlinewithde-creasingjobsizes,thenweknowthatpi¿pi+1foralli¿1.Hence,inthisvariantwedohavesomepartialknowledgeonthefuturejobs,whichmakestheprob-lemeasiertosolvethanstandardonlineschedulingproblems.
c2000ElsevierScienceB.V.Allrightsreserved.0167-6377/00/$-seefrontmatter
PII:S0167-6377(00)00053-5
半在线调度与减少工件的大小
216S.Seidenetal./OperationsResearchLetters27(2000)215–221
AThetheismeasuredqualityofbyanitsonlinecompetitiveorsemi-onlineratioalgorithmL;smallestnumbercsuchthatforevery,listdeÿnedofjobsasofA(L)6copt(L),whereA(L)denotestheainglistscheduleLofjobs,producedandopt(byLalgorithm)denotesAthefortheschedulingmakespaningWemakespanofsomeoptimalschedule.
correspond-non-preemptivejobstudysizesinsemi-onlinethethreemainschedulingvariants:withpreemptive,decreas-randomizeddeterministicscheduling.deterministic,ulesnon-preemptiveNotethatandformnon-preemptive=1thetrivialingforanyalljobsidleonthesinglemachinealgorithmwithoutthatintroduc-sched-jobthebemayrestbeoftimepreempted,theispaper.optimal.Thus,weassumem¿2i.e.,Inthesplitpreemptiveintopiecesvariant,thatmayanon-consecutivespreadoverseveralsametimeslots.machinesHowever,and=orpiecesassignedtoonsigneddi erentjobmustmachines.notoverlapintime,evenifscheduledoftheortotimeslots(sIn;totherwords,ifajobisas-11];(s2;t2];::mustseveralassignbedisjoint.machines,Uponthen:;(sk;tk]ononearrivalanypairofeachofthesejobwetimeslotsmayever,createittocasebyObservationidleparticulartimethattimeslots,whichinprinciplehaveto4:1inisused[7],bylaterjobs.How-algorithmaswell,whichappliesinournon-preemptivesowethatmayalwaysmodifyanypreemptivereasons.
variantsitnevertheintroducessameistrueidletimes,fortrivialforlower(1)Foranyandtheupperpreemptiveboundsonvariant,thewegivematchingcreaseÿhttp://wendang.chazidian.competitiveratiofor(1+√These=2≈1bounds:36603,in-asarenumberOuralsotheofbestmachinespossiblegoesforrandomizedtoinÿnity.Ourresultssizesupperofaredecreasing;bounddoesevennotreallyrequirethatalgorithms.thejobwe(2)thelargesttheknowledgeofthesizeForthejobwouldbesu cient.
boundgiveshownofa(1lowernon-preemptive+√
bound=6offor7=m6=fordeterministicm=2andvariant,alowergorithmthatformm=Listfordecreasingjobsizes,3.Grahamthegreedy[11]hasal-2is(4=3 1=(3m))-competitive.Hence,the¿3,theproblemmachinesremainswehaveopen.matchingQuitesurprisingly,bounds.Forratiosnon-preemptivethanthepreemptivevariantvariantallowsdoes.betterIncompetitivefact,even
Listblelimit.withachievessicalInthepreemption)abetterforcompetitiveeverym¿2ratioaswell(thanaspossi-intheunexpectedonlinelightschedulingofthecorrespondingoccurrenceandtoour(seeknowledge,below)thisresultsforclas-itiswasalsocertainlythevariant,(3)Finally,ofthisforphenomenon.
ÿrstthenon-preemptiverandomized8Our=7-competitiveform=2machines,wepresentarandomizedtionalgorithmisalgorithmbarelyrandomandprovethatitisoptimal.Eachoveraÿxednumberofdeterministic[15],i.e.,algorithms.adistribu-usestheunboundedotherO(1)jobishand,space.scheduledinO(1)time,andthealgorithmtheForknownclassicaloptimalonlinealgorithmscheduling,onalsospaceusesoverall. (numberi)Fortimeofmtorandom¿3,schedulechoicestheproblemtheith[3].remainsjobInusesandfact,anopen. (nit)Relatedaresemi-onlineobtainedwork.byOtherAzarresultsandonsemi-onlineproblemsisconsiderknownschedulingwhereRegevtheoptimum[2]whomakespanconsiderproblem,severalinadvance,semi-onlineandbyversionsKellereretal.[13]whochines.whichcorrespondstoschedulingoftheonpartition2ma-scheduleLiunumbermustetal.be[14]investigatetheproblemwhereatimes.
ofjobsandcreatedtheorderingwithknowledgeoftheironlyprocessingoftheareInthestandardonlineproblem(wherethejobsizesants,notnon-preemptivepreemptive,necessarilynon-preemptivedecreasing)allthethreemainvari-incompletelytheliterature.randomized,Thepreemptivehavedeterministic,beeninvestigatedandalgorithmbyChenetal.[7]whovariantdesignedwasansolvedwithcompetitiveforpreemptiveratio
schedulingonmmachinesonlineÿ(m)=mme
→
≈1:58198:(1)
TheywhichalsoItevengaveholdsamatchingforlowerboundconstruction
lineisageneralphenomenonrandomizedthatforonlinepreemptivealgorithms.on-andschedulingsemi-onlineaswenotedproblemsvariantabove,studiedtherandomizationdoesnothelp,insamethisispaper.
truealsoforthehamForplaces[10]theeachdeÿnednon-preemptivejobonathesimplemachinegreedydeterministicvariant,Gra-whichalgorithmiscurrentlyListwhichleast
半在线调度与减少工件的大小
S.Seidenetal./OperationsResearchLetters27(2000)215–221217
loaded.onseminalmmachines;HeshowedthisthatanalysisListisis(2tight. 1=mSince)-competitiveGraham’shavepetitiveinvestigatedwork,manythisproblem.researchers[3–6,8,9,12,16–18]knowntoratiolieinforthealargeintervalnumberThe[1:852ofbest;1machinespossible:923];cf.[1].iscom-nowizedOnlyal.onlinelittlescheduling.isknownaboutFormnon-preemptive=2random-gorithm.[3]giveshowChena4=3-competitiverandomizedmachines,onlineBartalal-etNoteBartalthatanonlineetthisboundloweral.[5]exactlyboundandSgallofmatchesÿ[19](m)forindependentlytheanym¿1.domizedetal.form=2.Seiden[16,17]presentsboundran-ofterministiconlinecounterpartsalgorithmsforwhichm=3outperform;:::;7.theirde-2.Preemptivescheduling
lossThroughoutthissection,wewillassume,withoutjobthehasofgenerality,size1.First,thattothedevelopÿrst(andhencelargest)sequenceoptimalthatwillbeofalgorithm,wedescribetheitsintuitionactionbehindontheusedjobsinofthesize1;thisisalsothesequenceWeSupposebeforeschedulewewanttoachievelowerboundcompetitiveargument.
ratioc¿1.bytimec;theweÿrstdothatmjobsduringthetimeslotsmachinesone(sincekandcthe¿1,twoeachtimejobbyÿllingslotsissplitthemachinesonedonotontooverlap).atmosttwoLetthat= ici=mm=c of.Foritsloadi6kis,thescheduled(m+i)thafterjobisscheduledsojobmachines,machinesisscheduledeachreceivingbeforetimeloadc.c=mThe,andtimeilargesttheconresttheÿrstloadsoftheof1slots=m),whichwillguaranteesbec(1+i=mthat),inc(1+(thei 1)=m);:::;c(1+jobssimilararedonotscheduledoverlap.onlyAfterduringthe(mnextthe+kround,thetimeslots)thjob,afterthecnewinatovaluechoosemanner,enoughofctheonatmostk+1machines.Weneedsorightthatthisvalueschemeofkandworks,thecorrespondingtimesothattheloadweneedtoschedulei.e.,cisbeforelargeForc0is6atk6mostm,wecm.
deÿnevalues m;k
=
2m2+2mk
; m=k=0max;:::;m
m;k:
For any m¿2,letk(m)bethelargestintegersatisfyingm=m;k(m).
Lemmahold(i):2.1.Foreverym¿2thefollowingconditions16 √
m6(1+=≈1:36603.Moreover;as(iii)(ii)m1 6→k(∞m);= (1+2√
m→=2..
m= m ¡m.m¡ m+1Proof.x(i)Obviously16 m;k6(2+x)=(2+x2),where√=for k=mconvergesm1largeand.Thishasrationalfunctionismaximized√forx=andmaximalkvalue√= m√(1+=2.Moreover,(ii)Ifkto+1(16+m= =2.( 1) ,thevalueof m;km;kthen m;k+1=
(2m2+2mk)+2m
¿min
2m2+2mkm;
= m;k;
andkimplies¿thusm= k=k(m).Similarly,wecanverifythat,ifm;k,then m;k 1¿andk(mthusthatk(mk)(¿m)1.=For m= m;kandk=k(m).Thismm¿ .2Wewehavehave m;0=16 m;1m;m¿1,thusguish(iii))=twoLet m= km= 6k(m m= ),andm;m hence¡m.
m= m;k.Wedistin-thatFirst,assumecases.k≥(√
1)m.Inthiscaseweprovein m;k¡ m+1;k,whichimplies m¡ m+1.Pluggingshowsthedeÿnitions2mk¡that(k+1)the2 of¡ m;k and m+1;kandsimplifyingm;km+1;kisequivalentto2m2 2m2 2mk6k.2However,¡the2
assumptionimpliesthat
Second,assume(kk¡+1)(√,and 1)wem.areWedone.
provethatgingm;k¡ m+1;k+1,whichalsoimplies plifyingintheshowsdeÿnitionsthat of¡ m¡ m+1.Plug-m;k and m+1;k+1andsim-m;km+1;k+1isequivalentto(k m)(k2+2km 2m2)+k(3k m+2)¿0:Ourpositive.assumption Fromimpliesthattheÿrsttermisondm= (ii)and(i)weobtainthatk=termm ¿ ism=non-negative,2 ¿m=2 1.andThistheimpliesproofisthatcomplete.
thesec-
半在线调度与减少工件的大小
218S.Seidenetal./OperationsResearchLetters27(2000)215–221
Theorempetitiveemptivedeterministic2.2.Foreverym¿2;thereexistsa mcom-jobsizes.
schedulingonalgorithmmmachinesforsemi-onlinewithdecreasingpre-Proof.integerLetc= m,andletk=k(m)bethelargestalgorithm:forofSupposewhich mthat= atm;kthe.ConsiderthefollowingofingsizetotaltimeTarealreadyscheduledcurrentandmoment,thatajobsjobassignmentanyt6idle1timearrives.betweenWescheduleconsecutiveitwithoutjobintroduc-eralnevercases;overlap:
wetotheprovemachineslaterthatisdescribedtheassignedbelowpieces.timeinslotssev-The1.IfuledT+t6m,wescheduleMorebeforetimec,onthetheÿrstjobmachinesothatitissched-rentscheduleloadprecisely,lessthanifthechasÿrstmachinewithavailable.thecur-onthewholejobonloadit.Ifatnot,mostc t,we2.cIf,anditaportionofthejob,sothattheloadweschedulebecomesitc=m,1T6¿imthe6+resti 1onandtheTnext+t6machine.
m+iforsomeintegerjobofthek,schedulejob,andonscheduleeachoftheÿrstimachines3.inIfStepbefore1.
timecontheÿrstavailabletheremaindermachine,oftheas0tc=m6Ti66mk,+scheduleiandT+onteach¿m+ofitheforÿrstsomeintegeri,ofofthejob,onmachinei+1,(T+t immachines—thethethisjob(orthewholeremainder,ifitis smalleri)c=mremaindercanhappenoftheonlyjobbeforeifi=k),andschedule4.availableIfchinesT¿mmachine,asinStep1.
timecontheÿrstmachinetc=m+kk+of,schedule1.thejob,onandeachtheofremaindertheÿrstonkma-thetotalAtthemomentwherethealgorithmhasassignedinhavetheloadmiddleofmof+somei;i=0jobs),;:::;kthe(thisamachinesmoment1;may2;:comerespectively.loadsexactlyallThiscfollows(1+i=m);c(1+(i 1)=m):;::;:i:+1;c,thatcontributions.ifact¡ktheloadofmachineTheonlyi+non-trivialfromadding1is(notlesspartthethan)istoloadsverifyofc.Forcalculationthat,thiskis=truein alreadyaftertotalsizem(fromthethem=cnext ).Forparagraph.
i=k,itfollowsfromthescheduledBeforetimebeforem+timek,thecis
totalsizeofportionsofjobsm+k k(k+1)c
=cm
usingclaimthedeÿnitionofkandc= k.Thisimpliestheittimeisactuallyinthepreviouspossibleparagraph.toÿtallAlso,thisimpliesthatsamec.Theyarescheduledsothatthesenotwoportionspartsbeforeofsincejobrunatthesametimeondi erentmachines,theaAfterc¿1.
loadssingletotalc=mofmachineloadanytwoafterm,theofthesetimeportionofajobscheduledonmachinescisatmostdi erc=m.Sincethescheduledatalltimes,thesepiecesdonotoverlap.byForataleastjobmassigned+i,itatatotalloadT¡m+ibutÿnishedaftermachinemachineitoisstartsmachinesalsonecessaryatloadicandto(1+(iarguethatitsportionsT++11are notinparallel:mneed i)=mi),+1startsatcandÿnishesatm c(1i)+=m(),Twhile+t onwithmachinetoverifywhichk+1isthatissmallerinStepthesincet.Thelastfactwe4remaindersarenotscheduledofjobsscheduledinparallelakjobotherdi er= m=cofsizeportionsbyat .tisatofmostthesamet ktc=mjob.The¡tc=mremainder,becauseofleastThusc=mtheloadsofmachineskandk+1theTheabovecompetitiveclaimsaboutratioaftertheoftimetheloadsalgorithmm+k.
ofthealgorithm.isimpliedbyTheoremgorithm2.3.No(deterministicorrandomizedmcompetitive¿2machinesforsemi-onlineratiowithlessdecreasingpreemptivethan jobsizesscheduling)al-canhaveonam.
Proof.poseFixk6mandthatratioonthatthealgorithmisarandomizedc-competitive.algorithm.WewillproveSup-mLetisatheatsequenceleastrandomized ofm+kunitjobsthecompetitivem;k.Thisalgorithmimpliesrunc¿on m.
ai+kunitjobs.LetXsequenceofibethelasttimewhenatnotejobsisrandomized.thatareXrunningisa(afterschedulingallm+kjobs);leastiWerandomclaimvariable,thatfor0since6i6thek,
algorithmE[Xk+1 i]6
c(m+i)
:(2)Asthelongÿrstmas+ki+jobs1 isijobsrunning.arerunning,Therefore,atleasttheaverageoneof
半在线调度与减少工件的大小
S.Seidenetal./OperationsResearchLetters27(2000)215–221219
makespanleastmE[Xofthealgorithmontheÿrstm+ijobsisatk+1 i].Sincethefollows+ijobsThefromhasthemakespanoptimalc-competitiveness(m+i)=mschedulefortheseof,inequality(2)foreverytotalsizerandomofjobschoice,scheduledatmost
bythethealgorithmalgorithm.is, mXi6
kXi+(m k)Xk+1:
i=1
i=1
Thisobtain
sizehastobeatleastm+k,andbyusing(2)wem+k6
k Xi+(m k)Xk+16cm+k(k+1):i=1
(3)
Thislows.
isequivalenttoc¿ m;k.Thelowerboundfol-Corollaryrithm2.4.Thereexistsdecreasingforsemi-onlineadeterministicalgo-(1jobsizespreemptiveschedulingwithcan+√
achieve=2a≈better1:36603.whosecompetitiveratioiscompetitiveNorandomizedratio.algorithm3.Non-preemptivedeterministicschedulingTheoremsemi-online3.1.ingmjobsizesnon-preemptiveAnydeterministichascompetitiveschedulingalgorithmratioatwithforleastdecreas-√7=for=ingm2=;and3.Moreovercompetitive;forratiom=atleast(1+6for=6[11]).
7=6-competitivedeterministic2therealgorithmexistsa(match-duetoProof.instanceThecasem=2followsasin2.onIfadeterministicwith2jobsofalgorithmsize3followed[11]:putsthebyConsideran2jobs3jobsofsizeitstheofcompetitivesamemachine,ratioisnoatotherleastjobs2.Ifmayitputsarrive;ofsize3thehence,onsize3ondi erentmachines,itis7=2jobscompetitiveGraham’stightupperboundratiosequence.ofofListGraham[11]shows6-competitivethatthe7=6isfor4=m3 =12.
=(3m),thisgivesaboundNext,of
considerthecasem=3.Weshowalowerc=
1+√≈1:18046:Letjobxthreelist:=(7x; x;3c1) =6x;≈10 :57643.x;1Considerthefollowing(otherwisejobsmust=3;1=3and1=3.Theÿrst3thecompetitivegoonthreeratiopairwiseisatdistinctleastmachinesplacedc)¿1jobs,on:73479thesame¿c).1=x=6=(7 machineConsiderthefourthjob.Ifitisoptimalthen2o inethealgorithm’smakespanismakespanasone2(1 x);isofnote1,thewhereasÿrsttwothat1=(2thesamex)=3ÿnalmachine=(3c 1)as=thec.If thirdthefourthjob,jobisplacedonthemakespanmakespanonlinealgorithmfortheisathasentireleastcompetitivelist7=3is then1.2xthealgorithm’sratioSummarizing,=c.Theoptimalatleastc.any4.Non-preemptiverandomizedscheduling
non-preemptiveInthissection,wediscussrandomizedsemi-onlineonboundsm=2schedulingwithdecreasingjobsizesofmachines.8=7forthisWeproblem.
givematchinglowerandupperTheoremonlinesizesnon-preemptive4.1.Norandomizedschedulingalgorithmwithdecreasingforsemi-jobbetteronthanm=82=7.
machinescanhaveacompetitiveratioProof.ofalgorithmsize3Wefollowedconsideraprobleminstancewith2jobschinepetitivewithplacesby3jobsofsize2,asin[11].Iftheprobabilitytheÿrstmoretwothanjobs1onthesamema-andgorithmweratioaredone.isatleastIf((1=7)×6+(6=7,=7)then×3)the=3=8com-=7tiontheremainingnot,threethejobs.adversaryTheoptimalgivesthesolu-al-2linejobsplacesthe2size3jobstogetherandthe3size1jobs=7.algorithmtogether,Iftheonlinecanyieldingalgorithmdothisamakespanwithof6.Theon-hasprobabilityplacedthe2atmostachieveon((1=7)×isseparate67.machines,thebestmakespansizeitcan3+Therefore,(6=7)×7)the=6=competitive8=7.
ratioisatleastTheoremcompetitive4.2.Thereexistsschedulingchines.
withalgorithmarandomized8=7-decreasingforsemi-onlinejobsizesnon-preemptiveonm=2ma-Proof.placestheWeÿrstcalltwoourjobsmachinesonmachineAandABwith.Theprobability
algorithm
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 邮政电子信函业务大有可为
- [最新]2012新国际博览中间展事
- 物资盘点管理手册
- 仓库库存量管理制度
- 展会招商策划与展会宣传推广
- 2012中国(上海)国际礼品、家用品博览会(春季)[整理版]
- 2014年3月18农业部展会工作管理办法
- 供应链物流监控智能决策支持系统研究
- 某地产项目房展会期间营销策划活动方案
- 农业部展会工作管理办法
- 多次装配型企业供应链物流管理系统研究及设计硕士论文
- [宝典]2012年11月份展会信息汇总
- 2014_2015国外金属行业展会项目
- 物资验收管理手册
- [资料]展会不是“摆摊”,企业要做好参展任务
- 第三方物流参考资料
- 仓库出库管理手册
- [教学]2012年7月份展会信息汇总
- 隐喻在家居用品设计中的应用研究
- 集团办公用品管理制度
- 中咨康复类展会信息
- 仓库库存控制管理手册
- 仓库温湿度管理细则
- 展会需转型 广州家具展迎最后一届秋季展
- 2012哈尔滨泵阀展会邀请函文档
- 2012年河北展会信息汇总
- 展会策划书文案写作结构和要求
- 怎样做好展会策划
- 办公用品采购管理制度(含劳保用品)
- 基于供应链的电网物资供应企业构建与应用研究
网友关注视频
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 二年级下册数学第三课 搭一搭⚖⚖
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
- 北师大版小学数学四年级下册第15课小数乘小数一
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 外研版英语七年级下册module3 unit2第二课时
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 苏科版八年级数学下册7.2《统计图的选用》
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 苏教版二年级下册数学《认识东、南、西、北》
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 冀教版英语三年级下册第二课
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 冀教版小学英语四年级下册Lesson2授课视频
- 人教版历史八年级下册第一课《中华人民共和国成立》
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理