Additive maps preserving commutativity up to a factor on nest algebras
上传者:曹轶|上传时间:2015-04-24|密次下载
Additive maps preserving commutativity up to a factor on nest algebras
This article was downloaded by: [Beijing Institute of Technology]
On: 28 March 2015, At: 18:26
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
内容需要下载文档才能查看 内容需要下载文档才能查看office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UKLinear and Multilinear Algebra
Publication details, including instructions for authors and
subscription information:Additive maps preserving
commutativity up to a factor on nest
algebras
Meiyan Jiao & Xiaofei Qi
aab Department of Applied Mathematics, Shanxi University of
Finance & Economics, Taiyuan, P.R. China.
b Department of Mathematics, Shanxi University, Taiyuan, P.R.
China.
Published online: 18 Jul 2014.
内容需要下载文档才能查看PLEASE SCROLL DOWN FOR ARTICLE
Taylor & Francis makes every effort to ensure the accuracy of all the information (the“Content”) contained in the publications on our platform. However, Taylor & Francis,our agents, and our licensors make no representations or warranties whatsoever as tothe accuracy, completeness, or suitability for any purpose of the Content. Any opinionsand views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Contentshould not be relied upon and should be independently verified with primary sourcesof information. Taylor and Francis shall not be liable for any losses, actions, claims,proceedings, demands, costs, expenses, damages, and other liabilities whatsoever orhowsoever caused arising directly or indirectly in connection with, in relation to or arisingout of the use of the Content.
This article may be used for research, teaching, and private study purposes. Anysubstantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
内容需要下载文档才能查看
Downloaded by [Beijing Institute of Technology] at 18:26 28 March 2015
LinearandMultilinearAlgebra,2015
Vol.63,No.6,1242–1256,http://wendang.chazidian.com/10.1080/03081087.2014.927985
Additivemapspreservingcommutativityuptoafactoronnest
algebras
MeiyanJiaoa?andXiaofeiQib
aDepartmentofAppliedMathematics,ShanxiUniversityofFinance&Economics,Taiyuan,
P.R.China;bDepartmentofMathematics,ShanxiUniversity,Taiyuan,P.R.China
Downloaded by [Beijing Institute of Technology] at 18:26 28 March 2015 CommunicatedbyB.Kuzma(Received30April2014;accepted5May2014)LetNandMbetwonestswithN∈NandM∈McomplementedinNandMwheneverN?=NandM?=M,respectively.Assumethat??:AlgN→AlgMisaunitaladditivesurjection.Inthispaper,alladditivemaps??preservingcommutativityuptoafactorξ(ξ=0,±1)inbothdirections(i.e.??satis?es??(A)??(B)=ξ??(B)??(A)ifandonlyifAB=ξBAforallA,B∈AlgN)arecharacterized.Keywords:nestalgebras;commutativityuptoafactor;JordanisomorphismsAMSSubjectClassi?cations:Primary:47B49;47A121.IntroductionLetAandBbetwoassociativeringsoralgebras.Recallthatanadditivemap??:A→Bpreserveszero-products(inbothdirections)if,forA,B∈A,??(A)??(B)=0whenever(ifandonlyif)AB=0;preservesJordanzero-products(inbothdirections)if,forA,B∈A,??(A)??(B)+??(B)??(A)=0whenever(ifandonlyif)AB+BA=0;preservesLiezero-products(inbothdirections)if,forA,B∈A,??(A)??(B)???(B)??(A)=0whenever(ifandonlyif)AB?BA=0.Thequestionofcharacterizingadditivemapspreservingzero-products(Jordanzero-productsorLiezero-products)hasbeendiscussed,sayin[1–5](seealsoreferencestherein).LetAandBbetwoalgebrasovera?eldF.Forx,y∈Aandξ∈F,ifxy=ξyx,wesaythatxandyarecommutativeuptoafactorξ.Thecommutativityuptoafactor
forpairsofoperatorshasbeenthesubjectofstudyinthecontextofquantumgroups,[6]andtheirmatrixrealizationsgiveexamplesofoperatorpairscommutinguptoafactor.[7]Recallthatanadditivemap??:A→Bpreservescommutativityuptoafactorξinbothdirectionsif,foreveryA,B∈A,??(A)??(B)=ξ??(B)??(A)ifandonlyifAB=ξBA.ItisclearthattheconceptcorrespondstotheabovepreservingLiezero-productsinbothdirections,preservingzero-productsinbothdirectionsandpreservingJordanzero-productsinbothdirectionsifξ=1,0,?1respectively.Cuietal.in[8]characterizedtheunitaladditivesurjectivemapspreservingcommutativityuptoafactorξ(ξ=0,±1)inbothdirectionsbetweenstandardoperatoralgebrasonrealandcomplexin?nite-dimensional?Correspondingauthor.Email:jmyzgl@http://wendang.chazidian.com
©2014Taylor&Francis
LinearandMultilinearAlgebra1243
Banachspaces.Molnár[9]gaveacharacterizationofbijectivelinearmapspreservingcommutativityuptoafactorinbothdirectionsonthealgebraofn×ncomplexmatricesandonthespaceofalln×nself-adjointmatrices,respectively.Here,weremarkthat,in
[9],theconceptofcommutativityuptoafactorisslightlydifferentfromwhatwegive.Theauthor[9]saidthatamap??preservescommutativityuptoafactorinbothdirectionsif,foranyAandB,AB=ξBAforsomeξifandonlyif??(A)??(B)=η??(B)??(A)forsomeη,whereξandηmaybedifferent.Obviously,ourde?nitionismorerestrictive.Thepurposeofthepresentpaperistocharacterizetheadditivemapspreservingcom-mutativityuptoafactorξinbothdirectionsonanotherimportantoperatoralgebra:nestalgebras.Notethatnestalgebrasareneitherself-adjointnorsemi-simpleandprime.Itshouldbepointedoutthat,forthecaseξ=0,HouandZhang[5]characterizedadditivesurjections??with??(I)af?ne(thatis,??(I)injectivewithdenserange)betweennestalgebrasonin?nite-dimensionalBanachspaceswhichpreservezero-productsinbothdirections;forthecaseξ=?1,HouandJiao[3]provedthat,undersomemildconditionsonnests,anunitaladditivesurjectivemap??betweennestalgebraspreservesJordanzero-productsinbothdirectionsifandonlyif??iseitheraringisomorphismoraringanti-isomorphism;forthecaseξ=1,Benkovic?andEremita[10]gaveacompletecharacterizationofalladditivebijectivemapspreservingcommutativityinbothdirectionbetweennestalgebras,undertheadditionalassumptionoftheexistenceofacomplementednontrivialelementinthenest.Hence,wedealwiththecaseξ=0,±1inthispaper.
LetXandYbeBanachspacesovertherealorcomplex?eldF.Asusual,B(X)andF(X)denotetheBanachspaceofallboundedlinearoperatorsfromXintoXandthesubspaceofall?niterankoperatorsinB(X),respectively.AnestonXisachainNofclosed(undernormtopology)subspacesofXcontaining{0}??andX,whichisclosedunderthe??formationofarbitraryclosedlinearspan(denotedby)andintersection(denotedby).AlgNdenotestheassociatednestalgebra,whichisthesetofalloperatorsTinB(X)suchthatTN?NforeveryelementN∈N.WhenN={{0},X},wesaythatNisnontrivial.ItisclearthatifNis.ForN∈N,let????trivial,thenAlgN=B(X)⊥N?={M∈N|M?N},N+={M∈N|N?M}andN?=(N?)⊥,whereN⊥={f∈X?|N?ker(f)}andX?isthedualofX.Let{0}?=0andX+=X.Itiswellknownthatarankoneoperatorx?fbelongstoAlgNifandonlyifthereissome⊥.DenotebyAlgNthesetofall?niterankoperatorsN∈Nsuchthatx∈Nandf∈N?FinAlgN.ItisknownthatAlgFNisadensesubsetofAlgNunderthestrongoperatortopology.Formoreinformationonnestalgebras,wereferto[11].
Thepaperisorganizedasfollows.InSection2,welistthemainresultsobtainedinthepresentpaper.InSection3,wegivesomelemmas,whichareneededforprovingourmainresults.Section4isdevotedtoproofsofthemainresults.
2.Mainresults
Inthissection,wewillstatethemainresultsinthispaper.
Theorem2.1LetNandMbenestsonin?nite-dimensionalBanachspacesXandYovertherealorcomplex?eldF,respectively,withN∈NandM∈McomplementedinXandYrespectivelywheneverN?=NandM?=M.Let??:AlgN→AlgMbeaunitaladditivesurjectivemap.Then??preservescommutativityuptoafactorξinbothdirectionswithξ=0,±1ifandonlyifoneofthefollowingsholds.Downloaded by [Beijing Institute of Technology] at 18:26 28 March 2015
1244
(1)M.JiaoandX.QiIfξ∈R,thenthereexistadimensionpreservingorderisomorphismθ:N→M
andaninvertibleboundedlinearorconjugate-linearoperatorT:X→YsuchthatT(N)=θ(N)foreveryN∈Nand??(A)=TAT?1forallA∈AlgN.Ifξ∈C\Rand|ξ|=1,thenthereexistadimensionpreservingorderisomorphismθ:N→MandaninvertibleboundedlinearoperatorT:X→YsuchthatT(N)=θ(N)foreveryN∈Nand??(A)=TAT?1forallA∈AlgN.
If|ξ|=1,theneitherthereexistadimensionpreservingorderisomorphismθ:N→MandaninvertibleboundedlinearoperatorT:X→YsuchthatT(N)=θ(N)foreveryN∈Nand??(A)=TAT?1forallA∈AlgN,orthereexistadimensionpreservingorderisomorphismθ:N⊥→Mandaninvertible⊥)=θ(N⊥)forboundedconjugate-linearoperatorT:X?→YsuchthatT(N????1everyN∈Nand??(A)=TATforallA∈AlgN.(2)(3)
Downloaded by [Beijing Institute of Technology] at 18:26 28 March 2015 SinceeverylinearsubspaceofaHilbertspaceiscomplemented,thefollowingcorollaryisimmediatefromTheorem2.1.Corollary2.2LetNandMbenestsonin?nite-dimensionalHilbertspacesHandKoverthe(realorcomplex)?eldF,respectively.Let??:AlgN→AlgMbeaunitaladditivesurjectivemap.Then??preservescommutativityuptoafactorξinbothdirectionswithξ=0,±1ifandonlyifoneofthethreeformsinTheorem2.1holds.Forthe?nite-dimensionalcase,itisclearthateverynestalgebraon?nite-dimensionalspacesisisomorphictoanuppertriangularblockmatrixalgebra.LetMn=Mn(F)bethematrixalgebraoverthe?eldF.LetT=T(n1,n2,...,nk)?Mnbeanuppertriangularblockmatrixsubalgebra,i.e.n1+n2+...+nk=n,T={A=(Aij)k×k|Aij∈Mni,njandAij=0ifi>j}.Theorem2.3LetFbetherealorcomplex?eld,andm,nbepositiveintegersgreaterthan1.LetT=T(n1,n2,...,nk)?Mn(F)andS=T(m1,m2,...,mr)?Mm(F)beuppertriangularblockmatrixalgebras,and??:T→Sbeaunitaladditivesurjectivemap.Then??preservescommutativityuptoafactorξinbothdirectionswithξ=0,±1ifandonlyifoneofthefollowingsholds.(1)(n1,n2,...,nk)=(m1,m2,...,mr),thereexistanautomorphismτ:F→Fwithτ(ξ)=ξandaninvertiblematrixT∈Tsuchthat??(A)=TAτT?1forallA∈T;(n1,n2,...,nk)=(mr,mr?1,...,m1),thereexistanautomorphismτ:F→F1andaninvertibleblockmatrixT=(Tij)k×kwithTij∈Mni,njandwithτ(ξ)=?1forallA∈T.Tij=0wheneveri+j>k+1,suchthat??(A)=TAtrτT
HereAτ=(τ(aij))n×nforA=(aij)n×n∈Mn(F)andAtristhetransposeofA.In(1),ifF=R,thenτ=id(i.e.τ(t)=tforallt∈R).(2)
Particularly,if??islinear,wehavethefollowingresults.
Theorem2.4LetFbetherealorcomplex?eld,andm,nbepositiveintegersgreaterthan1.LetT=T(n1,n2,...,nk)?Mn(F)andS=T(m1,m2,...,mr)?Mm(F)beuppertriangularblockmatrixalgebras.Assumethat??:T→Sisalinearsurjective
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 高中语文写作教学
- 走过——回忆
- 楼底中学安全办致学生家长的一封信
- 第七课编辑文字
- 素描几何体教案
- 4.7人生的另一种财富
- 初三学生入团申请书2015范文
- 诵读活动计划
- 民和小学关于进城务工人员子女就读制度
- 话题作文 高度
- 第三课 华夏之祖
- 初一学生入团申请书范文
- 7 发展生产 满足消费
- 让我们选择坚强导学案
- 初二学生入团申请书模板
- 会设分论点,说理深入而丰实
- 八年级下册合作与共赢教学设计
- 说课稿 李佳
- 初中班级管理平时表现奖惩班级管理量化管理制度
- 作文万能技巧
- 初一新生入学带班经验略谈
- 福州市2013-2014学年第一学期九年级期末质量检测思想品德试卷及答案
- 问渠那得清如许
- 改写《与朱元思书》
- 各校指标及科目分配情况表
- 《舞动青春》分解动作
- 八年级上册数学 13.1轴对称教学设计
- 全国中小学系列武术健身操《英雄少年》
- 教案7 利润表2
- 学会消费维权说课稿3.27
网友关注视频
- 人教版二年级下册数学
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 冀教版英语四年级下册第二课
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
- 冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
- 七年级英语下册 上海牛津版 Unit3
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 七年级下册外研版英语M8U2reading
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 外研版英语三起6年级下册(14版)Module3 Unit2
- 北师大版数学四年级下册3.4包装
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
- 《小学数学二年级下册》第二单元测试题讲解
- 人教版历史八年级下册第一课《中华人民共和国成立》
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 小学英语单词
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理