Additive maps preserving commutativity up to a factor on nest algebras
上传者:曹轶|上传时间:2015-04-24|密次下载
Additive maps preserving commutativity up to a factor on nest algebras
This article was downloaded by: [Beijing Institute of Technology]
On: 28 March 2015, At: 18:26
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
内容需要下载文档才能查看 内容需要下载文档才能查看office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UKLinear and Multilinear Algebra
Publication details, including instructions for authors and
subscription information:Additive maps preserving
commutativity up to a factor on nest
algebras
Meiyan Jiao & Xiaofei Qi
aab Department of Applied Mathematics, Shanxi University of
Finance & Economics, Taiyuan, P.R. China.
b Department of Mathematics, Shanxi University, Taiyuan, P.R.
China.
Published online: 18 Jul 2014.
内容需要下载文档才能查看PLEASE SCROLL DOWN FOR ARTICLE
Taylor & Francis makes every effort to ensure the accuracy of all the information (the“Content”) contained in the publications on our platform. However, Taylor & Francis,our agents, and our licensors make no representations or warranties whatsoever as tothe accuracy, completeness, or suitability for any purpose of the Content. Any opinionsand views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Contentshould not be relied upon and should be independently verified with primary sourcesof information. Taylor and Francis shall not be liable for any losses, actions, claims,proceedings, demands, costs, expenses, damages, and other liabilities whatsoever orhowsoever caused arising directly or indirectly in connection with, in relation to or arisingout of the use of the Content.
This article may be used for research, teaching, and private study purposes. Anysubstantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
内容需要下载文档才能查看
Downloaded by [Beijing Institute of Technology] at 18:26 28 March 2015
LinearandMultilinearAlgebra,2015
Vol.63,No.6,1242–1256,http://wendang.chazidian.com/10.1080/03081087.2014.927985
Additivemapspreservingcommutativityuptoafactoronnest
algebras
MeiyanJiaoa?andXiaofeiQib
aDepartmentofAppliedMathematics,ShanxiUniversityofFinance&Economics,Taiyuan,
P.R.China;bDepartmentofMathematics,ShanxiUniversity,Taiyuan,P.R.China
Downloaded by [Beijing Institute of Technology] at 18:26 28 March 2015 CommunicatedbyB.Kuzma(Received30April2014;accepted5May2014)LetNandMbetwonestswithN∈NandM∈McomplementedinNandMwheneverN?=NandM?=M,respectively.Assumethat??:AlgN→AlgMisaunitaladditivesurjection.Inthispaper,alladditivemaps??preservingcommutativityuptoafactorξ(ξ=0,±1)inbothdirections(i.e.??satis?es??(A)??(B)=ξ??(B)??(A)ifandonlyifAB=ξBAforallA,B∈AlgN)arecharacterized.Keywords:nestalgebras;commutativityuptoafactor;JordanisomorphismsAMSSubjectClassi?cations:Primary:47B49;47A121.IntroductionLetAandBbetwoassociativeringsoralgebras.Recallthatanadditivemap??:A→Bpreserveszero-products(inbothdirections)if,forA,B∈A,??(A)??(B)=0whenever(ifandonlyif)AB=0;preservesJordanzero-products(inbothdirections)if,forA,B∈A,??(A)??(B)+??(B)??(A)=0whenever(ifandonlyif)AB+BA=0;preservesLiezero-products(inbothdirections)if,forA,B∈A,??(A)??(B)???(B)??(A)=0whenever(ifandonlyif)AB?BA=0.Thequestionofcharacterizingadditivemapspreservingzero-products(Jordanzero-productsorLiezero-products)hasbeendiscussed,sayin[1–5](seealsoreferencestherein).LetAandBbetwoalgebrasovera?eldF.Forx,y∈Aandξ∈F,ifxy=ξyx,wesaythatxandyarecommutativeuptoafactorξ.Thecommutativityuptoafactor
forpairsofoperatorshasbeenthesubjectofstudyinthecontextofquantumgroups,[6]andtheirmatrixrealizationsgiveexamplesofoperatorpairscommutinguptoafactor.[7]Recallthatanadditivemap??:A→Bpreservescommutativityuptoafactorξinbothdirectionsif,foreveryA,B∈A,??(A)??(B)=ξ??(B)??(A)ifandonlyifAB=ξBA.ItisclearthattheconceptcorrespondstotheabovepreservingLiezero-productsinbothdirections,preservingzero-productsinbothdirectionsandpreservingJordanzero-productsinbothdirectionsifξ=1,0,?1respectively.Cuietal.in[8]characterizedtheunitaladditivesurjectivemapspreservingcommutativityuptoafactorξ(ξ=0,±1)inbothdirectionsbetweenstandardoperatoralgebrasonrealandcomplexin?nite-dimensional?Correspondingauthor.Email:jmyzgl@http://wendang.chazidian.com
©2014Taylor&Francis
LinearandMultilinearAlgebra1243
Banachspaces.Molnár[9]gaveacharacterizationofbijectivelinearmapspreservingcommutativityuptoafactorinbothdirectionsonthealgebraofn×ncomplexmatricesandonthespaceofalln×nself-adjointmatrices,respectively.Here,weremarkthat,in
[9],theconceptofcommutativityuptoafactorisslightlydifferentfromwhatwegive.Theauthor[9]saidthatamap??preservescommutativityuptoafactorinbothdirectionsif,foranyAandB,AB=ξBAforsomeξifandonlyif??(A)??(B)=η??(B)??(A)forsomeη,whereξandηmaybedifferent.Obviously,ourde?nitionismorerestrictive.Thepurposeofthepresentpaperistocharacterizetheadditivemapspreservingcom-mutativityuptoafactorξinbothdirectionsonanotherimportantoperatoralgebra:nestalgebras.Notethatnestalgebrasareneitherself-adjointnorsemi-simpleandprime.Itshouldbepointedoutthat,forthecaseξ=0,HouandZhang[5]characterizedadditivesurjections??with??(I)af?ne(thatis,??(I)injectivewithdenserange)betweennestalgebrasonin?nite-dimensionalBanachspaceswhichpreservezero-productsinbothdirections;forthecaseξ=?1,HouandJiao[3]provedthat,undersomemildconditionsonnests,anunitaladditivesurjectivemap??betweennestalgebraspreservesJordanzero-productsinbothdirectionsifandonlyif??iseitheraringisomorphismoraringanti-isomorphism;forthecaseξ=1,Benkovic?andEremita[10]gaveacompletecharacterizationofalladditivebijectivemapspreservingcommutativityinbothdirectionbetweennestalgebras,undertheadditionalassumptionoftheexistenceofacomplementednontrivialelementinthenest.Hence,wedealwiththecaseξ=0,±1inthispaper.
LetXandYbeBanachspacesovertherealorcomplex?eldF.Asusual,B(X)andF(X)denotetheBanachspaceofallboundedlinearoperatorsfromXintoXandthesubspaceofall?niterankoperatorsinB(X),respectively.AnestonXisachainNofclosed(undernormtopology)subspacesofXcontaining{0}??andX,whichisclosedunderthe??formationofarbitraryclosedlinearspan(denotedby)andintersection(denotedby).AlgNdenotestheassociatednestalgebra,whichisthesetofalloperatorsTinB(X)suchthatTN?NforeveryelementN∈N.WhenN={{0},X},wesaythatNisnontrivial.ItisclearthatifNis.ForN∈N,let????trivial,thenAlgN=B(X)⊥N?={M∈N|M?N},N+={M∈N|N?M}andN?=(N?)⊥,whereN⊥={f∈X?|N?ker(f)}andX?isthedualofX.Let{0}?=0andX+=X.Itiswellknownthatarankoneoperatorx?fbelongstoAlgNifandonlyifthereissome⊥.DenotebyAlgNthesetofall?niterankoperatorsN∈Nsuchthatx∈Nandf∈N?FinAlgN.ItisknownthatAlgFNisadensesubsetofAlgNunderthestrongoperatortopology.Formoreinformationonnestalgebras,wereferto[11].
Thepaperisorganizedasfollows.InSection2,welistthemainresultsobtainedinthepresentpaper.InSection3,wegivesomelemmas,whichareneededforprovingourmainresults.Section4isdevotedtoproofsofthemainresults.
2.Mainresults
Inthissection,wewillstatethemainresultsinthispaper.
Theorem2.1LetNandMbenestsonin?nite-dimensionalBanachspacesXandYovertherealorcomplex?eldF,respectively,withN∈NandM∈McomplementedinXandYrespectivelywheneverN?=NandM?=M.Let??:AlgN→AlgMbeaunitaladditivesurjectivemap.Then??preservescommutativityuptoafactorξinbothdirectionswithξ=0,±1ifandonlyifoneofthefollowingsholds.Downloaded by [Beijing Institute of Technology] at 18:26 28 March 2015
1244
(1)M.JiaoandX.QiIfξ∈R,thenthereexistadimensionpreservingorderisomorphismθ:N→M
andaninvertibleboundedlinearorconjugate-linearoperatorT:X→YsuchthatT(N)=θ(N)foreveryN∈Nand??(A)=TAT?1forallA∈AlgN.Ifξ∈C\Rand|ξ|=1,thenthereexistadimensionpreservingorderisomorphismθ:N→MandaninvertibleboundedlinearoperatorT:X→YsuchthatT(N)=θ(N)foreveryN∈Nand??(A)=TAT?1forallA∈AlgN.
If|ξ|=1,theneitherthereexistadimensionpreservingorderisomorphismθ:N→MandaninvertibleboundedlinearoperatorT:X→YsuchthatT(N)=θ(N)foreveryN∈Nand??(A)=TAT?1forallA∈AlgN,orthereexistadimensionpreservingorderisomorphismθ:N⊥→Mandaninvertible⊥)=θ(N⊥)forboundedconjugate-linearoperatorT:X?→YsuchthatT(N????1everyN∈Nand??(A)=TATforallA∈AlgN.(2)(3)
Downloaded by [Beijing Institute of Technology] at 18:26 28 March 2015 SinceeverylinearsubspaceofaHilbertspaceiscomplemented,thefollowingcorollaryisimmediatefromTheorem2.1.Corollary2.2LetNandMbenestsonin?nite-dimensionalHilbertspacesHandKoverthe(realorcomplex)?eldF,respectively.Let??:AlgN→AlgMbeaunitaladditivesurjectivemap.Then??preservescommutativityuptoafactorξinbothdirectionswithξ=0,±1ifandonlyifoneofthethreeformsinTheorem2.1holds.Forthe?nite-dimensionalcase,itisclearthateverynestalgebraon?nite-dimensionalspacesisisomorphictoanuppertriangularblockmatrixalgebra.LetMn=Mn(F)bethematrixalgebraoverthe?eldF.LetT=T(n1,n2,...,nk)?Mnbeanuppertriangularblockmatrixsubalgebra,i.e.n1+n2+...+nk=n,T={A=(Aij)k×k|Aij∈Mni,njandAij=0ifi>j}.Theorem2.3LetFbetherealorcomplex?eld,andm,nbepositiveintegersgreaterthan1.LetT=T(n1,n2,...,nk)?Mn(F)andS=T(m1,m2,...,mr)?Mm(F)beuppertriangularblockmatrixalgebras,and??:T→Sbeaunitaladditivesurjectivemap.Then??preservescommutativityuptoafactorξinbothdirectionswithξ=0,±1ifandonlyifoneofthefollowingsholds.(1)(n1,n2,...,nk)=(m1,m2,...,mr),thereexistanautomorphismτ:F→Fwithτ(ξ)=ξandaninvertiblematrixT∈Tsuchthat??(A)=TAτT?1forallA∈T;(n1,n2,...,nk)=(mr,mr?1,...,m1),thereexistanautomorphismτ:F→F1andaninvertibleblockmatrixT=(Tij)k×kwithTij∈Mni,njandwithτ(ξ)=?1forallA∈T.Tij=0wheneveri+j>k+1,suchthat??(A)=TAtrτT
HereAτ=(τ(aij))n×nforA=(aij)n×n∈Mn(F)andAtristhetransposeofA.In(1),ifF=R,thenτ=id(i.e.τ(t)=tforallt∈R).(2)
Particularly,if??islinear,wehavethefollowingresults.
Theorem2.4LetFbetherealorcomplex?eld,andm,nbepositiveintegersgreaterthan1.LetT=T(n1,n2,...,nk)?Mn(F)andS=T(m1,m2,...,mr)?Mm(F)beuppertriangularblockmatrixalgebras.Assumethat??:T→Sisalinearsurjective
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 地方正在抓紧落实一季度末的“楼市新政”
- 中国市场的发展趋势
- 女性浪费时间最多的就是在恋爱
- 我国彩电企业营销策略及战略创新
- 我国保险企业操作风险识别度量创新思路探析
- _新常态_下的创新_罗文丽
- 鬼谷子入门第一篇:《捭阖篇》之纵横捭阖
- 我国保险业发展的地区差异探析
- 线段的划分
- 英国留学:雅思成绩不等 申请学校有不同
- 社会共生论
- 论文格式要求
- 我国ST公司投资行为分析
- 我国C2C市场发展实例分析
- 德国之声主题新闻精选 (7)
- 我国产业损害现状评析及防范
- 建设节约型社会下大学生消费道德教育对策
- 关于家乡农民日常生活状况变化的调查
- 我国财政科技投入与经济增长的关系分析
- 硬分币参考价格
- 浅析房地产价格虚高对我国经济运行产生的影响
- 大观周刊
- _内卷化_概念辨析_刘世定
- 跳蚤问卷
- 农村中学生汉字书写现状及原因的分析
- 我国不同产权性质快递企业竞争力比较
- 人耳与听觉
- 甲午战争历史知识公众调查问卷
- 英语剧本台词
- Official Language in America
网友关注视频
- 《空中课堂》二年级下册 数学第一单元第1课时
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 北师大版数学四年级下册第三单元第四节街心广场
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 外研版英语七年级下册module1unit3名词性物主代词讲解
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 二年级下册数学第三课 搭一搭⚖⚖
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 冀教版小学数学二年级下册1
- 外研版八年级英语下学期 Module3
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 人教版历史八年级下册第一课《中华人民共和国成立》
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
- 3月2日小学二年级数学下册(数一数)
- 小学英语单词
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理