Additive maps preserving commutativity up to a factor on nest algebras
上传者:曹轶|上传时间:2015-04-24|密次下载
Additive maps preserving commutativity up to a factor on nest algebras
This article was downloaded by: [Beijing Institute of Technology]
On: 28 March 2015, At: 18:26
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
内容需要下载文档才能查看 内容需要下载文档才能查看office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UKLinear and Multilinear Algebra
Publication details, including instructions for authors and
subscription information:Additive maps preserving
commutativity up to a factor on nest
algebras
Meiyan Jiao & Xiaofei Qi
aab Department of Applied Mathematics, Shanxi University of
Finance & Economics, Taiyuan, P.R. China.
b Department of Mathematics, Shanxi University, Taiyuan, P.R.
China.
Published online: 18 Jul 2014.
内容需要下载文档才能查看PLEASE SCROLL DOWN FOR ARTICLE
Taylor & Francis makes every effort to ensure the accuracy of all the information (the“Content”) contained in the publications on our platform. However, Taylor & Francis,our agents, and our licensors make no representations or warranties whatsoever as tothe accuracy, completeness, or suitability for any purpose of the Content. Any opinionsand views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Contentshould not be relied upon and should be independently verified with primary sourcesof information. Taylor and Francis shall not be liable for any losses, actions, claims,proceedings, demands, costs, expenses, damages, and other liabilities whatsoever orhowsoever caused arising directly or indirectly in connection with, in relation to or arisingout of the use of the Content.
This article may be used for research, teaching, and private study purposes. Anysubstantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
内容需要下载文档才能查看
Downloaded by [Beijing Institute of Technology] at 18:26 28 March 2015
LinearandMultilinearAlgebra,2015
Vol.63,No.6,1242–1256,http://wendang.chazidian.com/10.1080/03081087.2014.927985
Additivemapspreservingcommutativityuptoafactoronnest
algebras
MeiyanJiaoa?andXiaofeiQib
aDepartmentofAppliedMathematics,ShanxiUniversityofFinance&Economics,Taiyuan,
P.R.China;bDepartmentofMathematics,ShanxiUniversity,Taiyuan,P.R.China
Downloaded by [Beijing Institute of Technology] at 18:26 28 March 2015 CommunicatedbyB.Kuzma(Received30April2014;accepted5May2014)LetNandMbetwonestswithN∈NandM∈McomplementedinNandMwheneverN?=NandM?=M,respectively.Assumethat??:AlgN→AlgMisaunitaladditivesurjection.Inthispaper,alladditivemaps??preservingcommutativityuptoafactorξ(ξ=0,±1)inbothdirections(i.e.??satis?es??(A)??(B)=ξ??(B)??(A)ifandonlyifAB=ξBAforallA,B∈AlgN)arecharacterized.Keywords:nestalgebras;commutativityuptoafactor;JordanisomorphismsAMSSubjectClassi?cations:Primary:47B49;47A121.IntroductionLetAandBbetwoassociativeringsoralgebras.Recallthatanadditivemap??:A→Bpreserveszero-products(inbothdirections)if,forA,B∈A,??(A)??(B)=0whenever(ifandonlyif)AB=0;preservesJordanzero-products(inbothdirections)if,forA,B∈A,??(A)??(B)+??(B)??(A)=0whenever(ifandonlyif)AB+BA=0;preservesLiezero-products(inbothdirections)if,forA,B∈A,??(A)??(B)???(B)??(A)=0whenever(ifandonlyif)AB?BA=0.Thequestionofcharacterizingadditivemapspreservingzero-products(Jordanzero-productsorLiezero-products)hasbeendiscussed,sayin[1–5](seealsoreferencestherein).LetAandBbetwoalgebrasovera?eldF.Forx,y∈Aandξ∈F,ifxy=ξyx,wesaythatxandyarecommutativeuptoafactorξ.Thecommutativityuptoafactor
forpairsofoperatorshasbeenthesubjectofstudyinthecontextofquantumgroups,[6]andtheirmatrixrealizationsgiveexamplesofoperatorpairscommutinguptoafactor.[7]Recallthatanadditivemap??:A→Bpreservescommutativityuptoafactorξinbothdirectionsif,foreveryA,B∈A,??(A)??(B)=ξ??(B)??(A)ifandonlyifAB=ξBA.ItisclearthattheconceptcorrespondstotheabovepreservingLiezero-productsinbothdirections,preservingzero-productsinbothdirectionsandpreservingJordanzero-productsinbothdirectionsifξ=1,0,?1respectively.Cuietal.in[8]characterizedtheunitaladditivesurjectivemapspreservingcommutativityuptoafactorξ(ξ=0,±1)inbothdirectionsbetweenstandardoperatoralgebrasonrealandcomplexin?nite-dimensional?Correspondingauthor.Email:jmyzgl@http://wendang.chazidian.com
©2014Taylor&Francis
LinearandMultilinearAlgebra1243
Banachspaces.Molnár[9]gaveacharacterizationofbijectivelinearmapspreservingcommutativityuptoafactorinbothdirectionsonthealgebraofn×ncomplexmatricesandonthespaceofalln×nself-adjointmatrices,respectively.Here,weremarkthat,in
[9],theconceptofcommutativityuptoafactorisslightlydifferentfromwhatwegive.Theauthor[9]saidthatamap??preservescommutativityuptoafactorinbothdirectionsif,foranyAandB,AB=ξBAforsomeξifandonlyif??(A)??(B)=η??(B)??(A)forsomeη,whereξandηmaybedifferent.Obviously,ourde?nitionismorerestrictive.Thepurposeofthepresentpaperistocharacterizetheadditivemapspreservingcom-mutativityuptoafactorξinbothdirectionsonanotherimportantoperatoralgebra:nestalgebras.Notethatnestalgebrasareneitherself-adjointnorsemi-simpleandprime.Itshouldbepointedoutthat,forthecaseξ=0,HouandZhang[5]characterizedadditivesurjections??with??(I)af?ne(thatis,??(I)injectivewithdenserange)betweennestalgebrasonin?nite-dimensionalBanachspaceswhichpreservezero-productsinbothdirections;forthecaseξ=?1,HouandJiao[3]provedthat,undersomemildconditionsonnests,anunitaladditivesurjectivemap??betweennestalgebraspreservesJordanzero-productsinbothdirectionsifandonlyif??iseitheraringisomorphismoraringanti-isomorphism;forthecaseξ=1,Benkovic?andEremita[10]gaveacompletecharacterizationofalladditivebijectivemapspreservingcommutativityinbothdirectionbetweennestalgebras,undertheadditionalassumptionoftheexistenceofacomplementednontrivialelementinthenest.Hence,wedealwiththecaseξ=0,±1inthispaper.
LetXandYbeBanachspacesovertherealorcomplex?eldF.Asusual,B(X)andF(X)denotetheBanachspaceofallboundedlinearoperatorsfromXintoXandthesubspaceofall?niterankoperatorsinB(X),respectively.AnestonXisachainNofclosed(undernormtopology)subspacesofXcontaining{0}??andX,whichisclosedunderthe??formationofarbitraryclosedlinearspan(denotedby)andintersection(denotedby).AlgNdenotestheassociatednestalgebra,whichisthesetofalloperatorsTinB(X)suchthatTN?NforeveryelementN∈N.WhenN={{0},X},wesaythatNisnontrivial.ItisclearthatifNis.ForN∈N,let????trivial,thenAlgN=B(X)⊥N?={M∈N|M?N},N+={M∈N|N?M}andN?=(N?)⊥,whereN⊥={f∈X?|N?ker(f)}andX?isthedualofX.Let{0}?=0andX+=X.Itiswellknownthatarankoneoperatorx?fbelongstoAlgNifandonlyifthereissome⊥.DenotebyAlgNthesetofall?niterankoperatorsN∈Nsuchthatx∈Nandf∈N?FinAlgN.ItisknownthatAlgFNisadensesubsetofAlgNunderthestrongoperatortopology.Formoreinformationonnestalgebras,wereferto[11].
Thepaperisorganizedasfollows.InSection2,welistthemainresultsobtainedinthepresentpaper.InSection3,wegivesomelemmas,whichareneededforprovingourmainresults.Section4isdevotedtoproofsofthemainresults.
2.Mainresults
Inthissection,wewillstatethemainresultsinthispaper.
Theorem2.1LetNandMbenestsonin?nite-dimensionalBanachspacesXandYovertherealorcomplex?eldF,respectively,withN∈NandM∈McomplementedinXandYrespectivelywheneverN?=NandM?=M.Let??:AlgN→AlgMbeaunitaladditivesurjectivemap.Then??preservescommutativityuptoafactorξinbothdirectionswithξ=0,±1ifandonlyifoneofthefollowingsholds.Downloaded by [Beijing Institute of Technology] at 18:26 28 March 2015
1244
(1)M.JiaoandX.QiIfξ∈R,thenthereexistadimensionpreservingorderisomorphismθ:N→M
andaninvertibleboundedlinearorconjugate-linearoperatorT:X→YsuchthatT(N)=θ(N)foreveryN∈Nand??(A)=TAT?1forallA∈AlgN.Ifξ∈C\Rand|ξ|=1,thenthereexistadimensionpreservingorderisomorphismθ:N→MandaninvertibleboundedlinearoperatorT:X→YsuchthatT(N)=θ(N)foreveryN∈Nand??(A)=TAT?1forallA∈AlgN.
If|ξ|=1,theneitherthereexistadimensionpreservingorderisomorphismθ:N→MandaninvertibleboundedlinearoperatorT:X→YsuchthatT(N)=θ(N)foreveryN∈Nand??(A)=TAT?1forallA∈AlgN,orthereexistadimensionpreservingorderisomorphismθ:N⊥→Mandaninvertible⊥)=θ(N⊥)forboundedconjugate-linearoperatorT:X?→YsuchthatT(N????1everyN∈Nand??(A)=TATforallA∈AlgN.(2)(3)
Downloaded by [Beijing Institute of Technology] at 18:26 28 March 2015 SinceeverylinearsubspaceofaHilbertspaceiscomplemented,thefollowingcorollaryisimmediatefromTheorem2.1.Corollary2.2LetNandMbenestsonin?nite-dimensionalHilbertspacesHandKoverthe(realorcomplex)?eldF,respectively.Let??:AlgN→AlgMbeaunitaladditivesurjectivemap.Then??preservescommutativityuptoafactorξinbothdirectionswithξ=0,±1ifandonlyifoneofthethreeformsinTheorem2.1holds.Forthe?nite-dimensionalcase,itisclearthateverynestalgebraon?nite-dimensionalspacesisisomorphictoanuppertriangularblockmatrixalgebra.LetMn=Mn(F)bethematrixalgebraoverthe?eldF.LetT=T(n1,n2,...,nk)?Mnbeanuppertriangularblockmatrixsubalgebra,i.e.n1+n2+...+nk=n,T={A=(Aij)k×k|Aij∈Mni,njandAij=0ifi>j}.Theorem2.3LetFbetherealorcomplex?eld,andm,nbepositiveintegersgreaterthan1.LetT=T(n1,n2,...,nk)?Mn(F)andS=T(m1,m2,...,mr)?Mm(F)beuppertriangularblockmatrixalgebras,and??:T→Sbeaunitaladditivesurjectivemap.Then??preservescommutativityuptoafactorξinbothdirectionswithξ=0,±1ifandonlyifoneofthefollowingsholds.(1)(n1,n2,...,nk)=(m1,m2,...,mr),thereexistanautomorphismτ:F→Fwithτ(ξ)=ξandaninvertiblematrixT∈Tsuchthat??(A)=TAτT?1forallA∈T;(n1,n2,...,nk)=(mr,mr?1,...,m1),thereexistanautomorphismτ:F→F1andaninvertibleblockmatrixT=(Tij)k×kwithTij∈Mni,njandwithτ(ξ)=?1forallA∈T.Tij=0wheneveri+j>k+1,suchthat??(A)=TAtrτT
HereAτ=(τ(aij))n×nforA=(aij)n×n∈Mn(F)andAtristhetransposeofA.In(1),ifF=R,thenτ=id(i.e.τ(t)=tforallt∈R).(2)
Particularly,if??islinear,wehavethefollowingresults.
Theorem2.4LetFbetherealorcomplex?eld,andm,nbepositiveintegersgreaterthan1.LetT=T(n1,n2,...,nk)?Mn(F)andS=T(m1,m2,...,mr)?Mm(F)beuppertriangularblockmatrixalgebras.Assumethat??:T→Sisalinearsurjective
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 跨部门的高效沟通与协作Word
- 2017湖北农信社招聘考试每日一练(3月9日)答案
- 货币金融学_06商业银行Word
- 如何做好客户的后续经营Word
- 第4章复式记账Word
- “小叛徒”Word
- 人教版数学七年级下《相交线与平行线》复习Word课件答案
- 货币金融学_09货币需求Word
- 2017湖北农信社招聘考试每日一练(3月22日)答案
- more than a millon miles 日文歌词
- 一种基于特征光谱匹配的多色分色方法_杨晟炜
- 2017年度广西专业技术人员继续教育公共科目公需“互联网+”开放合作考试答案
- 货币金融学_05金融市场Word
- 黑龙江2015年基金从业《基金基础知识》:证券投资基金概述模拟试题答案
- OnTheASPToMaintainTheSecurityOfApplications论维护ASP应用程序的安全性大学毕业论文外文文献翻译及原文
- 幼儿园管理制度
- ISO14001: 2015标准培训Word
- 微信营销Word
- 已修改的2017年重庆市专业技术人员继续教育考试答案
- 中美经贸关系与美国对华的高新技术转让 的课程考试80分答案
- 货币金融学_07中央银行Word
- 2017年“互联网+”开放合作100分
- 89《当前形式主义的表现及危害》试卷答案
- 日常的抱怨
- 英语26个字母书写Word
- 项目7 实现电子商务物流Word
- 最佳员工评选参考指引2016.3.30Word
- 2017幼儿园小班班务计划
- 大学生心理健康标准综述
- 二方连续图案设计Word
网友关注视频
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 冀教版小学数学二年级下册第二单元《租船问题》
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 七年级下册外研版英语M8U2reading
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 外研版英语三起6年级下册(14版)Module3 Unit2
- 冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 外研版八年级英语下学期 Module3
- 《空中课堂》二年级下册 数学第一单元第1课时
- 北师大版数学四年级下册3.4包装
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
- 苏科版八年级数学下册7.2《统计图的选用》
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 北师大版数学四年级下册第三单元第四节街心广场
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 外研版英语七年级下册module1unit3名词性物主代词讲解
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理